数学除与除以的区别模板(10篇)

时间:2023-07-16 08:23:37

导言:作为写作爱好者,不可错过为您精心挑选的10篇数学除与除以的区别,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数学除与除以的区别

篇1

数学是一门具有严谨性、科学性的学科。数学学科的严谨性在于它的语言组织具有相当强的逻辑性,虽然它看似和语文学科有很大的不同,但它在语言描述上字词的不同也会引起意思的不同。所以,数学教学中也需要咬文嚼字。

一、一字之差意不同

1.“除”和“除以”的区别

学生在小学阶段二年级就开始学法,开始接触“除”和“除以”这两个看似相同却又不同的知识概念。低年级老师执教时一般不把“除”和“除以”作为公开课进行教学,不是任教低年级的老师对这个知识忽略了,而是学生对这个知识点理解起来比较困难,许多中高年级学生往往对“除”和“除以”不能很好地加以区分。事实上,“除”和“除以”是截然不同的两个含义。如:3除5,正确列式为“5÷3”,而“3除以5”则是按照题目意思直接列式为“3÷5”。

虽然课程改革已经进行了多个年头,测试更趋于全面,但是对于“除”和“除以”的理解性测试还是少不了。可是,理解的不到位,还是容易使学生对“除”和“除以”的运用出现错误,导致不必要的扣分。因此,我认为:对这个知识点,老师在平时的教学中应当咬文嚼字,加强对比性练习,引导学生加以正确理解,从而提高学生的解题能力。

2.“是”与“都是”的不同

在小学高年级段的数学教材中有这样一个教学内容:数的整除(课程改革后已经做了部分修改),其中有一个学习内容是学生经常会混淆,即“互质数、质因数和质数”三个不同的概念。

例如:2和5是( ),2和5都是( )。看上去这两道题目没什么区别,但细细分析题目的含义,第一题用的“是”,第二题用的“都是”,由此可以发现第一道的括号中填写“互质数”,第二道的括号中填写“质数”比较合适。

对这类题目,老师的做法是加强这方面的练习,在咬文嚼字中帮助学生根据语意环境,提高学生自身分析问题的能力和辨别能力,从而提高解决问题的能力。

3.“上升了”与“上升到”的区别

“上升了”与“上升到”也是一字之差,究竟有什么具体差别呢?

例如:一个长方体容器,底面长50厘米,宽40厘米,高40厘米,里面水深20厘米,放入一个铁块,水面上升了2厘米,求铁块的体积。这时算式应当列成:50×40×2=4000(立方厘米)。而如果是水面上升到21厘米,算式就完全不同了,需要把上升到的水面高度减去原先的水深,这样才得出上升了多少厘米。这样铁块的体积求法就变成了:50×40×(21-20)=2000(立方厘米)。而许多学生在实际解答过程中,会把“上升到21厘米”理解为“上升了21厘米”,然后用前面所说的思路来解答。

二、不明句意难解答

数学学习中,理解题意是正确解答的前提,所以在具体语意环境中要不同的方法咬文嚼字的理解句意是学生必须具备的数学素养。不咬文嚼字弄明句意,是学生出现解题错误的一大原因。

1.“比多(少)几分之几(百分之几)”的理解

在分数(百分数)知识内容中“比多(少)几分之几(百分之几)”的实际问题是生活中经常遇到的,如果不能弄清“谁比谁多几分之几(百分之几)”,那么对学生来说找准单位“1”就成了一句空话,更不用说正确解答了。

例如:“水结成冰体积增加1/11”。本题中水结成冰以后,体积比哪个量增加了1/11?如果学生没有理解水结成冰后“谁比谁”增加了1/11,那么他找准单位“1”的量就会比较困难。在教学过程中,有的学生认为水结成冰以后水比冰的体积增加了1/11,于是“冰的体积”就成了单位“1”的量了,也就是11份,原来水的体积就是(11-1)份。事实上,本题中“水结成冰后体积增加1/11”,应该理解为“水结成冰后,冰比水的体积增加1/11”,应该把原来水的体积看成是单位“1”的量,有11份,相应的冰的体积就是(11+1)=12份。

这类知识点,教师可以根据学生认知上缺乏感性认识,组织“咬文嚼字”的学习活动,通过课件演示认识水结成冰后前后对比,明白“谁”比“谁”体积大,达到过目不忘的效果。

2.“平均速度”与“速度平均数”的理解

在小学高年级阶段,出现了求物体往返平均速度的题目,这类题目对学生来说是比较难的,因为求平均数的问题学生早在三年级的时候就已经接触过了。从题目的表面看,似乎求平均速度与求速度的平均数是一回事,所以学生通常把“求平均速度”按“求速度的平均数”进行解答。

例如:甲、乙两港相距140千米,一艘轮船从甲港开往乙港用了4.5小时,返回时因为逆水用了5.5小时。求这艘轮船往返的平均速度。

正确的理解是:平均速度=往返的总路程÷总时间,即这艘轮船往返一共行了140×2=280(千米),往返一共用了4.5+5.5=10(小时),平均速度为:280÷10=28(千米)。如果没有理解“平均速度”的含义,那么学生在解答时就往往会先求出去时每小时行的千米数与返回时行的千米数,在把两次的速度求和并除以2,认为这个就是所要求的平均速度。

再如:在某年的一张初中一年级新生的知识检测中(小学六年学习的内容)的一道题目:一辆汽车从甲地开往乙地,去时每小时行30千米。如果这辆汽车往返的平均速度是每小时40千米,那么这辆汽车从乙地返回甲地时每小时应行( )千米。

