时间:2023-07-25 16:32:47
导言:作为写作爱好者,不可错过为您精心挑选的10篇通信的可靠性,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
电力通信网除了本身的可靠性以外,它运行时的可靠性是最为关键的。之所以通信网会状况百出,就是由于没有一个高效的措施来对电力通信系统或者电力通信网的可靠性评估进行改进。因此,只有对于电力通信系统提供一些高效的策略才会使得电力通信系统能够为人类提供优质,畅通的电力供应服务。
1.2电力通信系统没有一个可靠性的体系
电力通信系统中的可靠性体系就是由电力系统中的管理部门,管理措施,管理制度密切配合后所构成。那么,当前电力通信系统中这些部门以及制度还没有健全,一些稀少的可靠性管理系统也比较简单粗狂,正是因为电力通信系统中缺乏各个环节的可靠性,使得整个电力通信系统的体系也不存在可靠性。最终导致,电子通信系统中任何一个地方出现障碍,就使得整个系统出现了问题,也就是说这个没有可靠性的体系使得电力通信系统整体的可靠性系数降低。
1.3电力通信通信系统的可靠性设计水平低
电力通信系统的可靠性是分为多个层次的,每一个层次都对于可靠性系数有着不同层次的设计要求。但是,当前所有的电力通信系统可靠性的设计仅仅停留在一个初级的电力能够正常进行传输运作的基础设计层面上。而对于通信网可靠性的设计更是仅仅停留在网络拓扑抗毁性设计阶段,这种基础性的可靠性设计阶段使得通信网不能够与电力系统性能结合从而或得更高层次的可靠性设计。
二、电力通信系统的可靠性管理
2.1电力通信系统的可靠性不仅仅是一种要求,如果这样落实到在生活实际中,可靠性系数必然会降低。那么此时就要去电力通信系统对于可靠性也进行一个专项管理,只有这样才会在真正提升电力通信系统的可靠性系数。那么在电力通信系统实际运行的过程中建立一个相应可靠性管理机制,对于每一个阶段的电力运行都有一个及时的反馈,以保证电力的运行畅通性与安全性。这种靠性管理机制在随着社会的不断完善,使得电力管理系统的可靠性系数又有一个突破性的进展。
2.2管理过程中的所需要注意的问题。对于电力通信系统中常遇到的故障进行分析与反思,要对于不同的故障进行分类研究,深度研究其发生的原因与规律,并且在今后的电力运行过程中起到“吃一堑长一智”的效果。并且将出故障的地方重点观察,防患于未然。对于电力系统中维护制度的设立也是需要注意的问题之一。想要真正加强电力通信系统的可靠性系数,就得针对电力的设备和系统专门设置相应的维护系统,并且能够与现代的网络系统相融入,向更为有效的现代化管理系统迈进。
三、改进电力通信系统的有效性策略
那么想要真正改善上升电力通信系统中的问题所在,就得采取一些有效性策略进而使得电力通信系统的可靠性又一个突破性的进展。那么应该从以下几方面进行整改。
3.1鉴于现代化社会发展的脚步速度,整改策略一定要依附现代化的新技术,例如,通过优化光纤网的方式,将单束光缆建成环。运用这种策略会提高光线网络的可靠性,也就进而能让能够提高通信网的可靠性。因为光纤技术具有抗障碍性,低消耗等等优势,能够完全解决上述中电力系统中所存在的问题。
3.2对于电力通信系统从可靠性的设计阶段,到建设阶段,再到运行阶段都进行一个全面细致的规划。从设计阶段就应该开始以电力的具体运行进行设计。对一切的通信设备进行一个明确具体要求,从而再不断提升通信系统的可靠性设计方案的可信度。而在建设阶段的时候,应该扩展视野,从多方面进行考虑,采取多元化的可靠性保障策略,对于电力通信系统进行监督和评价。那么最为重要的阶段就是电力输出的阶段,换句话说就是运行阶段。在这个阶段,对于电力系统整体的可靠性必须进行一个全面细致的分析。在此阶段,已经不仅仅要求要做到做好评估工作,更重要的是建立一套健全的维护管理通信系统的管理体系。
