时间:2023-07-19 16:56:26
导言:作为写作爱好者,不可错过为您精心挑选的10篇云计算基本架构,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
中图分类号:TP303文献标识码:A文章编号:16727800(2012)008000602
作者简介:连鸿鹏(1987-),福建师范大学协和学院初级网络工程师,研究方向为云计算。
0引言
虚拟化技术是伴随着计算机的产生而发展的,虚拟化意味着对计算机资源的抽象。虚拟化技术实现了物理资源的逻辑抽象和统一表示,通过它可以提高资源利用率,并能够根据用户业务需求的变化,快速、灵活地进行资源部署,因此,虚拟化技术已经成为构建云计算环境的一项关键技术。
VMware 云基础架构能够让现有的用户从虚拟化中获益,加速了现有数据中心云计算的转移,与公共云基础兼容,铺平了向混合云模式前进的道路,成为云计算的新里程碑。
本文主要讨论作为X86体系结构虚拟化技术的代表,VMware公司基于已有的虚拟化技术和优势,提供了云基础架构及管理、云应用平台和终端用户计算等多个层次上的解决方案,主要支持企业级组织机构利用服务器虚拟化技术,实现从目前的数据中心向云计算环境转变方面的架构分析。
1VMware vSphere 简介
VMware vSphere是在原来的VI3基础上推出的系统,被成为业界首款云计算操作系统。vSphere将应用程序和操作系统从底层硬件分离出来,从而简化了 IT 操作。现有的应用程序可以看到专有资源,而服务器则可以作为资源池进行管理。vSphere以原生架构的ESX/ESXi Server为基础,让多台ESX Server能并发负担更多个虚拟机。主要包括3部分:一是虚拟化管理器VMM部分的VMware ESX 4,VMware ESX Server主要是用于调配物理服务器中内存、CPU、存储及网络各种硬件资源,运行在物理服务器上的一个虚拟层并根据预定好的策略将这些资源分配到运行在其中的各虚拟机中,这些虚拟机以安全独立的模式并行运行;二是用于整合和管理VMM的VMware vCenter,提高在虚拟基础架构每个级别上的集中控制和可见性,通过主动管理发挥 vSphere 潜能,是一个具有广泛合作伙伴体系支持的可伸缩、可扩展平台;三是用于管理客户端的软件VMware Infrastructure Client。
VMware vSphere 主要通过虚拟化技术将数据中心转变为云计算基础架构,通过虚拟化提供自助部署和调配的功能,将IT基础架构作为服务来交付使用。vSphere是一个整体架构而非单个产品,基本架构如图1。
图1VMware vSphere 的基本架构
2.1vSphere的云端部分
vSphere所谓的云端是指平台及架构部分(PaaS和IaaS),可以分为内部和外部云端。内部云端由各种硬件资源组成,并有vSphere负责统合云端资源,在IaaS及PaaS中,资源为硬件及OS资源。外部云端vSphere可以将这些第三方提供的资源集成到企业的IT架构中。
2.2vSphere的底层:架构服务(Infrastructure Service)
有了硬件资源之后,就需要一个Hypervisor将资源集成,然后ESX和ESXi服务器将负责硬件资源虚拟化。Infrastructure Service主要可以分为运算部分的vCompute、存储部分的vStorage以及网络部分的vNetwork。
(1)vCompute部分。vCompute包括了ESX/ESXi以及DRS。ESX/ESXi主要实现服务器整合、提供高性能并担保服务品质、流水式测试和部署及可伸缩的软硬件架构。DRS确保按需调整资源配置,根据需要和优先级压缩和增加应用系统的资源,动态的响应负载平衡。
(2)vStorage部分。vStorage包括VM所在硬盘的文件系统VMFS以及动态分配大小的Thin Provisioning,提供多种存储虚拟连接选择,通过vStorage VMotion减少或消除计划内停机,通过精简部署降低虚拟环境的存储要求,通过vStorage API简化管理并提高存储操作的效率。VMFS是专门为虚拟机设计的高性能集群文件系统,该系统可以在VMware虚拟机的VMware虚拟数据中心环境中访问共享存储。
(3)vNetwork部分。VMware的网络虚拟化技术主要通过VMware vSphere 中的vNetwork网络元素实现。通过这些元素,部署在数据中心物理主机上的虚拟机可以像物理环境一样进行网络互连。vNetwork的组件主要包括虚拟网络接口卡Vnic、vNetwork标准交换机vSwitch和vNetwork分布式交换机dvSwitch。vSphere提供了一个Distributed Network的架构,不但有完整的Bridged/NAT/Host only架构,更和Cisco合作推出一个专门安装在vSphere上的分布式网络。
一、背景
随着互联网和移动互联网的高速发展,网络的灵活性和敏捷性要求更高,现有的传统分布式IP网络的局限性日益突显,主要表现为:
1.网络刚性。网络设备大量由单一功能的专用设备构成,造成网络复杂、无法协同、缺乏灵活性等弊端。
2.网元封闭。硬件和软件一体化的封闭结构,导致设备扩展性差、价格昂贵、不同厂家的网元互通困难。
3.业务僵硬。不同厂家的网元设备功能单一封闭,新业务开发周期长、成本高,难以满足快速灵活提供业务的要求。
4.运营复杂。大量厂家的各类专用设备以及相关的协议众多,网络规划复杂,整合难度高,运营复杂,造成运营成本居高不下。
多年来积累的问题已经使得今天的IP网络患有“动脉硬化症”,网络架构重构迫在眉睫。2006年,SDN概念于是应运而生。
SDN(Software Defined Network)即软件定义网络,是一种开放灵活和可持续演进的新型网络架构,采用软件化、虚拟化的“分离”方法,将现有传统的分布式网络架构进行重构,让网络中的控制面和数据转发面进行分离,由传统分布控制向集中控制的网络转变。
关于SDN网络架构,不同的组织有不同的定义,当前较为主流的是开放网络基金会ONF(Open Networking Foundation)对SDN分层架构的定义,如图1所示。
该分层架构模型得到了产业界的广泛认可和推广使用。
SDN的核心是“S”即软件,也就是网络不再是“硬”的,固化封闭的,难以扩展的,而是可以通过软件程序实现灵活的新I务开发和部署,网络资源可以灵活调度,使得网络作为一个管道变得更加智能和弹性可用,较好地解决运营商现有网络运营的痛点,因此,SDN概念一经提出,就受到了运营商的青睐和积极响应。2014年以来,随着SDN技术的逐步成熟,国内运营商开始进行局部试点商用。
二、传统分布式IP网络和SDN网络架构分析
SDN是对运营商现有网络架构进行重构,重构后的网络是否能够稳定运行,是否出了故障能及时恢复,是否能达到或接近传统分布式IP网络的可靠性可用性要求,是运营商关注的重点之一。
2.1可靠性、可用性
网络的可靠性使用网络运行阶段平均业务失效故障间隔时间来描述,用无故障运行时间来衡量。网络的可用性使用网络稳定不出现故障的时间与总的时间的百分比来表示。
从通俗的角度来理解,可靠性高是指网络持续一段较长时间(如一年或两年)运行稳定,不出现业务失效的故障;可用性高是指网络稳定运行不易出现故障,并且一旦出现故障能够快速恢复。
要提升网络的可靠性和可用性,通常采用冗错技术来实现,也就是在网络设计中增加冗余资源,避免单点故障造成业务失效。
2.2传统分布式IP网络基本架构分析
传统分布式IP网络的基本架构如图2所示,分为管理平面、控制平面和数据平面。管理平面为网管系统,负责网络监控和业务配置,当业务配置下发后即使脱网也不影响网络的正常运转。控制平面和数据平面由路由器等设备组成,路由器负责按路由表转发数据包,采用IGP和BGP两种核心分布式动态路由协议,当网管把业务配置上传到路由器后,如果网络状态发生变化,控制平面即路由器会在网络中自动扩散这些变化,各自根据新的状态自动重新计算路由,全网采用冗余路由技术和路由快速收敛技术,当故障发生时能够在秒级时间内使受到影响的业务得以恢复,网络具有故障快速自愈能力。
2.3 SDN网络基本架构分析
SDN网络的基本架构如下图3所示,分为应用层、控制层、基础设施层。应用层由各类商业应用软件程序组成,通过北向接口向控制器提交各种网络应用;控制层由SDN控制器组成,它是整个网络的控制中心和指挥中心,是整个网络的“大脑”,拥有全局网络视图,负责实时采集全网设备状态、网络拓扑和各链路流量,生成流表并通过南向接口下发给网络设备,同时根据网络状态变化或应用层提交的功能更改重新生成流表并下发;基础设施层由网络设备和线路组成,一方面负责接收控制器下发的流表并按之进行数据包转发,另一方面负责将网络资源信息和状态上报给SDN控制器,是执行单元,本身不做决策。
从SDN网络的架构来看,SDN控制器作为网络的“大脑”是关键部位,成为单点故障引发全网故障的风险点。
2.4两种架构的可靠性可用性比较
从传统分布式IP网络和SDN网络的基本架构来看,传统分布式IP网络的控制功能是分布式的,任何一个单点故障发生时网络具有快速自愈能力,而SDN网络的控制功能全部集中在SDN控制器,有单点故障引发所有业务失效风险,因此,传统分布式IP网络的可靠性和可用性较高,但是,SDN具有简化网络、快速业务开发和部署、低成本等核心价值,值得研究对策,让SDN网络可用。
三、提升SDN网络可靠性可用性的策略
可靠性和可用性是基于网络故障来考虑的,如果能够识别出各层可能发生的故障及对网络的影响程度,拿出应对策略,避免网络因单点故障而瘫痪。
从SDN网络架构来看,各层可能出现的故障如下:
应用层
设备方面:服务器故障、应用程序故障、服务器所在机房出现断电等故障。
链路方面:服务器与SDN控制器的通信链路故障。
安全方面:非法侵入等。
控制层
设备方面:服务器故障、SDN控制器软件故障、服务器所在机楼出现坍塌等故障。
链路方面:SDN控制器和网络设备之间的链路故障。