篇2

六年级上册数学三单元知识1.认识倒数

(1)倒数的意义:乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。

(2)求一个数的倒数

①求分数的倒数:交换分子和分母的位置即可。

②求整数的倒数(0除外):先把整数看作分母是1的假分数,然后交换分子、分母的位置即可。

③求小数的倒数:先把小数化成分数,再交换分子、分母的位置。

2.分数的除法

(1)分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)分数除法的计算:一个数除以一个不为0的数,等于乘这个不为0的数的倒数。

(3)分数的四则混合运算:与整数的四则混合运算的运算顺序相同。

① 先乘除,后加减;

② 如果有括号,要先算括号里面的。

(4)解决问题,这里主要包含三种类型的题。

① 已知一个数的几分之几是多少,求这个数。

方法一:设单位“1”的量为x,然后列方程解答。

方法二:已知量÷已知量占单位“1”的几分之几=单位“1”的量。

② 已知比一个数多(或少)几分之几的数是多少,求这个数。

方法一:设单位“1”的量为x,然后列方程解答,所依据的数量关系是,单位“1”的量×(1 ± 几分之几)=已知量。

方法二:先确定单位“1”的量,计算出已知量占单位“1”的几分之几,再根据分数除法的意义列式解答。

③ 已知两个数的和或差以及这两个数之间的倍数关系,求这两个数。

先找出单位“1”的量并设为x,用含有x的式子表示出另一个量,再根据两个数的和或差列方程解答。

(5)工程问题

工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

六年级上册数学三单元知识21.分数除法计算

(1)分数除法的意义和分数除以整数

知识点一:分数除法的意义

整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。

的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

知识点二:分数除以整数的计算方法

把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

(2)一个数除以分数

知识点一:一个数除以分数的计算方法

一个数除以分数,等于这个数乘分数的倒数。

知识点二:分数除法的统一计算法则

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系

一个数(0除外)除以小于1的数,商大于被除数。除以1,商等于被除数。除以大于1的数,商小于被除数。

0除以任何数商都为0

(3)分数除法的混合运算

知识点一:分数除加、除减的运算顺序

除加、除减混合运算,如果没有括号,先算除法,后算加减。

知识点二:连除的计算方法

分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

如何学好小学数学的方法一、恰当的学习方法和学习习惯

1、做好课前预习,掌握听课主动权。

课前准备的好坏,直接影响听课的效果。

2、专心听讲,做好课堂笔记。

3、及时复习,把知识转化为技能。

4、认真完成作业,形成技能技巧,提高分析解决问题的能力。

5、及时进行小结,把所学知识条理化、系统化。

因此,我们今后还要保持“先预习、后听讲;先复习、后作业;经常进行阶段小结”的好习惯。

二、良好的学习动机和学习兴趣

学习动机是推动你们学习的直接动力。华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因而,也就会挤时间来学习了。”我很高兴你们能够喜欢数学课,我希望你们在数学的学习中获得更多乐趣。

三、坚强的意志

在学习数学的过程中,你们遇到过许多大大小小的困难,你们能坚定信心,勇敢地面对困难,战胜困难,这需要坚强的意志。满怀信心地迎接困难,奋力拼搏战胜困难,就是意志坚韧的表现。你们具有这种十分可贵的品质,在学习遇到困难或挫折时,就会不灰心丧气;在取得好成绩时,也不骄傲自满,而是善于总结经验教训,探索学习的规律和方法,奋勇前进。这样才取得了好成绩。

篇3

教师出示“整理与复习”中的第2题。

147÷20= 312÷50= 720÷70=

147÷21= 312÷53= 720÷72=

147÷29= 312÷58= 720÷68=

师:请同学们观察一下这些题目,有什么共同特点?

生:都是三位数除以两位数。

师:你们会算吗?请大家先算一算第一组的三道题。

学生计算后,集体校验每道题的结果。教师统计全班学生的练习情况,剖析练习中的错误,并板书:

①147÷20=7……7

②147÷21=7

③147÷29=5……2

师:第一组题中,你可以帮这三道题分分类吗?

小组同学之间相互讨论、反馈。

生:我想把第①②题归为一类,第③题为另一类。

师:你们知道他这样分类的理由吗?

生:因为第①②题可以直接试商,而第③题需要调商。

师板书:调商。

生:我想把第①③题归为一类,第②题另为一类,因为①③两题都有余数,而第②题没有余数。

师:没有余数的除法怎么验算?有余数的除法呢?请你从中各选一题验算一下。

学生验算后,师生共同总结除法的验算方法。

师:大家观察得真仔细,那么你还有什么发现吗?

生:被除数都是147。

生:除数20、21、29,变得越来越大。

生:被除数相同,除数越小,商越大;反之,被除数相同,除数越大,商越小。

师:第①②题的商都是7呢,你又能发现什么呢?

生:被除数相同,如果商一样,那么余数越大,除数就越小;反之,被除数相同,如果商一样,那么余数越小,除数就越大。

师:回忆一下,刚才你们是怎样计算三位数除以两位数的?

生:笔算三位数除以两位数的除法时,通常把除数看作与它接近的整十数来试商,计算时从被除数的高位除起,除到被除数的哪一位,商就写在哪一位上面,除得的余数必须比除数小。

师:那也就是说两位数可以分成非整十数和整十数两类,我们还要把非整十数转化为整十数来试商,这里还渗透了转化的思想,帮助我们解决了难题。

教师根据学生的小结,顺势板书:非整十数,整十数,转化。

师:根据同学们刚刚所说的方法,请大家完成第二组的三道题目,比一比谁做得既快又准确。

学生计算后,集体校验每道题的结果。教师反馈全班练习的情况,并板书:

④312÷50=6……12

⑤312÷53=5……47

⑥312÷58=5……22

师:这一组题,结果都有余数,那你觉得可以怎么分类呢?