计算机通信网可靠性是指计算机通信网在实际连续运行工作中完成用户的正常通信需求的能力。计算机通信网的可靠性是计算机通信网规定功能的实现基础和前提。但在计算机通信网的实际运行过程中,意外情况屡见不鲜,故障和拥塞等问题频繁出现。在网络承载的信息量超过了计算机通信网的“荷载”能力时即会发生网络拥塞现象。故障是计算机通信网运行性能的出现问题,根据发生频率的高低可以分为偶然故障和异常故障。偶然故障是在计算机通信网运行过程中发生的随机性网络性能下降的情况,发生频率较低,影响力较小;异常故障特指因人为因素或自然因素的影响导致计算机通信网的异常现象,异常故障影响面较大。需要对计算机通信网的可靠性进行深入研究,确保为用户提供各种计算机通信网的规定功能服务,满足经济和社会的发展。计算机通信网的可靠性设计在对网络工程经验的总结概括的基础上,对可靠性设计体系进行条理化、系统化、科学化的归纳,形成了计算机通信网设计的基本准则,主要有:(1)充分利用采用冗余技术,通过设置冗余设备的方式防备某台设备出现故障,保证备份设备无缝接替故障机的任务;(2)采用适应主干网络技术的发展的一些超前设备,防止由于技术的落后性导致网络故障,同时又要保证网络平滑升级;(3)统筹计算机通信网的寿命周期费用,达到最佳的使用性价比;(4)设计中选择质量优秀、有良好声誉的网络产品。
2计算机通信网可靠性的影响因素
计算机通信网是开放式的网络系统,其组成部分个体特征差异较大,整个系统十分复杂,从而导致影响计算机通信网可靠性的影响因素不胜枚举。从计算机通信网自身角度出发,网络可靠性的影响因素可以分为外部因素和内部因素。外部因素主要包括温度、湿度、灰尘、人为因素、地震、冰雪等,其中温度、湿度、灰尘属于可控因素,人为因素、地震、冰雪属于不可控因素。内部因素包括通信设备自身的可靠性、网络工程设计的合理性、网络的后期维护管理等。网络的后期维护管理的有效性是计算机通信网可靠性的直接影响因素。在具体实施环节中,网络设计中网络拓扑结构的设置、“容错”和“避错”措施的运用、网络维修管理的频率和水平等均对提高计算机通信网的可靠性有直接影响作用。另外,新技术的应用对计算机通信网的可靠性的影响也不可忽略。新技术的应用是把双刃剑,一方面提高了计算机通信网设备和系统的可靠度,例如,智能化技术在计算机通信网领域的应用实现了对网络系统的实时监控,便于及时发现故障,排除故障,大大提高了计算机通信网的可靠性;另一方面,新技术的应用汇导致设备和系统复杂度的提高,通信网络规模不断扩大,故障出现的位置增多,给网络的运行管理、故障排查等均带来了较大的困难。影响计算机通信网可靠性的因素纷繁复杂,各影响因素之间关系错综复杂,提高计算机通信网可靠性是一项涉及面很广、难度较大的系统工程。
3计算机通信网可靠性设计方案
计算机通信网可靠性设计方案主要采用层次化网络设计思想,网络设计模型包括接入层、分布层和核心层3个层次,3个层次的功能相对独立的。层次化网络设计模型网络结构更加清晰明了,降低了网络设计建设和运营成本。层次化网络设计形成网络拓扑结构,将网络分解为子网,限制计算机通信网的复杂性随着网络用户的增加而增加。接入层是主要是将用户接入计算机通信网,分布层连接核心层和接入层之间,并且是接入层工作组之间相互连接的通道,核心层是计算机通信网的主干,保证网络的高速运行。用户根据实际的应用条件,通过接入层不同集线器和交换机接通计算机通信网;分布层通过过滤、优先级和业务排队 等方式实现网络服务资源的分配;核心层主要以路由器或者三层交换机为主要设备,为用户提供高速度、低时延的网络通道服务,核心层性能的高低直接影响计算机通信网速率的高低,同时也是计算机通信高可靠性的保证,因此核心层的设计需要定位准确,保持较高水平的同时要求便于升级,方便后期计算机通信网的管理与控制。
4结语
计算机通信网的可靠性直接影响着人们的实际生活,需要综合分析计算机通信网运行过程中内外部因素对其可靠性的影响,从而优化计算机通信网可靠性的设计方案,为计算机通信网的稳定性奠定基础。
作者:于英元 单位:丹东边防支队
参考文献:
[1]罗俊星.计算机通信网可靠性设计研究[J].安徽师范大学,2012.