安全方面:非法接入或受DDOS攻击等。
基础设施层
设备方面:网络设备故障。
链路方面:网络设备之间的链路故障。
安全方面:非法侵入等。
针对以上各层可能出现的故障,以及各层在网络中的重要程度,权衡成本投入以及可接受的可靠性、可用性等因素采取以下的应对策略:
3.1应用层的应对策略
应用层的设备方面故障对网络的运行影响并不大,当应用需求通过北向接口提交给控制器,由控制器生成相关的业务逻辑变成相关流表下发给网络设备执行,此后,应用程序的服务器即使出现脱网等故障也暂时不会影响网络的运行。因此,用层的服务器、应用程序采用冷备份冗余设计,考虑到机房安全问题,在异地机楼部署冷备份系统。当主用系统出现异常时切换到冷备份系统上运行。
防范链路方面的故障,可采用一条主链路和一条备用链路。由于与应用程序通信的外部设备是可知的,因此,防范安全方面造成的故障,采取对连接的设备进行白名单设置并进行严格的身份认证。
3.2控制层的应对策略
SDN控制器是网络的控制中心和指挥中心,一旦SDN控制器无法提供服务,假设基础设施层的网络没有发生变化,网络设备仍按原有的流表进行转发,不影响网络运行,但是此时基础设施层的网络拓扑如果发生变化,没有SDN控制器重新计算路由生成新的转发流表,对网络的运行就会造成重大影响。因此,控制层健壮性设计非常关键。
防范设备方面的故障,采取SDN控制器异地机楼的热备份设计显得尤为重要,承载SDN控制器软件的服务器采用云化虚拟机集群,这些虚拟机独占物理设备不与其他用户分享,软件采用分布式部署,主用控制器和备份控制器同时运行,都在处理业务,是负载均担关系,因此具有超强的自愈能力来应对单台或多台服务器故障,冗余保护措施在故障情况下自动生效,对外服务不中断,故障服务器修复后重新上线,系统自动平衡工作负载。
控制器和网络设备之间的通信链路如果中断导致控制器无法控制网络,会造成重大影响,为了防范链路故障的影响,应采用控制器通过多条链路连接到网络设备,采取带外专门的链路通道,辅以带内控制通道作为冗余链路,使得任何一条链路故障,都不影响控制器与网络设备的通信。
为防范非法接入或受DDOS攻击,应采取在SDN控制器和网络边界处部署防火墙、入侵检测设备以及流量清洗系统。通过防火墙和入侵检测设备进行访问控制、病毒木马防治、非法入侵检测、安全漏洞扫描等,采取只对特定的IP地址提供服务并按需开放端口原则,阻断非法IP接入或攻击;通过清洗系统对进出控制器的流量进行分析,一旦发现非法攻击流量,立即引导非法流量到清洗部件。
3.3基础设施层的应对策略
基础设施层的网络设备或链路故障,会造成部分业务中断,故障发生后,SDN控制器会根据网络变化情况,重新进行路由计算并生成新的流表下发给在线运行的网络设备,实现网络收敛。在设计网络节点时采用传统的设备冗余、链路冗余技术,部署IP FRR快速重路由,一旦节点故障发生,网络设备在没有控制器控制下也能自动完成路径切换。适当加大资源冗余度,以轻载为主,链路带宽利用率控制在50%以下。防范非法侵入网络设备产生的故障,采取管理控制网络与公网隔离,对远程登录进行严格设置和身份认证。
四、SDN可靠性可用性策略在实际网络部署中的应用
中国电信广西公司从2014年以来,积极推进SDN网络的试点工作,在实际SDN试点网络部署中综合考虑以上可靠性可用性策略,采用如图4的方式部署:
应用层和控制层的软件使用云资源池分配的虚拟机来承载,同时在异地机楼云资源池上部署备用系统。应用层和控制层的虚拟机各自独占一个VLAN与云资源池中的其它网络进行隔离。这些虚拟机独占物理设备不与其他用户分享。SDN控制器采用热备份部署。
SDN控制器与网络设备的通信链路,采用带外管理控制网络和带内控制通道相结合的方式。
基础设施层采用设备、链路冗余配置。
在控制层部署防火墙、入侵检测设备和流量清洗系统,保障SDN控制器的安全。
通过在SDN试点网络进行了专线业务开通、业务流量优化、新业务开发和部署、模拟攻击、设备主备倒换等一系列实验,各项业务功能达到了预期效果,网络可靠性可用性也达到商用的要求。
五、结束语
SDN网络架构具有传统网络无可比拟的优势,虽然SDN网络的可靠性可用性相对于传统分布式IP网络而言,还有一些差距,但是可以通过以上的策略来提升SDN网络的可靠性可用性,从而使SDN网络达到可商用的目的。
参 考 文 献
[1]闫长江,吴东君,熊怡 .SDN原理解析―转控分离的SDN架构[M].北京:人民邮电出版社,2016
关键词:数字校园;基础设施;云计算;云服务
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)50-0069-02
进入21世纪以来,信息技术深入到经济发展与社会生活的各个方面,人们的工作、学习及生活方式正在发生着深刻的变化,针对教育资源不均衡、全民教育、个性化学习和终身学习等问题,国家制定了《教育信息化十年发展规划(2011―2020年)》(简称《教育信息化规划》),在《教育信息化规划》中大力倡导积极开展教育信息化建设,并提出“建设信息化公共支撑环境,提升公共服务能力和水平[2]”的发展任务,其中提到了云服务平台、云服务模式的建设,而当前多数学校在数字校园建设中尚未上升到云服务的模式,由此,本文将对建设数字校园基础设施云服务平台进行探讨与阐述。
一、云服务模式简介
目前,云服务类型主要分为基础设施即服务(Infrastructure as a Service,即IaaS)、平台即服务(Platform as a Service,即PaaS)、软件即服务(Software as a Service,即SaaS)三种类型,这三种类型各具特点,又有一定的层次关系。基础设施即服务将计算、存储、网络等硬件基础资源,通过虚拟化等相关技术封装成服务提供给用户使用,它最接近物理硬件资源,在服务层次上属于最底层服务,用户可以利用IaaS提供的处理、存储、网络以及其他硬件资源方面的服务,部署自己的操作系统,并运行自己的软件。典型的应用如亚马逊弹性计算云(EC2,Elastic Compute Cloud)。平台即服务是构建在基础设施即服务之上的服务,用户通过PaaS提供的软件工具和开发语言,部署自己需要的软件运行环境和配置。用户不必控制底层的网络、存储、操作系统等技术问题,底层服务对用户是透明的,这一层服务是软件的开发和运行环境[3]。典型的应用有Google公司的Google App Engine。
软件即服务是一种通过Internet提供软件应用的模式,用户无须购买软件,而是租用服务商运行在云计算基础设施上的应用程序,客户不需要管理或控制底层的云计算基础设施,包括网络、服务器、操作系统、存储,甚至单个应用程序的功能[4]。典型的应用有GoogleDocs、MicrosoftOfficeOnline。
二、云服务带给数字校园的益处
云计算(Cloud Computing)是融合了分布式计算(Distributed Computing)、并行计算(Parallel Computing)、效用计算(Utility Computing)、网络存储(Network Storage Technologies)、虚拟化(Virtualization)、负载均衡(Load Balance)、热备份冗余(High Available)等传统计算机、网络与存储技术的产物,因而,它兼具高可靠性、通用性强、可扩展性高等特点。教育信息化推动了教育、教学模式的改革创新,但信息技术是一门专业性强、技术更新与发展快的综合性学科,因此,学校通过搭建云计算平台提供云服务,将改变学校信息化建设、管理与应用的模式,综合起来有以下几点突出优点。
1.由专业技术团队管理、运营云服务平台可确保信息技术运用科学、合理、专业,用户无须具备较高的信息技术专业知识、技能,从而可以将更多的精力投入本职工作。
2.云服务采用群集服务器,相比单机可大幅提高服务可用性、数据可靠性,进而提供持续、稳定、可靠的服务。
3.云服务采用虚拟技术能够充分利用软、硬件资源,避免重复投资;同时,由于云计算具有较高的灵活性与弹性,从而便于系统升级、“云”的规模扩充也易于实现。
三、基础设施云服务平台基本架构
在构建基础设施云服务平台时要秉持开放、共享、兼容的原则。开放性体现为能够衔接已有在用的数字校园应用,同时,也要为其他校园云服务系统及二次开发预留接口;共享性表现为能够实现与教育云等外部公共云服务系统对接;兼容性要求能够支持自建系统、开源系统和商业系统等多种形式。针对学校中信息技术力量薄弱、分工明确、教学为主的特点,为了使广大教师致力于教学工作,在学校中构建云服务平台时,打破IaaS和PaaS间的界限,提出宽泛的基础设施概念,将硬件资源(CPU、存储、网络)和软件资源(操作系统、应用软件、数据库)通过虚拟化和云计算技术打造成基础设施云服务平台,其基本架构如图1所示。
基础设施层是基础设施云服务平台的最底层,在该层通过运用虚拟化技术将CPU、存储、网络等硬件和操作系统等软件抽象为一个资源池,为上层架构提供服务。中间层作为承上启下的一层,基于基础设施层提供的资源为上层及用户提供服务。同时,作为三层架构中的枢纽,负责提供访问控制、工作流的管理、API接口及负载均衡和服务的高可用性。应用层作为架构的顶层直接面向用户,为用户提供自助服务,便于用户申请云服务、管理应用系统;同时,向用户展示云服务平台的各种应用,供用户访问。管理层在架构中提供针对架构及服务的管理功能,涵盖用户管理、配置管理、计费管理、安全管理、流程管理及运行维护管理等。
四、结束语
当前,数字校园已成为助力教育信息化的基础平台,信息技术得到了广泛应用,同时,伴随着信息技术的发展、教育教学理念及教学技术的不断创新,云计算、云服务的需求日益迫切,因而建设云服务体系已成为大势所趋。但不应盲目照搬商业模式,应根据自身条件、特点,建设适合学校自身的云服务体系,并遵从立足自身,放眼长远,且要秉持开放、共享、兼容的原则建设云服务体系。
参考文献:
[1]蒋东兴,付小龙.基于云服务的高校数字校园[J].科研信息化技术与应用,2012,(6).