生:把④⑥分成一类,⑤分成另一类,因为④⑥试商以后,不需要调商,而⑤试商以后需要调商。

师追问:这组中的⑤312÷53=5……47与第一组中的③147÷29=5……2都需要调商,那它们在调商的时候有什么不同呢?

学生独立思考。

生:第⑤题是把53看做50,用6试商,发现不够减,说明商太大了,要调小;而第③题是把29看做30,用4试商,发现余数比除数大,说明商太小了,要调大。

师:调商的规律,我们总结成一句话――看小调小,看大调大。

师板书:看小调小,看大调大。

师:至此,我们一起总结了调商的方法,同学们的概括能力、语言表达能力都不错。请同学们完成第三组的三道题目,比一比谁做得既快又准确。

学生计算后,集体校验每道题的结果。教师反馈全班练习的情况,并板书:

⑦720÷70=10……20

⑧720÷72=10

⑨720÷68=10……40

师:你在做这组题的时候,发现与第一组题有什么不同吗?

生:我发现第⑦题除到被除数的个位时,个位上不够商1,要用0占位。第⑨题也是这样。

师:请大家比较一下第一组题和第三组题的商,都是三位数除以两位数,你又发现了什么?

生:三位数除以两位数,商可以是一位数,也可以是两位数。

师:为什么第一组的商是一位数?而第三组的商是两位数呢?

生:先看被除数的前两位,第一组,被除数前两位比除数小,就要看前三位,商写在个位上,所以第一组的商是一位数;而第三组,被除数前两位等于除数或大于除数,所以第三组的商写在十位上,是两位数。

师:总结得太好了。通过这三组题,我们总结出了整数除法的计算法则――先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要用0占位。我们还学会了三位数除以两位数的调商的方法――看小调小,看大调大。

师板书:商是一位数,商是两位数。

板书:

【课后分析】

第一,教材为什么要编制这一题组?

笔者认为备课时有必要对教材进行深入解读与分析。这一单元主要目标是让学生经历探索三位数除以两位数算法的过程,会笔算三位数除以两位数。在“整理与复习”中安排这一题组,除了变化形式为学生提供笔算三位数除以两位数的机会外,还有更重要的目的:通过思考,把握题目之间的联系和区别,主动发现计算规律,在更高层次上理解算法、运用算法,发展数学思考能力。从上述教学过程中,看出了执教者如何体现“引导学生在计算过程中积极思考”。

第二,学生的认知Y构是否得到必要完善?

篇4

在小学数学教学中强化“听说读写”训练,使语言文字训练在数学教学中得到强化和巩固,这是培养学生创新精神和能力的重要途径。如果语言文字不过关,表达能力差,创新又从何而谈。下面笔者就如何在小学数学中对学生进行“听说读写”训练,谈谈自己的看法。

一、数学教学中“听说读写”训练的内容

1.听。孩童学话,大多数是从大人说话中“听”会的。数学知识和技能的获得,也离不开“听”。数学教学中的“听”,就是要求学生在课堂上认真听教师的讲解,听同学发表见解。通过“听”来形成表象,理解数学概念,积累数学语言,逐步形成能力。

2.说。数学教学中的“说”,就是让学生说一说事实、说一说结果、说一说过程、说一说规律和操作、说一说算式算理等,以说促思,培养学生的概括能力和表达能力。

3.读。“书读百遍,其义自见”,要正确理解数学的题意,“读”是必不可少的。数学教学中的“读”,一是读数、二是读题、三是读概念,四是读算式。通过“读”来理解题意、找出等量关系,提高学生解决问题的能力。

4.写。“写”是数学教学的最终归宿。学生在认数之后要写数,在理解题意、找准等量关系后要写出算式、写出计算过程、写出答案等等。是数学教学中学生借助语言或数学符号的“遣词造句”,最终达到解答数学问题的目的。

二、重视数学概念和术语教学,加强词和词组训练

九年义务教育小学数学新课标指出:小学数学中的概念、性质、法则、公式、数量关系和解题方法等最基础的知识,是进一步学习的基础,必须使学生切实学好。显而易见,概念教学是数学教学的重要组成部分,是进行思考、推理、判断的基础。而数学概念是借助语言或数学符号来表达的。因此,我们在教学中,首先要讲清概念、术语所反映的对象和含义是什么,让学生对其有明确的印象。比如:“和”“差”“积”“商”“除”“除以”“比……多”“比……少”等。其次,对于一些容易混淆的概念和术语,如“除和除以”、“增加和增加到”等,要注意引导学生比较它们之间的联系和区别。例如,出示“8除以2的商是多少?”和“8除2的商是多少?”让学生比较“除以”和“除”的联系与区别。这样,既能够使学生理解所学的概念,又加强了数学语言的训练。

三、在文字题教学中加强加强学生的“听说读写”训练

文字题是由数学概念、术语和数字组成的,是小学数学教学的重要内容之一。在文字题教学中加强学生的“听说读写”训练,对于学生运用数学概念、术语和分析数量关系起着重要的作用,对发展学生的逻辑思维,提高学生数学语言的表达能力有着积极的促进作用。

(一)抓好“运算符号”的语言表述训练

如“+”表述为:加、相加、加上,不能表述为:“加以”;“×”表述为:乘、乘以、相乘,而不能表述为:“乘上”;“÷”表述为:除以、除(去除),不能表述为:“除去”。