要提高网络通信的可靠性,首先要选择科学正确的技术,利用技术支持来保证网络通信的正常运行。一般情况下,首先会采用余度设计、容错技术,就是将整个网络系统中的所有计算机设为彼此的后备机,这样以来,如果其中一台计算机发生故障,那么该台计算机的任务便可以交由后备机,从而减少了网络系统瘫痪的问题,进一步提高了网络通信的可靠性。除此之外,我们还需要加强研究新技术,全面考虑网络技术的发展情况、网络设备的使用等因素,提高网络的适应能力,使其能够在较长的时间段内保持正常运转,从而满足业务需求。
(2)改善网络结构体系
网络结构选择对保证网络通信可靠性来说尤为重要,选择网络多层结构体系不仅能够隔离故障,还能够实现负荷分段并支持一般网路协议。多层结构由接入层、核心层、分布层组成,在网络系统中,运用多层结构能够简化网络运行,提高网络通信的可靠性,下面分别了解一下这三层结构。①接入层。接入层为网络提供了宽带,给用户提供了接入端口,是被允许接入网络系统的起点,它能够对网络流量进行有效控制。在网络系统中,接入层具有成本低、功能强等特点,对实现网络结构的安全性来说尤为重要。②核心层。核心层是网络结构中最重要的一部分,它不仅能够对网络进行划分,使不同的交换区块能够进行连接,还能为交换区块提供数据包,迅速的完成数据交换工作。需要注意的是:在网络应用中,核心层在对网络进行划分时,不能够对列表进行控制,也不能够顾虑数据包。③分布层。在网络中,分布层是用来计算接入层与核心层界点的,它既能划分核心层,也能提供相应的数据处理。在网络系统中,分布层的功能较多,它不仅能够确定网络中心联网,还能够实现工作组接入网络中。
(3)加强设备的可靠性
要提高网络通信的可靠性,一定要保证相关设备的安全性。首先在购买网络设备时,既要确保设备质量能够符合相关要求,又要保证购买的网络设备具有较高的性价比。再就是做好设备的维护工作,在网络系统的运行过程中,要定期对网络设备进行检查或者进行自动检查,以便于提前发现设备故障,并及时给予维修,避免网络系统因设备故障而发生瘫痪现象。
本文作者:刘科许洪华工作单位:苏州市职业大学电子信息工程系
工业无线通信调度工业无线通信中一般采用时分多址(TimeDivisionMul-tipleAccess,TDMA)调度方式,通信调度周期分为多个时隙(TimeSlot,TS),通信节点依次进行数据交互。基于TDMA的多跳通信中,实时性要求更具有挑战。传统的有线通信和点对点通信中需要1个时隙情况,n跳端到端通信至少需要n个时隙,相应地,重传也需要更多时隙。在端到端时隙数约束下,时隙分配成为工业多跳无线通信重要的资源调度方法。工业无线通信中一般采用跳-跳重传方式。网络调度器为每个节点分配固定次数的重传时隙,以超帧形式下载到各个通信节点。如前所述,现有的工业无线系统一般是根据实时性约束等,为每跳平均分配重传时隙。2.2重传提高可靠性原理考虑基于TDMA调度中子链路Li上通信情况。设每个时隙中Li只传输数据报和相应的确认信息。由于确认信息数据帧较短,在数据报传输后立即接收,一般不考虑数据报传输成功而确认信息传输失败情况。此时,子链路Li上通信可以用图1所示的二维马尔可夫链描述[5]。图1子链路通信二维马尔可夫链图1中,Gi表示通信成功状态,qGi和pGi分别表示上一个时隙通信成功时,本次通信成功和失败的概率,Bi表示通信失败状态,qBi和pBi分别表示上一个时隙通信失败时情况。在考虑外界随机干扰的情况下,有qGi=qBi=qi,pGi=pBi=pi=(1-qi),此时,Li上通信情况符合贝努力概型,用di表示分配给Li子链路的时隙数目(包括重传时隙数目),记Ri为其通信成功概率,有:Ri(qi,di)=1-∏dij=1(1-qi)(1)显然,1-qi<1,随着di增加,通信可靠性Ri增大。2.3冗余路由提高可靠性原理为进一步提高链路可靠性,工业无线通信中可以利用邻居节点协作重传,构成冗余路由。图3为典型冗余路由形式。r1为冗余中继,当n0到通信失败时(如无视距路径、n1处持续强干扰、n1故障等),启用n0r1n2路由,以提高端到端可靠性。图2中,L11、L12为主链路中子链路,设其通信成功概率为q1和q2;L11、L12为冗余路由中子链路,设其通信成功概率为q11和q12;设R(n0|n2)表示节点n0到节点n2的通信成功概率,则R(n0|n2)=q1q2+(1-q1)q11q12(2)显然,R(n0|n2)>q1q2,有冗余路由情况提高了链路可靠性。考虑重传时隙时,可由(1)式计算各个子链路通信成功概率,代入(2)式,可计算端到端可靠性。