中图分类号:TP315
21世纪以来互联网技术的发展十分迅速,随着时间的增长,一些陈旧的网络设施不断的被淘汰,开始进行更新换代,换代的同时计算机技术的应用也不断的被广大的人们所熟知,互联网技术中有一个重要的环节对网络的发展起到承上启下的作用,那就是数据的存储,如今随着计算机技术的不断发展这种设备的成本也随之降低,这也促使互联网的用户不断的提高。人们慢慢的都进入了互联网的时代,使得当今社会也变的越来越信息化,同时也有很多的数据要进行处理,使得传统的一些数据的计算方法不再适合当今互联网的发展速度,因此传统的一些数据中心也满足不了当今的需求。本文主要结合当今云计算的发展状况,研究了云计算的基本理论和概念以后,深入分析了云计算的基本架构。
1 云计算数据中心的概述
1.1 云计算的概念。云计算的定义比较多,与之关联的理论也比较多,但是总体来讲主要有以下3个方面:第一分布式计算;第二信息海量计算;第三,并行数据计算。这些概念基本上都是美国标准语技术研究中心提出的,是国际上通用的概念。云计算并不是无偿的服务,它是需要收取一定费用的,收取费用的计算主要是客户使用网络流量的费用。目前移动网络也不断的发展已经从2G发展到了4G网络,互联网时代开始更新换代。这也使得云计算技术运用越来越广泛,用户可以随时随地的通过访问面来获取自己想要的数据服务,或者计算的结果,并且获取的过程是简单而轻松的。与此同时工业的生产也不断的运用云计算技术开展生产活动,随着时间的推移,云计算在工业生产中的运用不断的扩大和普及,也越来越成熟,涉及的工业领域也越来越多。
1.2 云计算的原理。云计算的原理和云计算涉及理论领域有着密切的关系。从这些领域我们可以看出云计算技术的主要目的是将需要处理的数据在网络上的其他计算机上进行处理和计算。而对于企业的一些数据中心来讲,云计算的运行原理和和网络上的一些原理是相似的。唯一不同的就是企业的数据是根据需求来定的,随着网络的普及以及网络速度的加快,移动客户端数据也不断的发展,云计算的服务也越来越广泛,比如利用手机进行购物等都是云计算衍生的产品。这些技术与以往传统的网络相比变的越来越开放,不像以往使用单机进行数据处理,如今随时随地都可以操作,这样也使得互联网在一定的程度上越来越普及。
2 ITIL架构
目前应用最为广泛的架构就是ITIL架构,这种架构主要分为6个不同的模块这些模块在一定的程度上有很大的联系,它们并不是孤立的,在实际的工作中要相互作用的,这样才能完成各自的任务,下面分开介绍这6个不同的模块:
2.1 服务支持。该部分主要是对执行某项任务时,都由哪些人员参与,他们分别扮演何种角色,以及整个任务执行的具体细节进行描述,将联系用户以及细节的“服务台”功能进行明确的定义。服务支持在整个云过程中所关注的重点是,IT组织是如何按照SLA标准向具体客户提供IT服务的。
2.2 服务交付。该部分主要是用来对客户开展某项业务所需要的服务,主要的服务内容就是对客户的要求进行任务分工以及IT组织在提供这项服务时所需要具备的资源进行描述。在服务的过程中一些不同的人员要执行不同的工作内容,服务交付在整个云过程中所关注的重点是,IT组织如何与客户签订具体的SLA等级协定,并在具体工作开展的过程中对SLA目标实施监控。
2.3 安全管理。安全就是保证用户信息的安全,此模块记录很多用户的数据,这些数据的主要内容是记录一些具体的规划和管理信息及IT服务所达到的安全流程水平,用以评估和控制所存在的风险,同时根据评估结果给予相应的解决。进行安全管理的目标就是要保证整个服务过程的保密性、完整性以及可用性。
2.4 IT基础设施管理。IT基础设施的管理十分重要,其关系到业务成本的问题,只有合理的对基础设施进行管理才能保证最大的业务需求,创造更大的利润,这个模块最主要的任务就是保证IT架构的运行效率,以最小的运行成本保证最大的运行效率是其最主要的任务,可以有效的保证IT基础设施的稳定建设。
2.5 应用管理。应用管理就是对客户端上的应用进行管理,这个模块的主要任务就是对各个应用的生命周期进行管理,并且对客户进行管理的指导,以使他们能够在最短的时间内从服务管理的角度对整个应用系统有着较为全面的了解。
2.6 服务管理规划与实施。该部分主要是对服务的组织、实施以及改善服务管理流程,对整个过程中所出现的问题以及具体任务进行再规划、设计,帮助客户确立远景目标,同时对服务改进方案进行全面的、持续的指导。
2.7 业务视角。所谓业务视角,是用来强调服务的开展应该从业务的角度触犯,而不是只关注服务的交付者,让IT服务人员明白其主要工作是为了实现具体的商业目标,是为了给用户创造最大的价值,做出最大的贡献。
3 ITIL的云计算数据中心管理理念
对于目前面向服务的数据中心架构来讲,如果要是这些架构能够稳定的、可靠的运行就必须有一些合理的管理模式,通过强大的管理模式把服务层的每个架构进行联系起来,才能够使得系统的运算结构有效的运行,也能使得网络的基本结构得到很好的改善,目前面向服务的数据中心架构能够最大的优化系统资源的配置。上一章详细的讲了ITIL的数据架构,这些架构在理论上是比较成熟的,也能够经得住长期的实践考验,在具体的实际应用中还要根据客户的需求进行设计,设计的标准很多,其中最主要的有;结果要能实施、对总体的需求能够准确的表达,既然主要是面向客户的架构,那么所有的设计都要根据客户的需求来定,这样才能满足客户需要的功能。
4 云计算资源的管理
4.1 云计算管理模型。主要分为两个部分,一个是被动式部件一个是主动式的部件,这两种系统的结构都具有层级的结构,其中主动式的部件就是系统的各种资源,就是对系统的数据进行反复的利用,作用的内容就是系统结构的内容,通俗的说就是执行传统以及非传统计算过程。而作业是整个层次结构的实体,调度的主要内容就是吧任务映像到资源,而不是将作业映像到资源。
4.2 云计算的资源调度。云计算中关键的系统就是云计算的资源调度系统,它直接影响着资源管理的有效性和可操作性,然而云计算的动态性能以及云计算的结构性能又直接影响着云计算资源的调度,直接影响云计算的系统复杂性。云计算资源的调度系统设计可分为3类,主要有集中式、分布式以及层次式等,在这3中调度的类型中,集中调度最为常见,它主要是通过一个中央的调度中心进行数据的交换,这种调度方式主要是通过一个程序进行的,其中所有能够使用的信息都能够在数据的中心体现。分布调度的原理主要是进行交互式的作业,主要把数据传送到远程的存储器中,用户可以通过网络访问这个服务器从而获得相关的数据,这种操作并没有中心的系统进行操作。
5 结束语
云计算技术越来越流行,都归功于计算机技术的发展,人们对网络的需求与日俱增,如今这种需求涉及到很多的方面和领域,不仅在企业中有所体现,在日常生活中都与人们息息相关,本文全面的接受了云计算的一些基本架构,分析了云计算的一些概念和原理,初步了解云计算技术有一定的作用,作者水平有限,没能在云计算的硬件和软件上深入分析,希望这以后的生活中继续研究。
参考文献:
[1]罗军舟,金嘉晖,宋爱波.云计算:体系架构与关键技术[J].通信学报,2011(07):3-21.
[2]张亚娟.云计算数据中心资源管理软件设计[J].无线互联科技,2014(04):90+94.
中图分类号: TN911?34; TP37 文献标识码: A 文章编号: 1004?373X(2013)14?0010?03
Cloud computing technology and modeling of mass VOD system
CHEN Xu?wen, HUANG Ying?ming
(Department of Information Engineering, Jieyang Vocational & Technical College, Jieyang 522000, China)
Abstract: With the promotion of the triple?net fusion, the mass VOD emerges out some characteristics such as complicating data, multiple platforms and huge business, which make a huge challenge to the traditional on?demand mode. By using the powerful computing ability and mass data efficient processing of cloud computation, the application of cloud computation in mass VOD system is discussed on the basis of analysis of the basic framework and technical characteristics of cloud computation and in combination with the characteristics of VOD service. The framework and working principle of the cloud computing system are analyzed. Some main technologies, such as redundancy backup of data, heartbeat detection, replacement of intelligent nodes and load balancing are elaborated. A new idea to make the mass video propagation smooth is put forward.