(二)重视“运算结果”的文字表述训练

如加、减、乘、除的运算结果,分别称为和、差、积、商,而且要表述是求哪两个数的和(或差、积、商)及其关系。

(三)加强“四则运算意义的运用”的语言文字表述训练

例如,“42÷7”表示的意义是什么?则可表述为:①把42平均分成7份,每份是多少?②42是7的多少倍?③42里面有多少个7等。

四、在“计算”教学中加强学生“听说读写”训练

在数学教学中,计算占相当的比重,试题是计算的前提条件。在教学过程中,经常进行一式多读的训练,既可以使学生练习数学基本术语的使用,熟悉一些数量关系,又可以提高学生的语言表达能力。例如,“18×3=?”可以从不同的角度用不同的语言表述出来:①18乘以3得多少?②18的3倍是多少?③3个18是多少?④一个因数是18,另一个因数是3,积是多少?再如“(25+34)×(46-16)=?”可用语言表述为:①25与34的和乘以46减16的差,积是多少?②比25多34的数乘以比46少16的数,结果是多少?等等。这样训练,可以提高学生的“语言式子化,式子语言化”的综合能力,以达到提高学生的语言表达能力的目的。

五、联系生活实际,激发学生兴趣,强化语言文字训练

语言文字训练,离不开一定的语言环境。因此,在教学中要注意联系学生的日常生活实际,选用学生所熟悉的具体事件,把抽象的数学概念和具体实例相联系,使整个教学活动生动精辟,营造一个活跃学生思维的语言文字训练的氛围,使学生如身临其境,从而激发学生的兴趣,唤起学生情感上的共鸣。比如,在教学“减法的运算性质:aDbDc=a-(b+c)”时,我们可以这样进行:

首先,创设一个让学生当售货员卖文具的情境,让学生根据下面题目要求进行买卖活动:小红到学校小卖部买一支铅笔和一本数学练习本。一支铅笔1角8分,一本数学练习本4角2分。小红付出1元钱,售货员应找给小红多少钱?

其次,让学生说出在“买卖”过程中是如何“找退”的?

①从1元钱中减去铅笔的钱数,再减去数学练习本的钱数,即是应“找退”(剩下)的钱数。列式为:100-18-42=40(分)

②从1元钱中减去铅笔与数学练习本的总钱数,即是应“找退”(剩下)的钱数。列式为:100-(18+42)=40(分)

再次,组织学生讨论:①“100-18-42”求的是什么?“100-(18+42)”又求的是什么?②两种不同的算法,结果怎样?③两道算式有什么关系?

从而得到:100-18-42=100-(18+42)。由于学生已有钱币在实际计算中运用减法性质的生活经验,在此就不难概括出减法运算性质:一个数连续减去两个数,等于一个数减去这两个数的和。即:aDbDc=a-(b+c)。

篇5

案例:“两位数除以一位数”

片断1:

(出示6÷3=2,60÷3=20)

师:仔细观察,你发现了什么?

生:第二道题的得数多了一个0。

师(追问):为什么?

生:因为这道式子被除数的前面多了一个0。

……

片断2:

师(写出竖式,特地用红笔写商十位上的2):为什么商2写在十位上?

生:因为个位上还有一个数,所以2只能写在十位上。

师:对。

……

思考:

从上述教学中,可以看出学生只说出了数学知识的表面现象,根本没有理解其计算背后的实质,即我们所说的算理。如片断1中,60÷3=20中的60是由6个十组成的,6个十除以3等于2个十,2个十就是20。用数的组成能解释学生的观察,但笔者认为,6÷3=2只能作为一种记忆的辅助形式,它可以看做数的组成的简化形式,两道算式都可以通过“二三得六”这句口诀想到。如“三位数除以一位数”一课中安排例题600÷3=200,教材出示了三种算法:第一种是算除想乘;第二种是数的组成;第三种是以小推大。这里如果细分的话,算除想乘是方法,数的组成是算理,以小推大是形式。如果说学生不能在教师引导下感知的话,那么在学习“两位数除以两位数”中,学生将遇到困难。当学生看到例题60÷20=30时,还是会想到教材出现的以小推大的辅助记忆形式6÷3=2,但此时会有更多的学生摒弃这种思维,因为这种记忆不容易区分“60÷3=20、600÷3=200、60÷20=30”三者的计算,转而采用算除想乘的算法或“60里面有几个30”这样的除法意义来区别。

同样,片断2中,学生的解释体现了他们的机智,却无法体现数学味。商2写在十位上是因为将十位上的4平均分成2份,每一份是20,在十位上写2。对上述教学片断中教师就此肯定学生说对了而继续讲课的场景,笔者认为教师没能抓住时机起到引领作用。这样教学,表面上看好像尊重了学生,但却使学生对数学知识的认识是浅层的、不全面的,导致学生对除法竖式这一部分内容一知半解,不利于后续知识的对比与迁移。

二、道是容易,却难教

片断3:

在完整列竖式计算(如下)的过程中,教师完全根据算式来讲解:“商2乘除数2得4,被除数4减4得0,0不写,接着将个位的6移下来接着除……”

思考:

上述教学片断,看似流畅的讲解却完全抛弃了主题图中小棒的作用,学生不明白为什么要用这样的竖式来计算,不理解这样计算的算理,不能将口算的思考过程与竖式计算的过程相结合。学生在这么多不理解的情况下,只能被动地机械模仿。

我们回过头来分析书中的例题,只有深入了解了教材内容的安排,才能有针对性地开展教学。首先,例题学习的是口算整十数除以一位数(如40÷2),再过渡到口算两位数处以一位数(如46÷2),学生能很快说出得数。学生口算出得数后,再利用竖式将思考过程清楚地进行表达,最后进行练习。

要想学生有较强的知识迁移能力,弄清楚竖式的算理是必需的。在教学中,学生遇到的困难则是算理比较抽象,竖式计算的格式规则较难理解,这就需要小棒操作的有力支撑。将操作经验上升为计算方法,是学生接受除法竖式的必要基础。

篇6

中考数学复习提纲数学中考复习提纲(实数与数轴)

1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。二、实数大小的比较

1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;

负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 三、实数的运算 1、加法:

(1)同号两数相加,取原来的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:

(1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

数学中考复习提纲(有效数字和科学记数法)

1、科学记数法:设N>0,则N= a×10(其中1≤a

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

数学中考复习提纲(分式方程)

(1)分式方程的解法:去分母法,方程两边都乘以最简公分母。特殊方法:换元法。

(2)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。四、方程组

1、一次方程组:

(1)二元一次方程组:

一般形式:?a1x?b1y?c1(a1,a2,b1,b2,c1,c2不全为0) 解法:代入消远法和加减消元法a2x?b2y?c2

解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。 一、一元二次方程的解法 1、(1)用直接开方法解;(2)用公式法;(3)用因式分解法2、(1);先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。 二、分式方程的解法:分析:(1)用去分母的方法;(2)用换元法 解:略三、根的判别式及根与系数的关系 四、方程组 1分析:(1)用加减消元法消x较简单;(2)应该先用加减消元法消去y,变成二元一次方程组,较易求解。[规律总结]加减消元法是最常用的消元方法,消元时那个未知数的系数最简单就先消那个未知数。 1.在解方程2A.2xC.2x

2分析:(1)可用代入消远法,也可用根与系数的关系来求解;(2)要先把第一个方程因式分解化成两个二元一次方程,再与第二个方程分别组成两个方程组来解。[规律总结]对于一个二元一次方程和一个二元二次方程组成的方程组一般用代入消元法,对于两个二元二次方程组成的方程组,一定要先把其中一个方程因式分解化为两个一次方程再和第二个方程组成两个方程组来求解。

一、列方程(组)解应用题的一般步骤

1、审题:2、设未知数;3、找出相等关系,列方程(组);4、解方程(组);5、检验,作答;

数学中考复习提纲(列方程(组)解应用题常见类型题及其等量关系)

1、工程问题

(1)基本工作量的关系:工作量=工作效率×工作时间

(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量

(3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题 2、行程问题

(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:

相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):

同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程3、水中航行问题:

顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度 4、增长率问题:

常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率); 5、数字问题:

基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100

数学中考复习提纲(不等式及不等式组)

一、不等式与不等式的性质

1、不等式的性质:

(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数?a+c>b+c

(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0?ac>bc。(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c

1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。不等式组中各个不等式的解集的公共部分叫做不等式组的解集。

2.求不等式(组)的解集的过程叫做解不等式(组)。

三、不等式(组)的类型及解法 1、一元一次不等式:

(l)解法:

与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组:

(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。注:求不等式组的解集一般借助数轴求解较方便。

数学中考复习提纲(图形与变换)

知识要点

1.轴对称(轴对称、折叠)

(1) 轴对称和轴对称图形的区别与联系

区别:轴对称是指两个图形间的位置关系;轴对称图形是指一个具有特殊形状的图形。 联系:

(a) 它们都延某一直线折叠,图形重合

(b) 如果把两个轴对称图形看成一个整体,那么它就是一个轴对称图形;反过来,把轴对称图形的两部分当作两个图形,那

么这两个图形成轴对称。

(2) 线段的垂直平分线及其性质

性质:线段垂直平分线上的点到线段两端点的距离相等

与一条线段的两个端点举例相等的点在这条线段的垂直平分线上。 (3) 轴对称的性质:

(a) 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线的线段垂直平分线; (b)轴对称图形的对称轴是任意一对对应点连线的线段垂直平分线; (c) 轴对称的两个图形全等

(d) 轴对称的两个图形,他们对应线段或其延长线相交,交点在对称轴上。

(4) 轴对称变换

考点:利用坐标表示轴对称(做关于坐标轴及原点的对称点)解析:点(x,y)关于x轴对称的点的坐标为(x,-y);关于y轴对称的点的坐标为(-x,y),关于原点对称的点的坐标为(-x,-y)归纳:关于谁对称谁不变,关于原点对称全改变

(5) 轴对称的图形:等腰三角形,等腰梯形,矩形,菱形,正方形,抛物线,双曲线,圆 2.中心对称(中心对称、旋转) (1)中心对称及中心对称图形

(a)关于中心对称的两个图形,对称点的连线经过对称中心,而且被对称中心平分; (b)关于中心对称的两个图形全等。

(2) 中心对称图形:线段、相交线、平行四边形、矩形、菱形、正方形、正六边形、圆 (3) 中心对称与轴对称的区别联系

(a) 区别:关于直线对称和关于点对称 (b) 联系:都是旋转180°得到的 (4) 图形的旋转

(a) 图形绕某一点O转动一个角度的图形变换叫旋转,点O叫旋转中心,转动的角叫旋转角。

(b) 图形在旋转有旋转中心和旋转角决定,旋转中心在旋转过程中式不动的,旋转不改变图形的大小和形状。 (c)特征:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等。 (d) 旋转作图步骤

(i) 根据题意确定旋转中心、旋转方向和旋转角 (ii) 找出图形的关键点 (iii)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到这些关键点的 对应点; (iv) 次连接这些关键点的对应点,得到旋转后的图形。 3.位似

4.投影与视图

投影 (1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

数学中考复习提纲(三视图)

(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,三视图就是主视

中考数学复习建议认真学习,研究教材,研究考试,把握老师教学的要求,了解老师教学中的重点和学生学习中的难点,提高自身的业务素养。另外也要根据当前教改的要求、学生的实际,研究老师教学方法,达到提高老师教学效率的目的。

篇7

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2013)35-209-01

教学活动背景:每人对数学的理解都与他自身的经验、知识背景、所处的文化环境、家庭背景有关,由此产生的差异将导致不同的学生表现出不同的数学学习倾向和解决问题的不同策略,加强学生间的合作与交流,不仅可以使解决问题的方法与策略不断完善、优化,还能让不同的解题策略为大家所共享,教师在课堂教学中要给学生创设足够的活动时间与思考的空间,鼓励学生发现问题、提出问题,敢于质疑,乐于交流,不断拓展思路,展现思维的真实碰撞。

案例:

片段一:

师:屏幕上有三个醒目的大字“年、月、日”,当你读出这三个字的时候,你想到了哪些问题?