工业无线通信链路可靠性建模不失一般性,考虑N+1个节点组成的N跳链路,用N=n0,n1….n{}N表示链路节点,其中,n0表示源节点,nN表示目的节点,Li表示节点ni-1和ni之间的子链路,i∈{1,2,…}N。多跳无线通信链路如图3所示。如2.2节所述,由式(1)可以计算多跳链路中每个子链路通信成功概率Ri。对于N跳链路,用D={d0,d1….dN}表示链路时隙分配,用Q={q0,q1….qN}表示各子链路可靠性情况,则整条链路的可靠性表示为:R(Q,D)=∏Ni=1Ri(qi,di)(3)通过工业认知无线电技术可以实时感知通信信道信噪比等,从而获得各子链路通信可靠性情况[6][7]。由于工业现场实时通信周期短,可认为感知的链路可靠性Q在通信周期内不变,此时有:R(D)=∏Ni=1Ri(di)(4)工业无线通信链路可靠性优化工业无线通信链路可靠性优化即是最大化(4)式。考虑工业通信实时性约束,设从源节点n0到目的节点nN允许的最大时延为D个时隙,则最大化通信可靠性表示为:MAXDRs.t.∑Ni=1di{=D(5)式(5)优化问题可以采用非线性整数规划问题求解方法,从而为每个子链路分配时隙,在D个时隙时间内实现链路端到端可靠性最大化,但一般计算量大,难以应用于现场仪表实时通信中。以下通过转化,寻求易于应用的求解方法。定义3.1:定义子链路增益函数Ki(di)=Ri(di+1)/Ri(di),其含义表示当前子链路Li上分配的时隙数量为di,若再多分配1个时隙,子链路的可靠性增益。引理3.1:Ki(di)是di的减函数。证明:Ki(di)=Ri+(1-Ri)RiRi=2-Ri,同理Ki(di+1)=2-Ri+(1-Ri[)R]i=2-2Ri+R2iKi(di+1)-Ki(di)=Ri(Ri-1)<0命题得证。定理3.1:重传时隙分配过程中,每个时隙分配给Ki(di)最大的子链路,则链路可靠性最大。证明:对于N+1个节点的N跳路由,假设允许的最大时延为D个时隙,那么就有m=D-N个可再分配的重传时隙。考虑Q在通信周期内不变,由式(2)和定义3.1,链路可靠性可表示为:R(D)=∏Ni=1Ri(1)∏Ni=1∏di-1j=1Ri(1)Ki(j)(4)即R(D)=f(Ki(j))链路中各子链路增益函数可有mN个可能的取值,m个重传时隙分配对应m个Ki(j)。重传时隙实际分配中,每个子链路j从1到di递增,而Ki(di)是di的减函数,所以分配中Ki(j)满足递减。分配重传时隙时,取i=argmaxi=1,2…NKi(j),m个重传时隙分配过程对应着依次选取子链路增益函数mN个可能值中前m个最大值的过程,故R(D)=f(Ki(j))最大,命题得证。基于定理3.1,原资源分配问题可以转化为如下方法进行求解:1)为每一个子链路分配1个时隙作为初始值,既取D(0)=[1,1…1];2)取1个重传时隙进行分配,遍历每个子链路,计算每个子链路的增益函数值Ki(di);3)搜索增益函数值Ki(di)最大的子链路n*,该子链路时隙分配值加1;4)所有重传时隙分配完毕,则输出最终时隙分配结果D=[d1,d2…di];否则转2)步。利用该结果和信道感知情况,应用式(1)可以进一步计算每个子链路的可靠性,根据式(2)可以计算整个链路的可靠性。在工业无线系统中,由网络调度器以超帧形式,下传该结果到链路,从而实现链路优化。3.3有冗余路由情况有冗余路由的多跳无线通信链路如图4所示。图4有冗余路由的多跳无线通信链路通信调度上,主链路仍然基于传统的TDMA,但重传时隙为(D-2N)。当ni节点重传时隙耗尽仍不能成功通信时,启用冗余路由niri+1ni+2,数据从ni传送到ni+2。