Keywords: cloud computation; mass VOD; Hadoop system; modeling
随着互联网技术和多媒体技术的迅猛发展,基于网络的视频点播(Video On Demand,VOD)业务成为了网络应用的一大热点。人们通过手机、掌上电脑等简易的终端设备随意欣赏视频的新型模式极大地颠覆了传统的电视观看模式,逐步成为视频点播的主流。虽然流媒体及P2P技术[1]的应用在一定程度上减轻了中央服务器和骨干网络的负担,优化了节目流的播放质量,但当面对热点视频时,海量视频的处理传播极大地考验着视频运营商的实力。另外,随着电信网、计算机网和有线电视网三网融合步伐的快速推进,对于视频点播业务的需求也将呈现出数据量剧增和多平台共存的局面,光靠原有的硬件基础绝对无法满足形势的发展,而增加投入势必会增加企业的运营成本,租用第三方运营平台将成为一种发展趋势。
作为一种新型的商业计算模型,云计算提供了强大灵活的计算能力和高效快捷的海量数据处理方法,其高可靠性也是普通的第三租赁方所无法比拟的。本文以云计算为平台,研究了基于云平台的视频点播模式,为解决海量视频的高效传输提供了新方法。
1 云计算技术及海量视频点播的技术特点
1.1 云计算的概念
自云计算(Cloud Computing)概念提出以来,至今仍没有统一、公认的定义,比较获得业界认可的是2011年由美国国家标准和技术研究院(NIST)提出的[2]:云计算是一种通过网络以便利的、按需付费的模式获取计算资源(包括网络、服务器、存储、应用和服务)并提高其可用性的模式,这些资源来自一个共享的、可配置的资源池,并能够以最省力和无人干预的方式获取和释放。
云计算是网格计算、并行计算、分布式计算、效用计算、网络存储、虚拟化、负载均衡等传统技术和网络技术发展融合的产物,它以虚拟化为核心,通过网络把多个成本较低的计算实体整合成一个具有强大计算能力的资源系统,以按需、易扩展的方式为用户提供所需的各种资源和服务。云是一个包含大量可用虚拟资源的资源池,云中的资源在使用者看来是可以无限扩展、随时获取、按需使用、按量付费的[3]。云模式[4]也即电厂模式,利用电厂的规模效应来降低电力价格,用户根据用电量付费,便可源源不断获取电力资源,而无需维护和购买任何发电设备。
云计算具有低成本、高性能、超大规模、虚拟化、高可靠性、通用性、高可扩展性、按需服务等特点[5]。目前比较成熟的云计算业务和应用有:Google的AppEngine、Amazon的弹性计算云EC2、微软的Azure云平台和IBM的蓝云等。
1.2 云计算的架构[5]
(1)软件即服务(Software as a Service,SaaS):SaaS服务供应商将各类应用软件统一部署在服务器上,用户通过简易的互联网接入终端就能直接使用,并按需按量付费。云中的软硬件设施由供应商负责维护和管理,用户不需顾虑类似安装、升级和防毒等琐事,且免去初期高昂的硬件投入、人员配置、软件许可证等费用的支出,经济便捷。
(2)平台即服务(Platform as a Service,PaaS):PaaS主要面向开发人员提供一个应用的开发和部署平台,包括SDK、文档、测试环境和部署环境等。平台的部署和运维均由供应商负责,用户可一心一意致力于研发工作。
(3)基础设施即服务(Infrastructure as a Service,IaaS):IaaS由底层硬件或虚拟机资源构建而成,用户从供应商那里获取所需的计算或存储资源来装载相关应用,且仅需为所租借的那部分资源付费。
1.3 海量视频点播的技术特点
(1)文件庞大,数据量多。单个视频文件非常大,视频资源繁多,数据海量化。
(2)编码多样,业务复杂。随着三网融合的推进及视频播放技术的改革,必将出现多编码、多平台共存及多业务共享的局面。
(3)质量至上,要求严格。庞大的数据量对服务器性能及网络带宽要求甚高,而随着点播量的快速增长,对于计算能力及处理强度的要求也相应剧增。
2 海量视频点播系统的云计算技术与建模实现
2.1 系统架构
根据视频点播业务的技术特征及云计算技术的特点,本文提出了基于云计算的海量视频点播平台的基本架构,其拓扑图如图1所示。用户通过Web交互服务器向视频点播系统发出业务请求,经Web交互服务器受理后将具体的业务要求提交给云核心服务器,由核心服务器对整个云文件系统进行控制处理,完成视频文件的调用并反馈回客户端。
图1 系统架构图
2.2 系统工作原理
系统采用Hadoop系统实现云点播平台SaaS层的构建[6]。根据点播系统的功能要求及Hadoop系统的基本构成,包括以下几个功能组件,阐述如下:
2.2.1 Web交互服务器
在整个点播系统中,Web交互服务器作为系统前端窗口,负责受理用户的点播、注册、用户管理等常规业务,当涉及视频文件调用时,则将业务请求转交给后台的云核心服务器处理,Web交互服务器仅负责点播信息的传递工作,没有涉及具体视频文件的传输内容。
2.2.2 云核心服务器
云核心服务器位于云计算的最上层,负责整个云系统的资源管理及任务控制。
(1)资源管理。作为Hadoop系统的主控节点,云核心服务器负责记录文件的数据块分割规则及这些数据块的具体存储位置,对内存及I/O进行集中管理。为加快维护效率,同时减轻本身负担,云核心服务器通过与各集群主控服务器进行交互控制,对集群中的所有节点和所有虚拟机进行实时控制,维护系统的资源状态信息表。为提高系统的运作性能,云核心服务器仅管理文件系统的元数据,具体的数据访问则交由下层服务器负责[7]。
(2)任务控制。响应Web交互服务器的点播请求,检索资源状态信息表,获取资源的具置,然后通过集群主控服务器汇总节点信息,建立客户端与各虚拟机实例的通信,实现数据传输。
2.2.3 集群主控服务器
为提高云系统的运作效率,减轻核心服务器的负担,将云系统的资源划分成多个集群,由集群主控服务器负责管理该集群中的所有资源。集群主控服务器主要有以下作用:
(1)集群主控服务器管理其集群中的所有节点控制器和虚拟机,对系统资源进行实时监控,形成子资源状态信息表,并将结果反馈给云核心服务器,更新整个云系统的资源状态信息表。
(2)响应云核心服务器的任务要求,快速调用集群中的虚拟机实例,建立与客户端机器的连接,传输数据。
(3)担任Hadoop系统的主节点,控制集群中的所有从节点,对集群中所有虚拟机实例及系统资源进行统筹管理,提高系统的响应效率。
2.2.4 节点控制器
节点控制器是整个云系统的前沿阵地,在节点控制器上真正运行着虚拟机实例,并通过虚拟机管理器进行管理,虚拟机实例的数量由节点控制器的资源及计算任务的类型决定,一般为3~5台。节点控制器的功能包括以下三方面[8]:
(1)节点控制器负责监控节点上运行的所有虚拟机实例的运行状态及资源的使用情况,并将监控状况实时返回给上层的集群主控服务器。
(2)响应集群主控服务器的需求,启动虚拟机实例实现数据通信。当任务完成后或在规定时间内客户端无响应(如客户异常退出)时,则停止虚拟机实例运作,释放网络带宽及点播资源。
(3)监控和管理虚拟机实例。包括虚拟机资源的存储备份、虚拟机宕机的应急处理等。
2.3 系统设计的关键技术
2.3.1 数据的冗余备份
云系统的文件传输采用流媒体技术实现,即将多媒体文件压缩后分解成若干大小相等的数据块(数据块的大小可根据实际情况进行配置),并统一编号,再由服务器对客户端进行实时传送。为了容错,文件的所有数据块都会有副本,即冗余备份。系统运行时,节点控制器利用虚拟机管理器对虚拟机上的文件系统进行监控,产生一份数据块与本地文件对应关系的列表,形成块报告返回给节点控制器,节点控制器根据块报告进行完善(如增加数据块具体路径等)后反馈给集群主控服务器更新资源状态信息表。
云系统的集群一般运行在多个机架上,不同机架上的数据通信必须通过交换机,通常机架内节点之间的带宽比跨机架节点之间的带宽要大,这有可能影响云系统的可靠性和性能。采用机架感知(Rack?aware)策略[9],将数据块以多个副本形式部署在本地机架和不同机架上,改进数据的可靠性、可用性和网络带宽的利用率。此策略可防止机架失效时的数据丢失,也可保证系统的性能。
2.3.2 心跳检测技术
在任何系统设计中,硬件异常检测总是极其重要的。云系统采用心跳检测[10]技术来控制系统硬件的异常情况。集群主控服务器周期性地通过节点控制器接受虚拟机的心跳包和块报告,以此判断虚拟机的存活状态:收到心跳包说明工作正常;若在特定时间t内没有收到心跳包信息,则认为宕机,系统将不会发给它们任何新的I/O请求。对于宕机的虚拟机,系统将不断进行检测并通过虚拟机管理器进行故障修复,若在特定时间内仍无法恢复,则将重新复制该数据块,避免该数据块副本数减少所造成的影响。
2.3.3 智能节点替换技术
智能节点替换技术与心跳检测技术联合应用,当系统在特定时间内仍无法检测到某数据块的心跳包时,则将该数据包重新复制,此时,节点控制器将更新数据包的新位置,并使用新节点替换原来的故障节点,保证数据传输的连贯性。
2.3.4 负载均衡技术
负载均衡是很多系统中需要解决的重要问题。在云系统中,云核心服务器根据节点控制器发送的心跳信息和存储的数据块情况,掌握各节点的当前状态,通过平衡资源状态信息表中的资源分配情况,将数据块分配给负载较轻、写入速度较快的节点控制器。具体包括:在新数据加入时,为新数据寻找优越的存储位置;若现有的资源过于集中,可采用数据块迁移方法,重新分配合适的存储位置,平衡整个文件存储系统。
3 结 语
随着三网融合进程的不断推进,视频点播业务将面对内容繁杂、平台多样、业务量激增等局面,这对传统的视频点播模式提出了巨大的挑战。
本文在分析云计算的基本架构和技术特点的基础上,结合视频点播业务的特点,论述了云计算在视频点播系统中的应用,对其系统架构、工作原理和关键技术进行了详细的阐述,为解决海量视频的流畅传播提出了一个全新的思路。
参考文献
[1] 陈旭文,林若波.基于P2P的多原VOD系统的设计[J].测控技术,2012,31(8):27?30.