生:一年有12个月,每个月都有30天。

生:能不能计算出一年有多少天?有多少小时?有多少分钟?又有多少秒?

生:我每年都要过一个生日,可有的人为什么4年才过一个生日?

反思:探索的基础是发现。发现问题可以激活学生的探索欲望,提高学生学习的积极性和主动性,把学生引入一种与问题有关的情境,使学生明确探索目标,给思维以方向,学生们众说纷纭,无拘无束,这为学生的自主探究创设了良好的氛围。]

片段二:

师:请小组中每个同学拿出自己准备的年历卡,仔细观察,看大家有什么新的发现?(注意及时做好记录)

每个小组汇报反馈:

生:有的月份有31天,有的月份有30天,2月份有28天,所以刚才有同学说“每月都有30天”是不正确的。

生:有的年份2月份是29天。

师:有31天的月份称为大月,有30天的月份称为小月,2月份有29天的年份称为闰年,2月份有28天的年份称为平年,平年和闰年有什么区别呢?

生:2月份的天数不同。

生:全年的天数相差1天。

……

根据学生的回答,整理思路。

师:每个月的天数我们已经知道了,那么怎样计算一年的天数呢?

生:把每个月的天数都加起来。

生:因为有7个大月,4个小月和一个2月,所以用“31×7+30×4+28”

可以算出平年有365天。

生:用“31×7+30×4+29”,可以算出闰年有366天。

生:我有更简单的计算方法,因为闰年比平年多一天,所以直接用365+1=366(天)。

生:还可以进行估算,每个月大约有30天,30×12 = 360(天),一年大约有360天。

师:刚才我们已经知道2000年2月份是29天,所以说2000年是闰年,2003年是平年,那么我们怎样知道其他的年份是平年还是闰年呢?

生:查看万年历,看2月份有多少天?

生:这样太麻烦了,我想可能会有一个简便的判断方法。

师:你的想法不错,下面让我们一起探讨,看有没有新的发现!

(学生点击电脑进入万年历)

生:四年中有三个平年,一个闰年……

生:1992年、1996年、2000年……都是闰年,那这些年份与“4”有什么关系呢?

学生查看电脑桌面上下载的网络材料。

师:从上面的资料中,你又明白了什么道理?

学生独立举例说明如何判断一个年份是平年还是闰年。

生:能被4整除的年份是闰年。

生:1900年能被4整除,说明1900年是闰年,而通过查万年历,它的二月份有28天,它确实是平年,这岂不是矛盾吗?

生:是不是万年历编错了。

生:用公历年份除以4这种方法来判断一个年份是不是闰年,这种计算方法不准确。

适时点拨,引出公历年份是整百年份的应该除以400这个判断方法。

篇8

小学数学教材中每一课时的知识内容,都不是一个独立的存在,而是处在所属的整体知识结构之中,各知识版块之间有着相互关联、逐步深入的内在联系。在对每一课时内容进行研读时,首先要从整体上把握教材的编排结构,厘清这一课时内容在所属知识体系中所处的地位,了解知识发生的过程、产生的背景和背后蕴涵的思想方法,进而把握本知识内容的生长主线。这样,才能在预设教学时知道从哪里开始,又可以延伸至哪个层面。下面以苏教版《数学》六年级上册“整数除以分数”这一课时内容的研读为例来谈一谈。

1.教材的编排脉络

对于教材的编排脉络,主要厘清相关知识在本套教材中的分布及各部分之间的关系,以及各部分知识在教学时需要达成的教学目标。

教材在安排这部分内容时,应遵循由易到难、循序渐进的原则。编排顺序分两块,一是计算法则的教学,顺序为:分数除以整数、整数除以分数、分数除以分数;二是实际问题:分数除法应用题、两步计算、分数乘除混合运算。

先教学分数除以整数,再教学一个数除以分数。在教学一个数除以分数时,又是先教学整数除以分数,再教学分数除以分数。整数除以分数,安排了两个例题,例题2是整数除以几分之一,例题3是整数除以几分之几。这样安排,能使学生在不断探索新知识的过程中逐步完善对分数除法计算方法的理解,通过自主活动归纳并总结出分数除法的计算方法。

2.知识的生长脉络

分数除以整数,从例题÷2,分子能被除数整除,到“试一试”÷3,分子不能被除数整除,初步得出除以一个整数,就是求这个整数的几分之一是多少,即用分数乘这个整数的倒数。在此基础上,再自然生长到整数除以分数,由整数除以几分之一到整数除以几分之几,通过画图直观的过程,得出整数除以分数等于乘除数的倒数。最后得出一个数除以分数的计算方法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

3.不同版本的对比与启发

分数除以整数,人教版、苏教版、北师大版三个版本的教材都是通过图形直观的方式,让学生理解算理得出算法。在直观的基础上,逐渐将学生的思维由除法转向乘法,特别是北师大版教材,在教学了÷2之后,有意安排了÷3,因为前者可以从整数除法意义的角度,用分子先除以2,后者则不同,分子4不能被3整除,由此可让学生感知前者的局限性,自然就将学生的思维引向乘法。对于接下来的整数除以分数,三种版本的教材尽管依然采取直观的形式,但是显然已采用半抽象的线段或者直条模型,北师大版教材则利用长方形的宽一定,长与面积的变化关系,让学生理解算理,进而得出算法。