主链路采用前述方法优化分配时隙,Li1和Li2子链路使用Li+1子链路的时隙向ni+1传送数据,视为2跳链路进行重传时隙优化方法分配。设R(ni|nj)表示节点i到节点j的通信成功概率,可按如下方法求取链路可靠性:R(nN-1|nN)=RLNR(nN-2|nN)=RLN-1R(nN-1|nN)+(1-RLN-1)RLN1RLN2R(nN-3|nN)=RLN-2R(nN-2|nN)+(1-RLN-2)RL(N-2)1RL(N-2)2R(nN-1|nN)……R(n0|nN)=RL1R(n1|nN)+(1-RL1)RL11RL12R(n2|nN)当然,利用无线信道的广播特性,可以在主链路上节点nm(m∈(0,1,…,N-1))发起通信时,nm+1和rm+1同步接收,nm+1接收失败时,由rm+1将数据传送给nm+2;也可以设计为nm+2同时接收nm+1和rm+1数据,采用最大比拟合,可以进一步提高链路可靠性。这些方案会增加冗余路由节点时隙和能耗开销,对现场节点时钟同步等要求较高,与传统的TD-MA方式兼容也存在困难,在此不作进一步讨论。4数值仿真研究工厂环境无线信道一般近似为瑞利衰落[7]。仿真条件中设链路信道衰落服从瑞利分布,取σ=0.2瑞利序列作为各子链路一次通信失败概率,依次取N=1~19,即选取子链路数目为1~19情况。在Matlab中对平均分配时隙和优化分配时隙情况进行数值仿真。图5为D=3N时1000次数值仿真统计情况。图中可见,优化分配方法较平均分配时隙明显提高链路可靠性。在子链路L5、L10、L15施加干扰(失败概率增加30%)时,优化分配方法仍然有较好的可靠性。图6为N=19时,D=57时(对应平均分配时隙中每子链路3个时隙的典型情况),时隙分配情况统计,可见,优化算法能够将有限的时隙分配给信道质量较差的子链路,具有较好的链路自适应能力,避免形成通信瓶颈;图7中研究算法随重传时隙增加时可靠性情况,在图6基础上增加时隙,优化算法取D=19~95,平均分配取D=19、38、57、72、95(对应0、1、2、3、4次重传),分别进行1000次仿真统计平均。可见,优化分配方案在D=19~72时,即无重传到3次重传都可比较明显提高链路可靠性,覆盖了典型通信情况。在图5仿真条件下,对有冗余路由情况进行数值仿真。图8为1000次数值仿真统计情况,与图5比较,一方面,可图7多跳链路时隙分配统计见有冗余路由的多跳无线通信链路较明显改善了可靠性;另一方面,平均分配时隙、优化分配时隙及对应的有无干扰情况,与图5有类似结论,可见优化方法对有冗余路由情况也可以进一步提高链路可靠性。图8有冗余路由的1~19跳链路可靠性仿真
本文在传统的工业无线通信调度模式下,通过优化重传,提高了工业多跳无线通信链路可靠性。应用中,将优化的时隙分配结果以超帧形式下载到各个节点即可,具有应用价值。对无冗余路由情况链路重传优化,实际是对链路进行了时域上优化;对于有冗余路由的多跳链路重传优化,实际是对链路时域和空域资源调度优化。随着工业认知无线电理论和技术发展,以及现场仪表通信能力和数据处理能力提高,诸如频域、码域、功率域等多域资源均可以在通信中得到协同优化,从而可以进一步提高链路通信可靠性,为工业无线技术应用推广提供基础和空间。
中图分类号: S611 文献标识码: A
引言在经济社会全球化发展的今天,计算机通信网络技术的进步和发展使得我们逐渐迎来了信息化时代计算机通信网络技术在各行业领域的推广给人们的工作、生活带来了极大的改变,使得计算机用户数量持续增加,对计算机通信网络的可靠性也提出了新的要求。这就需要在充分认识到造成计算机通信网络系统安全漏洞原因的基础上,高度重视计算机通信网络可靠性优化设计的实施,从根本上确保计算机通信网络的可靠性,以提高我国信息网络设计的水平,推动我国现代化信息建设。
一、计算机通信网络可靠性理论的概述