[2] MELL P,GRANCE T. NIST SD 800?145 the NIST definition of cloud computing [S]. Gaithersburg,MD: NIST Special Publication,2011.
[3] 吴朱华.云计算核心技术剖析[M].北京:人民邮电出版社,2011.
[4] GROSSMAN R L.The case for cloud computing [J]. IEEE Computer Society,IT Professional, 2009(11):23?27.
[5] 周洪波.云计算技术、应用、标准和商业模式[M].北京:电子工业出版社,2011.
[6] HADOOP W T. 权威指南[M].曾大聃,译.北京:清华大学出版社,2010.
[7] 刘鹏,黄宜华,陈卫卫.实战Hadoop:开启通向云计算的捷径[M].北京:电子工业出版社,2011.
引言:传统空管系统数据存储能力有限,在大量数据访问进入时,系统难以保持稳定的性能,这对空管的安全性带来了不良影响。科技的进步要求空管系统必须进行发展。随着云计算的产生和发展以及应用,空管系统引入云计算将是空管系统发展的关键。
一、云计算概念特点
云计算以互联网技术作为基础,是互联网相关服务的增加,对于云计算的定义解释多达上百种,广为普遍的解释认为,云计算是一种按照使用量付费的模式,在这一模式下提供可用的、便捷的、按需的网络访问,进入计算资源共享池中可以可以快速获得这些资源,只要投入很少的管理工作或与服务供应商通过很少的互动将这些资源快速提供给使用者。云计算的基本架构分为基础架构即服务、平台即服务、软件即服务的三层基本架构,云计算是分布式计算、并行计算、效用计算、网络存储、虚拟化等传统计算机和网络技术发展融合的产物。
二、数据分析
在空管系统中,飞行数据分为飞行计划数据和飞行电报数据,计划数据和雷达的数据有着密切关系,而航班状态修改需要用到电报数据,飞行数据操作系统也要用飞行电报数据进行查询和统计,因此在一架飞机中会有多条飞行电报数据。日志文件伴随自动化系统工作而产生,通过对日志进行查询能够对故障进行分析,方便排除故障。自动化系统运行的过程中,监视信息要时刻呈现,这样才能使空管人员实时掌握空域内的情况,了解航空器的飞行状态[1]。监视数据由雷达进行覆盖扫描获得,各种雷达测量值方便空管人员进行监管。在监视中,为了获得全面的数据并做到24小时监控,需多个雷达进行扫描。多个雷达通过多个通道所发来的原始数据会被送至雷达质量监视系统,从而进行实时分析统计。系统会将分析统计的数据存储下来,方便日后进行数据查询和演示。记录仪数据是对24小时中所获得的数据进行记录重演,这些数据包括管制员操作、监视数据、飞行计划数据等,相应的还有记录在语音记录仪中的语音记录数据,对语音记录数据进行重演,可以作为事故调查分析的依据。
三、数据流程
飞行数据、日志文件、监视数据和记录仪数据共同构成了空管数据。当前空管数据的运转周期分为两个阶段,分别是数据记录阶段和数据查询与回放阶段,数据记录阶段是指数据生成到存储的阶段,在记录阶段中,主要进行的是对实时数据进行记录。数据查询与回放阶段是为了进行查询和排除故障,记录的数据被重新取出,并对其进行分析统计,这一过程是通过数据来发现问题,进行总结增强空管的安全性。
空管系统数据不但会被送到记录重演服务器中进行存储,还会被送到雷达质量监视系统和飞行数据操作席中。物理存储设备将对记录的数据进行存储,但是物理设备容量有限,通常只能对最近一段时间内的数据进行存储,到达存储周期后,会将数据丢弃。在数据存储第二阶段中,物理存储内的数据会被取出,对整个空管的操作过程进行回放,要对某个时间段的处理情况进行分析,将会调去各个服务器中的日志文件、雷达监控数据和飞行数据操作席中的数据来进行全面详细的分析调查[2]。在实际的空管系统数据流程中可以发现空管控制系统对数据的处理能力较强,能够对空管工作起到巨大的帮助。但是数据流程中仍然存在一定的不足,在物理存储中,所有的数据都存储在同一个位置,这样一来当面对突发事故时,数据存储会受到威胁。由于数据量庞大,特别是物理存储的容量有限,数据清理频繁,当需要查看时间稍久一点的数据时可能已被清理掉了。另外数据产生速度又很快,不等系统清理存储介质就已经存满,这样一来就使得新数据无法被保存。在数据存储的过程中,容易发生重复存储的情况,监视和飞行数据存储在不同的设备中,内容上虽然略有不同,但是这样一来还是占据了大量的重复空间。
四、系统的再完善
空管系统的再发展、再完善可以由云计算来实现。将云计算应用在空管数据存储管理和分析中,解决空管数据的问题,减轻空管技术部门的工作压力。
应用云计算后,空管数据将会直接被存储到云平台中,避免了数据重复存储的问题,凭借云平台强大的存储能力,使服务器不必再进行存储,而专心进行演算工作。由于云平台巨大的容量,不必为数据清理问题而担心。另外,数据回放阶段可以直接从云计算中获得数据的分析结果,在云平台中将分析工作直接完成,脱离了物理存储的步骤,保护了数据安全提高了工作效率[3]。在以前的系统中,雷达监视系统只能进行简单的分析统计,在云计算的支持下,技术人员可以进行更为复杂的分析统计,而且可以解决以往计算能力不足和面对大量数据访问效率低的问题。云计算平台可以提供数据备份恢复机制,空管人员就不必担心这备份恢复问题,在遭遇突发事故或自然灾害,云平台的数据不会受到任何影响,云计算能够为空管数据管理解决问题,使空管系统更加安全可靠。
结论:空管数据流程管理存在不足,通过云计算的应用可以对存在的问题进行解决,并推进空管数据流程系统进一步发展。随着云计算的成熟,将会应用在更多的空管工作的更多领域,将服务器中大量的雷达数据设立在云平台中,提高自动化系统的计算能力。云计算的加入使得空管系统迈上一个新台阶,可靠性得到更好的保障。
参考文献
1 融合媒体环境下云平台的规划问题研究
在建立相应的融合媒体云平台之前,应率先明确如下问题,即:自建自有云平台抑或租赁现成公用云平台。在选取时,应将自身实际和未来产业发展形式紧密结合,我们应该明确的是,日后的媒体业务均将建立在云平台基础之上,但这只是一个结果,其实现需要经历较长时间,其发展程度主要取决于以下二个方面:第一,播放终端的IT、IP及智能化改进,之前的通过数字信号传输的设备将被IT设备取代;第二,随着IT产业的不断完善,尤其是以光纤宽带和计算能力为主的快速发展,导致电视视频制播业务面临高码率、高存储、高计算能力的需求。综上,在很长时间里,融合媒体技术的发展将呈现多种云平台并存的局面。即:
(1)媒体自建云平台。该平台主要指卫视自行建立的基于虚拟云计算技术上的云系统。该平台主要用于解决目前制播系统向云体系过渡的问题。
(2)媒体专用云平台。该平台主要是在硬件上租赁公有平台上的各种设备及相应服务,选用云计算技术进行管理。媒体专用云平台主要针对于互联网业务。
(3)公有云平台。所谓的公有云平台主要是阿里云、亚马逊等公司提供的公共计算资源服务。使用者可以自由地在公有云平台上上传和下载需要的各类资源,对于一些高级资源,公有云平台提供付费服务。在融合媒体云平台系统中,公有云平台主要是满足社会服务功能[1]。
2 融合媒体环境下云平台的设计实现问题研究
在涉及到融合媒体云平台的设计实现方面,其中ONAIR云平台是融合媒体平台的代表作之一。作为媒体性质较强的云平台,ONAIR将专业化音视频处理技术同世界领先的云计算平台以及遍布全国的CDN网络二者深度融合,从而提高了云平台对视频端播放的控制作用,拓展了其内容制作、内容播控及网络新媒体等功能。该平台在设计时,严格遵循专业化导向,通过云平台基础服务提供商解决设施问题。
2.1 融合媒体环境下云平台的基本架构形式
通过分析ONAIR云平台可知,IaaS平台能够支撑各种最基本的云计算服务和功能,比如前文所述的阿里云、亚马逊云等公共平台。中间分布的PaaS层可以细化为6层,具体为:中间层(OM)和搜索引擎层(OCSE),这两层的主要目的为配合不同云技术服务商的不同接口,实现对不同服务商的统一封装;接口层(ESB)该层的目的是为实现其他复杂流程提供基础,并实现与老旧系统的实时交互;基础服务层(OBSP)基础服务层主要为各种音视频文件提供各类服务,比如:后期编辑、播放等功能;运营服务层(OBSS)为整个云平台的正常运营提供服务,实现对服务的管理、收费及日志记录等功能,确保平台的盈利能力;位于拓扑图最上一层的API层,将平台所有的服务以API的方式封装成接口给软件开发人员及其他合作单位。对于融合媒体环境下的云平台而言,其基本架构ONAIR的SaaS服务功能主要是为了满足融合媒体环境下的各类服务,比如网络电台、微电台、新闻云更新及自媒体云更新等。随着互联网技术的不断发展,促使人类社会的认识发生了巨大的变革,日后的互联网技术将朝着合作、开放的方向发展,因此,ONAIR的架构设计就充分体现了这一观点[2]。
2.2 IaaS服务的功能介绍
为了提高融合媒体环境下的云平台ONAIR的基础服务能力,日前,ONAIR系统已经成功和阿里云服务实现对接。就对接的成果而言,所获得的价值非常丰硕。从资源和硬件支持角度看,阿里云在国内已经初步建立了5个核心计算服务中心,计算服务器数量已经突破20万台次,这种计算规模完全可以支持目前的融合媒体环境下的云平台计算服务水平,并且还可以支持其一定程度的扩张。其中,华通云数据拥有骨干网及遍布全国各地的CDN节点,借助这一显著优势,确保了ONAIR云平台系统能够将各类音视频实时发送到全国的任何一个角落。
2.3 PaaS服务的功能介绍