通过比较研读三种版本的教材,可以看出,分数除法的教学,因为相对整数除法抽象许多,因此在教学时先让学生经历直观的操作活动或者图形的观察,从整数除法的角度使之自然生长过来。在此基础上,逐步引导学生进行数学联想和推理,最后通过比较归纳,得出分数除法的通用法则。

二、学生视角,探寻数学学习的思维之线

对教材的深度研读,除了从编者“排”的视角解读,更需要从学生“学”的视角,深入把握教材,探寻学生学习这一知识内容时的思维之线。

1.学生认知的起点

对一节课的学习,学生认知起点的确定尤为重要。学生已有的认知基础是什么?认知水平如何?通过本节内容的教学让学生在哪些方面获得发展?学生有没有和本节知识相关的生活经验?这些都需要教师在课前搞清楚。以苏教版《数学》四年级上册“角的度量”为例。本节内容中学生的已有知识经验是对角的概念的认识,知道角的大小指的是角的两边叉开的大小。学生的数学活动经验是会画出一个角,会用重叠的方法比较两个角的大小,会用直尺度量线段的长度。学生的认知起点是“如何来度量两边叉开的大小”。因此,教材一开始先让学生用熟悉的数学工具三角板上的角进行度量,能量出这个角和三角板上的角的大小关系,但是不知道这个角到底有多大,然后引出量角器。此外,有的学生还会用直尺去试着量两边之间的距离。因此在研读之后的教学设计中,需要让学生由已有经验出发,自然过渡到用量角器量角。

2.学生认知的转折点

学生在学习这部分知识内容时新旧转折处在哪里?通过什么方式让学生自然将新知识纳入到已有的认知系统,进行同化?还是以“角的度量”为例,这是学生在第二学段学习“角的认识”中的一个重要内容,是区别于长度、面积、重量等的另一个维度的测量知识内容。学生的认知转折点在于:原来对线段长度的度量只要用直尺顺着线段起点到终点直线方向测量即可,然而角的度量工具不再是直的,而是一个半圆形的工具,度量的方法除了关注点还要关注线,即所谓的“二合一看”,学生经历一个“由直向曲”的转折点。因此,在设计教学时首先要让学生仔细观察、了解量角器的构造特点,特别是量角器上与0刻度线构成的角的度数在刻度圈上是内圈还是外圈,这是准确量角的关键所在。

3.学生认知的困难点

本节课的知识内容对学生而言学习难点是什么?用什么方法帮学生突破难点?“角的度量”这一课内容中,学生的认知困难点在量角的时候如何区分内外圈的刻度。为了突破这个难点,各版本的教材都有所侧重。如北师大版和人教版教材,在引进量角器之前,都设计了1°角的认识,即将圆平均分成360份,其中1份所对的角的大小为1°,然后在1°角的基础上让学生找出30°、50°、60°、90°、120°、180°……

这样的设计,主要是让学生在观察由1°角累积成其他角的过程中动态地感知角的大小变化过程,从而便于学生在量角器上也能准确地找到不同度数的角。另外,无论是人教版、北师版还是苏教版教材中,在引进量角器、认识量角器的环节,都设有让学生在量角器上找出一些指定度数的角,以此为学生在量角时候的“二合一看”做好准备。

三、教师视角,求索数学教学的主导之线

在梳理清了教材的知识生长脉络以及学生学的思维脉络之后,就需要在教材和学生之间架起一条教师“导”的主线,也就是如何让学生能在原有认知基础之上自然地学习新知,又如何在教师的引导之下顺利突破认知难点,进而让学生在学习数学知识的同时使其数学思维得到较好的发展。以苏教版《数学》三年级下册“长方形的面积计算”为例来谈一谈。

1.新旧知识思维无痕对接

“长方形的面积计算”是平面图形面积计算教学的起始课,是以后进行平行四边形、三角形、梯形及圆等平面图形面积计算方法学习的基础。 “长方形的面积计算”是紧接着“面积的意义及面积单位”知识的学习编排的,因此学生学习“长方形的面积”的基础是对面积意义的理解,而面积概念的出现是学生认识事物从一维空间走向二维空间的开始。

因此,教学的起点处教师可以引导学生的思维从一维向二维生长。如可以先让学生回忆如何测量一条线段的长度,在此基础上由线段动态铺出一个长方形的平面,让学生思考如何知道这个长方形面积,进而让学生通过面积单位测量出长方形的面积,理解面积的大小就是看这个平面图形中一共包含着几个面积单位。

这样,就将学生的思维自然地从一维的“长度”领域引导到二维的“面积”领域。并且为后续长方形面积推导中的长、宽与所摆单位面积的小正方形个数之间的联系做了很好的思维孕伏。

2.学导主线贯穿思维始终

长方形面积计算方法探究中的主线是帮助学生沟通一维长度属性与二维平面属性间的联系,体现化归思想,扩展学生认识图形的基本视点,培养空间观念。如计算一个长4厘米、宽3厘米的长方形的面积,已知的信息是线段的长度,而所求的问题则是图形的面积,于是,学生需要把新问题作如下转化:长4厘米,其实是说我们可以沿着长边摆这样的4个面积单位(此时的面积单位是1平方厘米的正方形),根据宽3厘米,又可以得到“摆这样的3行”这一信息。这样就得出了这个长方形的面积是12平方厘米。

此时“化归”的思维过程,更多地指向面积本源,借助面积单位的特点,找到长度属性与面积属性之间的联接点和对应关系,从而解决新问题。而类似这样的化归,在后续长方体的体积计算教学中,引导学生从一维长度属性、二维面积属性扩展到三维体积属性的认识时同样适用。

基于以上的分析,教学设计中可以贯穿这样一条主线:用单位面积的小正方形去铺满这个长方形,无论长和宽是多少,每排个数就是长所包含的单位长度个数,排数就是宽所包含的单位长度的个数。