(1)云平台转码服务功能:云平台的转码一般选用较为常用的集群转码方式,集群转码能很好地解决大内存的视频转码效率。因为转码系统设置在云平台上,其云计算方式可以无线放大,从而实现对视频的高效转码。在具体的视频转码操作中,高清视频的转码能力可以达到10倍率左右。因此,对于操作用户而言,仅需要给出输入输出的文件格式、码率和需要达到的转码速度即可,其具体的转码操作均可由ONAIR云平台系统自动完成[2]。(2)视频快速编译功能:选用BS架构形式,BS架构的界面部分采用低码率视频用于打点、浏览等交互操作。交互式操作完毕后,可将其上交到云平台系统,进而实现视频源代码的快速编译,从而确保视频传输和共享的清晰度。(3)视频采集服务:目前已有的SDI信号经制定编码器切换为IP形式后,可以将其实时传输至云平台端,并及时保存,当文件播放时,可将文件转移到特定系统下或者直接下载至客户端。(4)视频播放功能:IP播放系统传输至云平台后,可经过视频服务器实现与CDN的交汇对接,将播放内容实时推送至客户端口,其中包含PC端、手机移动端及互联网电视等。其中视频直播服务支持各种码率和互联网流协议。
2.4 SaaS服务功能
(1)网络电视播放:网络电视播放功能集成了视频资源集中管理和服务(VMS)及相应的网站发送模式。通过云传输形式,在发送前确定好需要沟通和交换的资源,便可快速在云端开通虚拟机,实现虚拟机与原有系统的对接。以前传统的电台建立形式需要提前购置必要的电子设备,而现在使用云端传送的形式,只要每月上缴固定的费用,便可实现资源实时获取,在计费方式上,不同于以往的以时间为单位的缴纳形式,云端传送采用按量计费,计费方式更加人性化。(2)云端媒体资源整合:以往的媒体资源整合方式主要采用本地数据流磁带库从而实现对海量数据和文件的存储和管理,由于该设备很容易出现故障,因此o后续的正常使用和维修保养造成了巨大的困难。基于存储设备生产技术的不断发展和完善,受到市场供求关系的影响,存储设备的价格逐步下滑,通过云端处理的方式实现对海量数据和文件的存储,同之前方法相比,显示出极高的性价比和稳定性,数据传送和访问更加稳定可靠[1]。(3)云端新闻更新:采用云端实时更新的方式布置新闻媒体系统,提高了新闻的推送效率,可以快速将互联网上上传的新闻推送至指定新闻系统。新闻和相关文章被推送至云端上,新闻工作者可以直接取阅并修改,提高了以往新闻文稿的更新效率。(4)体育赛事的云端播放:之前的体育比赛前实况直播系统都集成在IBC中心,节目制作者必须在比赛实地才能实现对比赛的实况转播。而云端赛事直播系统,是将IBC系统集成在云端,经过云平台将视频资料传输至相关媒体机构做进一步的编辑并第一时间,这样一来,极大地提高了赛事的制作和播放效率,压缩了工作时间,降低了相关成本,方便了节目部门的使用。比如在2014年的青奥会中,IBC系统建立了12条子系统,借助50M宽带,实现了在短时间内将实况节目传输至云平台供客户端实时收看[2]。
3 结束语
综上所示,云计算相关技术是保证融合媒体下云平台建立的基础,随着互联网及云计算技术的不断完善,云计算及配套的云平台系统必将成为新闻媒体中的生力军,必将引领新一代的技术潮流。
摘 要 鉴于传统构架的协同决策(CDM)系统不能适应民航事业快速发展,提出建立基于云计算平台的CDM系统。
首先概述了云计算的基本概念和主要特征,并总结了云计算的关键技术和基本架构。之后,研究了对云计算拓扑设计算法,在树形拓扑结构的基础上对三种算法进行了比较和选择,确定方案为merge-MST。最后,完成云计算平台的初步总体设计,并搭建仿真测试平台,测试结果证明所设计的云计算CDM系统具有较好的性能。
关键词 民航,协同决策系统,云计算
中图分类号:TP392 文献标识码:A
doi:10.3969/j.issn.1674-7933.2015.04.004
*基金项目:上海市2013 年“ 科技创新行动计划”信息技术领域项目(13511504700) 。
作者简介:叶云斐,1984 年生,本科,助理工程师,主要从事及研究领域:航空计算机信息管理,Email :leaves616@126.com ;
陈晓建,研究生,高级工程师;
陈伟青,本科,工程师;
谷叶,研究生,助理工程师。
0 引言
近年来我国民航事业快速发展,航班延误现象愈发严重。中国民用航空局的《2013年民航行业发展统计公报》显示: 2013年不正常航班占比27.66%,旅客投诉率较2012年增长13.66%。华东区域经济发展迅速,人口密度大,以全国1/9的空域面积承载着1/3的航班流量,问题尤为显著。以发展的眼光看问题,有必要依靠各方可靠、全面、实时的信息,采用高效合理的航班排序、放飞算法,充分利用空域时隙资源,协同决策(CDM)的概念应运而生。
民航华东空管局CDM系统于2012年12月上线运行,系统基础数据多,计算量大,对软硬件资源要求高。以上海虹桥、浦东两个机场为例,每天就有5 000多架航班起落,涉及空域航路点300~400个,各航路点又分3~4个高度层;在此基础上,CDM系统必须结合实时的流量控制、气象预报等信息反复计算调整,且任何时刻的航班重新规划都会影响到一整条航路上与之相关的所有航班,使计算量成倍增加。随着航空流量的逐年增加,CDM系统计算量也以指数方式快速增长。
现有系统采用传统架构设计,不能满足前瞻性设计要求。理想的CDM系统架构应具有虚拟化、易扩展、按需部署、高灵活性、高可靠性、高性价比的特点。本文提出一种基于云计算的CDM系统构架,利用自动拓扑设计算法(merge-MST)设计网络拓扑,采用Hadoop开源管理软件实现任务调度,最后通过仿真手段验证了该方案的可行性和适用性。
1 现有民航CDM系统的不足
协同决策是一种技术手段,更是一种基于资源共性和信息交互的多主体(空管、机场、航空公司等)联合协作运行模式。华东空管局CDM系统从各个参与单位引接实时航班数据,建立塔台电子进程单系统、A-CDM系统、飞行计划处理系统等,并形成三大客户端——流量管理客户端、塔台客户端和公司机场客户端,系统构成如图1所示。
`该系统基于传统的关系型数据库,以塔台电子进程单为例,架构示意图如图2所示。尽管其成熟度高、可靠性好,但随着数据量逐渐增大,数据范围逐渐拓宽,其存储和查询效率已不能满足需求。
2 云计算平台及其架构设计
2.1 定义和特点
云计算是一种新的计算模式,由分布式计算、并行计算和网格计算的发展而来。其后台大量采用虚拟机,并通过互联网形成资源池。这些虚拟资源可以根据不同的负载动态重新配置,快速并以最小的管理代价提供服务[1]。从用户角度看,云计算具有可靠的存储技术和严格的权限策略,可为客户提供安全可靠的数据存储中心;对用户端的设备要求低,支持手机、平板电脑等无线通信设备;可实现不同设备间的数据、应用共享。
从硬件的角度看,云计算高度灵活,可按需投入或释放硬件资源,从而提高整体利用率。2.2 类型
云计算按其服务层次分为三类[2],如图3所示:
1)基础设施即服务(IaaS,infrastructure as a service)
在虚拟化技术的支持下,利用廉价计算机实现大规模集群运算能力,同时按需配置,为用户提供个性化的基础设施服务。此类型的典型代表有亚马逊云计算AWS(Amazon Web Services)、IBM蓝云等。
2) 平台即服务(PaaS,platform as a service)
提供的服务是开发环境,允许用户使用中间商提供的设备开发自己的程序。此类型的典型代表有GoogleApp Engine(GAE)等。
3) 软件即服务(SaaS,software as a service)
通过Internet直接提供运行在云计算设备上的应用程序。用户无需考虑基础设施及软件授权等内容。此类型的典型代表有Salesforce公司的CRM服务、ZohoOffi ce、Webex等。
2.3 关键技术
云计算作为一种集群计算和服务模式,运用了多种计算机技术,以编程模型、数据存储管理、虚拟化最为关键。
1) 编程模型
Google提出的Map-Reduce[3]是一种流行的云计算编程模式,Map(映射)程序将数据分割成不相关的数据块,Reduce(化简)程序则将将数据处理的中间结果进行归并,如图4所示。Map-Reduce可将海量异构数据的分析处理工作分解成任意粒度的子任务,并允许在多个计算节点之间进行灵活的数据调度,此外,程序员无需关心数据块的分配和调度,该部分工作由平台自动完成。
2) 数据存储管理
云计算采用分布式的方法存储和管理数据,并利用冗余存储保证数据的可靠性,常用技术有Google的GFS及Hadoop团队的HDFS[4],其中后者是前者的开源实现。
GFS系统架构如图5所示,整个系统节点分三类:Client(客户端)是GFS提供给应用程序的访问接口、Master(主服务器)是管理节点, Chunk Server(数据块服务器)则负责具体工作。Chunk Server可有多个,每个Chunk对应一个索引号(Index)。作为对比,HDFS体系结构如图6所示。
云计算的数据管理需满足大规模海量数据的计算和分析,大多采用列存储的数据管理模式。现有技术中最主流的是Google的BigTable,Google对BigTable给出了如下定义:BigTable是一种为了管理结构化数据而设计的分布式存储系统,这些数据可以扩展到非常大的规模。此外,Hadoop团队也开发了类似BigTable的开源产品HBase和Hive。
3) 虚拟化技术
虚拟化技术是云计算区别于一般并行计算的根本性特点,其实质是实现软件应用与底层硬件相隔离,把物理资源变成逻辑可管理资源。目前云计算中虚拟化技术主要包括将单个资源划分成多个虚拟资源的裂分模式,也包括将多个资源整合成一个虚拟资源的聚合模式。根据对象又可分为存储虚拟化、计算虚拟化、应用级虚拟化等等。
将虚拟化的技术应用到云计算平台,使得云计算具有灵活的进程迁移方式,更有效的使用主机资源,在部署上也更加灵活。
2.4 架构设计
云计算体系结构的特点包括:设备众多、规模大、采用虚拟机技术、任意地点、多种设备汇集,并可以定制服务质量等等。文献[5]提出了一种面向市场应用的云计算体系结构,如图7所示:
1) 用户:用户可以在任意地点提交服务请求;
2) SLA资源分配器:充当云后端和用户之间的接口,包括服务请求检测和接纳控制模块、计价模块、会计模块、VM监视器模块、分发器模块和服务请求监视器模块;
3) 虚拟机(VMs):为实现在一台物理机上的多个服务提供最大弹性的资源分配;
4) 物理设备:包括服务器、存储设备及路由器等。
基于云计算平台的华东CDM系统还处于初步研究阶段,采用本架构进行初步设计及仿真验证。
3 云计算网络拓扑设计
云计算系统后端的网络由大量服务器组成,分布广泛,复杂度高。要保证数据的畅通传输,需要设计一个合理高效的网络拓扑结构。
首先,为保证管理扩展和维护的方便,将云计算系统分成多个子网,各子网采用树形拓扑结构,如图8所示。在此基础上,把每个子网看成一个节点,各个节点具备流量、交换能力、地理位置等属性,将云计算网络拓扑抽象成图论数学模型。如何连接各个节点,才能即满足冗余度要求,又尽可能降低网络架设花销已被证明为NP-hard[6][7],故只能求解近似最优解。此类问题的解法有两种,一种是在限定网络花销的情况下最大化网络的抗毁能力[8],另一种是在保证网络一定抗毁能力的条件下尽可能减小花销[7],本文按照后者进行设计。
在图论领域,该问题可简化为求解特定连通度k时最小生成子图的问题,本文主要考虑基于图论的k-FOREST算法[9]、merge-MST算法[10]和启发式算法TEA[7]。通过理论推导,三种算法的时间复杂度如表1所示,其中TMST=O(m?logm)或O(n2),m代表图边数,n代表点数。
本文
参考文献[11]的仿真手段对三种算法进行比较,考虑7、10、15、25个节点的场景,得到平均边数和平均花销的比较示意图如图9、10所示。
通过比较可看出,在节点数目较少时TEA算法表现最佳,但随着节点数目增多性能迅速下降;在节点数多于20个时,则是merge-MST算法更优。
考虑到CDM系统规模庞大,仅华东区域就需要计算机点80~100个,故选取merge-MST进行网络架构的设计。
4 总方案设计
基于云计算架构的CDM系统,依托中心节点、区域节点和业务集中节点,整合分布的物理资源,形成统一的可调配的逻辑资源。总方案结构如图11所示。包括基础设施、虚拟资源层、信息共享云平台层,应用层以及贯穿始终的安全层和管理层。
1) 基础设施层:既包括支持民航CDM系统运行所必需的基础设施,也包括行业内可整合入CDM系统的其他设施。
2) 虚拟资源层:采用云计算技术,整合分布的硬件资源,形成资源池,灵活调配提供服务。
3) 云平台层:涵盖管理底层资源、支撑上层应用的各个软件和模块,包括平台管理、负载均衡、中间件、业务流程管理软件等等。
4) 应用层:将CDM系统功能进行最后一步封装后提供给用户。
5) 安全层:负责整个CDM系统的安全。
6) 管理层:管理整个CDM系统运行配置,包括资源管理、网络监控、部署管理、内容管理以及用户管理等,监控硬件、软件等多个层次,提高整体运行效率。
5 系统测试与应用
为验证所设计方案的可行性,并测试方案性能,本文搭建了测试环境,针对CDM系统多项业务进行了测试。
CDM系统主要业务涵盖协同决策系统、流量管理系统、统一飞行计划处理系统和塔台电子进程单系统。其中协同决策系统为顶层系统;流量管理系统帮助最大限度利用空中交通服务的容量;统一飞行计划处理系统负责接收、处理和飞行计划;塔台电子进程单系统则协助塔台管制员管制飞机的起降。
5.1 硬件环境
云计算集群设有3个master节点,18个slave节点,各节点均是基于X86架构的PC机。PC机配置如表2所示。
所有测试主机均连接在千兆网络中,网络环境中不存在其他设备,干扰因素可忽略不计。
5.2 软件环境
测试采用Hadoop团队开发的开源软件,版本如表3所示。
5.3 测试结果
通过编写程序,在测试环境中进行电报处理、雷达轨迹处理、气象与情报处理、桥位信息处理、航班信息、数据查询以及协同航班处理等压力测试,平均日最大处理条目数量如表4所示。
测试结果表明:云计算平台计算能力强,能够弥补现有民航CDM系统的不足,可满足华东地区CDM系统前瞻性设计要求。
6 结束语
本文针对华东地区巨大的航班吞吐量,提出了一套基于云计算平台的CDM系统设计方案。通过测试验证,该系统架构具备良好的计算能力和业务处理能力,使用灵活,更满足系统安全可靠、成本低、易拓展的需求。
基于云计算的华东空管CDM系统是现有CDM系统的发展方向,将在2015年开始详细设计。
参考文献
Vaquero L, Rodero-Marino L.Caceres J. et al. A break in theclouds: towards a cloud defi nition[J]. SIGCOMM ComputerCommunication Review. 2009,3(1): 50-55.
UC Berkeley 可靠自适应分布式系统实验室, 姚宏宇译. 云端之上——Berkeley对云计算的看法. 2009.
J. Dean, S. Ghemawat, MapReduce: Simplified DataProcessing on Large Cluster[C], OSDI’04, Sixth Symposiumon Operating System Design and Implementation, SanFrancisco, CA, December, 2004.
Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung.The Google File System[C]. Proceedings of 19th ACMSymposium on Operating Systems Principles. 2003, 37(5):20~43.
R. Buyya, C.S. Yeo, S. Venugopal, Market-OrientedCloud Computing: Vision, Hype, and Reality for DeliveringIT Services as Computing Utilities [C], The 10th IEEEInternational Conference on High Performance Computingand Communications.
S. Pierre, G. Legault, A Genetic Algorithm for DesigningDistribute Computer Network Topologies[J], IEEE Trans.Man, Systems, and Cybernetics, 28(2), 1998: 249-258.
E. Szlachcic, Fault Tolerant Topological Design for ComputerNetworks[C], Proceedings of the international Conferenceon Dependability of Computer Systems, DepCos-RELCOMEX’06.
F.M. Shao, X. Shen, and P.H. Ho. Reliability Optimization ofDistributed Access Networks with Constrained Total Cost[J],IEEE Trans. Reliability, 2005,54:412-430.
中图分类号:TP311 文献标识码:A文章编号:1009-3044(2017)02-0232-02
Design and Implementation of Energy Saving Potential Analysis System for Waste Heat Boiler
MA Yao, DAI Yi-ru, WANG Jian
(CIMS Research Center,Tongji University,Shanghai 201804,China)
Abstract: To improve the energy saving potential of waste heat boiler, this paper puts forward the application of ontology modeling technology to the analysis of energy saving potential, and develops the energy saving potential analysis system based on B/S using . In this paper, the application of the system in a factory waste heat boiler is analyzed, which provides the basis for decision-making.