3.认知冲突引向思维深处

篇9

在小学数学教学工作中,不少小学生对分数除法的实质及运用理解不透,导致数学学习困难,拉大了数学成绩的差距。如何通过教学工作让学生真正理解并掌握分数除法的知识呢?下面,我们就以小学数学分数除法教学工作中常见的分月饼的教学为例,分析设计教学步骤和内容,以期达到最好的教学效果。

一、明确教学内容,目标和重点

分数与除法是小学数学教学中的一个重点,同时也是较难为学生所理解的一个教学难点,这部分内容承接了之前有关分数的意义、分数单位等知识,进一步要求学生了解分数与除法的关系内涵,并能够根据分数与除法的关系掌握如何计算一个数是另一个数的几分之几的实际问题。学生在真正掌握了这部分内容后,能够进一步了解分数的意义。根据具体教学内容,我们可以确定以下教学目标:(1)引导学生理解并掌握分数与除法的关系,了解一个数除以分数的计算法则,学会用分数表示两个数相除的商。(2)通过实际教学道具操作,使学生理解3的就是。培养学生的分析、推理能力。教学重点和难点:3的与1的的含义。

二、教学设计及具体难点解析

1.从简入难地引入问题

利用课件出示一块饼,提问:把这一个月饼平均分给四个人,每个人能分到多少?引导学生说出每份是四分之一块,板书出1÷4和,并让学生重点了解除法算式和分数表示的区别。继续提问:这里的是把谁看作了那个整体1?小组讨论,分析,回答问题。让大家观察板书,概括分数与除法的关系,分数的分子相当于除法中的被除数,分母相当于除法中的除数。明白除法是一种运算,分数则是具体的数量。

2.提出进一步的问题

如果把3个月饼平均分成4份,每份是这些月饼的四分之一,每一份是多少块?提问,板书出算式:3÷4。拿出圆形纸板,以小组为单位,每组四张,让学生亲自剪一剪,再拼到一起看一看,看看结果到底是什么?小组合作、交流,提问:几种分法,每个人能分多少?学生回答并用纸板演示过程。第一种分法:按照3个月饼,均分4份,每人一份,把每个圆形纸板各分为4等份,然后每个纸板拿其中的一份,三份拼到一起,再与完整的纸板对比,是完整纸板的。第二种分法:把三张圆形纸板叠放到一起,同时剪成4等份,拿出其中重叠的一份,拼到一起,再与完整的纸板对比,占完整纸板的。对两种方法做出比较,将两种方法下的纸板拼接好,放到一起进行对比,发现是一样大的,都是整块纸板的,也就是说,每人能分到个饼。

3.带领学生一起归纳总结两种分法的区别与联系,概括分数与除法的关系

要让学生明白,按照两种不同的分法,3个月饼的就是个饼,而1个月饼的也是个饼,即:3的与1的相等。使学生体会到分数的表示具体数量的含义。

4.课堂内容结束时进行总结,巩固练习,课后拓展和延伸

利用实际生活中的各种分数和除法问题,带领学生进行多个具体问题的分析计算。课堂内容结束后,为学生布置适量的课后巩固练习,并鼓励大家思考一个数除以分数,如果这个数是分数而不是整数怎样计算。

三、教学心得体会

从事教学工作的教师要具备足够的耐心和责任心,认真进行备课及课堂教学。在教学设计时,要尽可能多地增加直观演示,利用各种教学道具,课件、图片等直观地对教学内容进行演示。在进行新知识内容的讲解时,要合理地提出疑问,巧妙地进行引导,结束讲解时,要及时全面地对所有知识点进行归纳总结,带领学生梳理知识脉络。同时,还应努力培养学生发现出问题的意识与能力。学习不单单是对已有知识的熟练掌握,更是发现新问题并努力解决的过程,所以,努力培养学生的创新精神,也是我们日常的教学工作关键。例如,在上面的实例中,我们不但要为学生讲清楚课本知识的内涵,更要鼓励大家积极地观察身边的实际生活,并进行发散思维,思考学习内容中的新问题。

参考文献:

篇10

两端都在圆上,并过圆心的线段叫直径,用d表示。

2.圆有无数条半径,有无数条直径。

3.圆心决定圆的位置,半径决定圆的大小。

4.把圆对折,再对折就能找到圆心。

5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

圆的周长

8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

9.C=d或C=r. 半圆的周长

10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

7=21.98 8=25.12 9=28.26 10=31.4

圆的面积

11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

17^2=289 18^2=324 19^2=361 20^2=400

13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。

面积相同时,长方形的周长最长,正方形居中,圆周长最短。

周长相同时,圆面积最大,正方形居中,长方形面积最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

第四单元:比的认识

15.两个数相除,又叫做这两个数的比。比的后项不能为0.

16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。

列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。

二、分数乘法

分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

2、分数乘分数是求一个数的几分之几是多少。

分数的化简:分子、分母同时除以它们的最大公因数。

关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。

分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

倒数的意义:乘积为1的两个数互为倒数。

特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

求倒数的方法:1、求分数的倒数是交换分子分母的位置。

2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

1的倒数是它本身。因为1*1=1

0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)

三、分数除法

分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。

除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

分数除法的基本性质:强调0除外

比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。

化简比:

1、用比的前项和后项同时除以它们的最大公约数。

2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

3、两个小数的比,向右移动小数点的位置。也是先化成整数比。

比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

常用来做判断的:

一个数除以小于1的数,商大于被除数。

一个数除以1,商等于被除数。

一个数除以大于1的数,商小于被除数。

五、百分数

百分数的约分:百分数化成分数,写成分数形式,再约分。

分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。

百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

六、统计

条形统计图可以知道每个数量的多少。