Key words: energy saving potential; ontology modeling technology;
近年砉家能源紧缺,政府大力倡导企业开展生产过程的节能减排工作,并对高能耗企业节能指标提出了较高的要求。随着余热回收技术快速发展,工业的余热回收项目成本大幅度降低,同时余热回收效率不断提高,为企业余热回收工作提供了良好的条件。在这样的形势和技术条件下,许多企业开始针对余热回收开展研究工作,不但能完成企业的节能减排任务,同时也能为企业本身创造可观的经济效益。
本文通过分析企业采集的余热锅炉海量工况运行数据,利用本体建模技术,发掘数据之间的内在联系,并构建工艺参数模型,进而分析并优化余热锅炉的工况运行参数,为节能改造提供决策依据。
1 系统设计
1.1 系统基本架构
系统设计遵守高内聚低耦合的设计模式,把系统分为数据层、业务层和表示层,如图1所示,具体描述如下:
1)数据层。主要实现余热锅炉数据的快速接入、一致性存储和数据预处理,数据包括静态的余热锅炉信息描述和动态的余热锅炉运行过程中产生海量工况运行数据,为业务层提供基础数据;
2)业务层。主要根据需求实现系统的业务功能,包括本体建模、工艺模型构建、工艺模型管理、工艺参数配置和工艺优化;
3)表示层。主要实现系统与用户的交互。
1.2 系统业务流程
根据系统的基本架构对系统业务流程进行设计,主要包括数据采集、数据预处理、本体模型构建、本体查询、工艺参数模型构建、工艺优化,如图2所示。
首先,对余热锅炉采集数据进行预处理,采集数据主要分为动态数据和静态数据。动态数据是指设备运行过程中产生的海量工况数据,比如给水流量、蒸汽流量等;静态数据是指设备本身具有属性数据,比如设备型号、设备功率的等。用户对这些基本数据进行预处理,主要是对数据进行清洗和转换,去除噪声和无关数据,把采集数据转换成适合数据分析的形式。
其次,根据对余热锅炉的研究将余热锅炉本体模型分为四大类,分别为余热锅炉结构信息、余热锅炉基本参数、余热锅炉系统信息、余热锅炉产品信息。其中,余热锅炉结构信息和余热锅炉基本参数包含余热锅炉设备描述相关信息,余热锅炉系统信息和余热锅炉产品信息包含设备运行过程中采集数据的存储信息。本体模型构建完成后即可进行本体查询,查询得到动态数据显示存储位置,静态数据显示实例数据。
然后,从本体模型中提取相关数据构建工艺参数模型,本文以分析主蒸汽流量为例,将主蒸汽流量作为模型输出量,主蒸汽温度、主蒸汽压力、汽包水位、给水流量、给水温度、入口烟气温度和出口烟气温度为输入量,选择神经网络构建工艺参数模型。
最后,为模型设置约束条件,以得到最大主蒸汽流量为目标(回收蒸汽1万t,相当于节约标煤0.1032万t;减排CO2 0.2579万t),选择遗传算法对工艺参数模型进行寻优,得到最优工况参数。分析余热锅炉节能率具体公式如下:
T=0.103[×]S
[η=Tj-TiTi×100%]
其中,[T]为年节约吨标煤,[S]为年产蒸汽量,[η]为节能率,[Ti]为优化前的年节约吨标煤,[Tj]为优化后的年节约吨标煤。
2系统功能设计与实现
面向余热锅炉的大数据节能潜力分析系统由五个模块组成,具体功能描述如下:
1)本体模型。该模块实现本体模型导入与查看,如图3所示,其中本体模型涵盖余热锅炉的结构、参数、产品等类的各项属性,本体模型与数据库数据实现映射,用户可以根据需求选择本体查看实例数据,为节能潜力分析提供数据基础。
2)工艺模型构建。该模型为用户构建模型提供接口,用户可按需求选择工艺模型的输入量、输出量和算法。本文以余热锅炉主蒸汽流量作为输出量为例,根据本体模型获得影响主蒸汽流量的工况参数作为输入量,选择神经网络模型算法,构建工艺参数模型。
3)工艺模型管理。该模块实现对构建出的工艺参数模型的查看与删除,用户可查看不同模型的具体信息。
4)工艺参数配置。该模块实现对工况参数阈值的设定,为工艺优化模块寻找最优主蒸汽流量设定约束条件。
5)工艺优化。该模块通过遗传算法实现工艺优化,本文以发掘余热锅炉节能潜力为目的,提高锅炉主蒸汽流量,由遗传算法可获得主蒸汽流量最大时的工况参数,并为不同模型优化得到结果提供对比功能,为企业优化工况参数提供科学的支撑。由图4得工艺参数优化后余热锅炉年产蒸汽量可升到5.47万吨,相当于节约标煤0.56万吨,节能率提升了9.8%,可以大大提升企业效益。
3 结束语
本文通过研究余热炉,提出将本体建模技术应用到余热锅炉节能潜力分析中,并完成基本架构设计,业务流程设计和系统功能设计与实现。通过分析余热锅炉结构信息、余热锅炉基本参数、余热锅炉系统信息、余热锅炉产品信息,构建余热锅炉本体模型,实现动态数据和静态数据的本体查询,并以分析主蒸汽流量为例,构建工艺参数模型,利用遗传算法获得最优工况参数,大大提高余热锅炉节能潜力,为企业节能减排工作提供决策依据。
参考文献:
[1] 伍英,周茂军,马洛文, 等. 宝钢烧结余热锅炉生产实践[J]. 烧结球团,2011(3):44-46,53.
[2] Rules-based object-relational databases ontology construction[J]. Journal of Systems Engineering and Electronics,2009(1):211-215.
中图分类号:TP311.52 文献标识码:A 文章编号:1674-120X(2016)35-0113-02 收稿日期:2016-10-13
作者简介:朱 林(1981―),男,讲师,硕士,研究方向:软件工程、电子商务。
一、研究背景
现阶段,各大高校的教育资源共享方式比较单一,效率也较低下,教育资源共享的方式通常有FTP共享、教师下发资料、通过打印实现共享或通过 U 盘进行传输,随着时代的发展,这些资源共享的方式存在的弊端越来越明显。
二、基于云计算的教育资源共享平台设计
使用云计算构建教育资源共享平台可以解决以上弊端,该平台主要实现对教育资源的高效共享和安全存储。用户包括管理员、教师和学生,用户都可以上传和下载教育资源,管理员主要可以添加教师和学生信息,并对上传的资源进行审核通过;教师可以录入试题,批阅试卷;学生则可以在线测试,并在教师批阅试卷后进行查看。主要从以下几个方面考虑平台的设计:
1.云平台系统架构的设计
系统可以采用Apache VCL云平台进行基本架构的设计,软件架构使用目前软件开发常见的N层结构模型:表示层、业务逻辑层、数据访问层以及数据存储层。其中,表示层与用户息息相关,用于显示平台输出的数据以及系统接收用户输入的信息,为用户提供一个可以进行人机交互操作的平台;业务逻辑层是整个系统中的核心部分,主要功能在于系统业务规则的制订、业务流程的实现等与业务需求密切相关的系统功能,它应对的是系统的领域逻辑,其处于数据访问层与表示层之间,以弱耦合的结构在数据交换中起着桥接作用,在整体架构中的关键性不可忽视;数据访问层和数据存储层的功能比较纯粹,前者主要负责对数据库的访问,后者主要功能是进行文件的存取。
2.数据库的设计
任何一个软件系统都离不开数据库的支持,云平台也不例外。系统在当前的状况下运行,对于数据的储存,数据库基本上可以满足用户的需求,但考虑到业务系统的不断更新以及数据量的快速增加,平台在未来一段时间里在性能和易扩展性上的要求也会与日俱增。为此,根据云教育资源共享平台的现状和未来的发展,需要采用合理的、适应发展的存储架构,对数据存储与处理、扩展性、访问接口、调度策略等做相应的优化与改善,从而加强对各种数据资源的存储维护等行为操作。
3.角色及流程设计
在基于云计算的教育资源共享平台中,主要有三种用户角色,分别是系统管理员用户、教师用户以及学生用户。
(1)系统管理员是该系统的主要角色,在该系统中,系统管理员需要管理教师以及学生用户,可以创建教师与学生用户,还可以上传下载教育资源,对教育资源进行审核或删除,并添加课程信息,录入题库,添加题目。
(2)教师业务流程。
在该系统中,教师用户由管理员用户创建,需要从管理员处获取登录账号及密码,教师可以上传和下载教育资源,可以添加课程信息,录入题库,添加题目,新增试卷,录入试卷,并且在学生测试后,对学生的测试进行阅卷评分,注销退出。
(3)学生业务流程。
在该系统中,学生是主要使用者,学生用户也由系统管理员创建,因此也需要从管理员处获取登录账号和密码,登录后,学生可以上传和下载教育资源,并且在线测试课程,测试后提交试卷,由教师阅卷评分后公布成绩,学生可以查看课程测试的成绩。
三、云计算服务类型及开发框架选择
1.云计算服务类型
随着云计算技术越来越成熟,云计算的服务领域也越来越广泛,在广大领域中云计算的服务类型主要有以下三种:
(1)基础设施即服务。
消费者从一些完善的基础设施中获得相应的服务,其主要面向硬件需求的客户,用户只需要提供需要计算的数据。
(2)平台即服务。
将云平台作为服务模式,本系统的云计算即是云平台服务,需要用户自己写服务器,然后将所写的服务器部署到云平台上即可。用户也可以自己写云平台,在这里为了方便,直接将服务器部署到开源的云平台上。而本系统所选择的云平台为新浪云。
(3)软件即服务。
软件即服务,从字面意思理解,即通过软件的形式提供服务,在这种云计算服务中,用户并不需要购买软件,只需要向拥有软件的商家租用即可,通过租用的基于Web的软件管理经营的活动。
2.主流云平台
当前主流的云平台主要有阿里云、新浪云等。其中可以使用新浪提供的云平台开发本系统。在新浪云注册账号,然后进入新浪云服务,创建应用,在代码管理中上传自己的项目war包,下载新浪云的架包,然后将代码的war包上传到新浪云,并启动新浪云上的MySQL服务,配置相应的JDBC连接。
3.开发框架
本系统可以选择SSH框架进行开发,SSH框架由Spring,Struts,HibernateM成,其中Spring可以说是一个管理层,用来管理Struts和Hibernate之间的工作,Spring框架是一个轻量级的框架,主要有IOC和AOP两大机制。Struts是一个基于MVC模型的整合框架,即Model层、View层、Control层。因此Struts是用来做应用层,负责调用service层。Hibernate是系统的持久层,也可以说是数据访问层,它对JDBC调用数据库作了轻量级的封装,省去了大量的SQL语句。SSH框架是当前比较主流的Java Web框架。
四、系统构建关键点分析
(1)数据库设计是系统构建的重要组成部分。教育资源共享平台从总体上来说是属于教学管理类系统平台,在设计时,可以使用SQL Server数据库系统进行数据的存储管理。先要对系统的各个功能要有明确的定义,在此基础上设计出功能表,创建数据库。另外,必须明确表的有效属性,在建表初期,难免会有无用的属性,需经过反复的测试,只保留必要的属性,减少数据库的规模。
(2)对于需求的理解程度是系统的重点,需要分析平台设计背后所反映出来的供求关系,对资源的广度和效度进行深度挖掘,在基本要求和功能之上,创造尽可能多的创新点,并努力提高平台的安全性和效率。