计算机通信网络的可靠性是信息网络系统安全的根本要求,反映着计算机网络系统在规定时间及范围内所能完成指定功能的概率和能力。在实际应用中,计算机通信网络可靠性理论包含计算机通信网络的可靠性和可靠度两方面内容。可靠性是计算机通信网络保持连通并满足通信要求的能力,是计算机通信网络设计、规划和运行的重要依据和参数之一。而计算机通信网络可靠度是指计算机通信网络在规定条件下完成规定功能的概率,涉及到二终端可靠度、λ终端可靠度以及全终端可靠度三种类型。
20 世纪九十年代以来, 世界各国尤其是发达国家建立了很多计算机应用中心和工程研究中心。美国还制定了新一轮规划的先进计算机网络框架计划, 发展面向 21 世纪的先进计算机技术。我国是高性能计算机和信息服务的战略性设施国家, 高性能计算机环境发展很快, 在已建成的5个国家高性能计算中心的基础上,又于中南、西北等地建立了新的国家计算中心,科技部加强了网络节点建设, 形成了以科学院为主体的计算机网络,教育部也启动了网络技术工程。计算机网络是一种先进基础设施, 它所涉及超级计算机技术、网络技术、中间件技术和计算机科学研究与应用技术,是一个综合性的跨学科、高技术研究课题。计算机网络发展实现了计算资源、存储资源、数据资源、信息资源、知识资源等全面共享。
二、计算机通信网络可靠性设计的原则
计算机通信网络可靠性直接关系到计算机通信网络系统的运行安全,在计算机通信网络系统设计的优化是对计算机通信网络技术可靠性的提高,能够有效避免计算机通信网络安全问题的发生,从而减少计算机通信网络安全事故造成了严重损失。
1、提高计算机通信网络的可靠性,需要遵循一定的国家标准,采用开放式的计算机体系结构,选用充分支持异种设备和异构系统的连接,尽可能使系统具备较强的扩展与升级能力,并且要保证先进性、实用性和通用性的结合,选择先进且成熟的网络技术和最适合的网络拓扑结构。
2、遵循国际和国家标准,采用开放式的计算机通信网络体系架构,从而能支持异构系统和异种设备的有效互联,具备较强的扩展与升级能力。先进性与实用性相结合,选择先进而成熟的网络技术,选择实用和通用的网络拓扑结构。
3、提高计算机通信网络的可靠性,主要采用余度设计和容错设计,在网络系统中,各台计算机可通过网络护卫后备机,当某台计算机出现了问题,这台计算机的任务便可以由其他的机器进行处理,从而有效的避免了单机无后备的状况。提高计算机通信网络的可靠性,还应该选择较好的网络链路介质,保证主干网络具有足够的带宽,从而使整个网络具有较快的响应速度。
4、在制定必要的网络管理条例的同时,加强相关应用人员的定期培训,同时对运行中的网络进行自动检查和维护,养成良好的维护和应用的职业习惯。
三、、影响计算机通信网络可靠性的因素
1、用户设备对网络可靠性的影响
用户终端设备是直接面向用户的设备,其可靠性至关重要,也是计算机通信网络可靠与否的关键所在。计算机通信网络运行过程中的日常维护,主要就是确保用户终端保持良好运行状态。用户终端的交互能力越高,网络的可靠性也越高。
2、网络管理对网络可靠性的影响
在计算机通信网络可靠性设计过程中,计算机通信网络设计的复杂性来源于不同设备供应商的所提供网络产品的规格和复杂程度很高,这就需要计算机网络管理人员采用非常先进的技术手段,监视网络运行状态,及时发现和排除故障,采集、统计和分析网络运行的相关状况,以保证信息传输的完整、及时、有效,从而提高计算机通信网络可靠性。
3、传输交换设备对网络可靠性的影响
在计算机通信网络建设、运行的过程中,为了提高网络可靠性以及满足日后发展的需要,必需考虑有一定的冗余和容错能力。布线时最好布置为双线,以便网络线路出现故障时能及时切换。网络集线器将若干个用户终端集中起来接入网络,通过它可将所连设备的问题与通信网络其它部分隔开,构成保证网络可靠性的第一道防线。集线器是一种单点失效设备,若它发生故障,则与其相连接的用户就无法工作,可见集线器在提高网络可靠性方面所起到的重要作用。
4、网络拓扑结构对网络可靠性的影响
网络拓扑结构是计算机通信网络规划设计的重要内容,从根本上决定着计算机通信网络的可靠性。有自身特点的影响,网络拓扑结构在不同行业领域及规模层次中的应用也有所不同,对于维护计算机通信网络的可靠性有着关键作用。在计算机通信网络系统建设初期,计算机通信网络的有效性和容错性的评价标准通常由网络拓扑结构的直径和连通度来决定。
四、计算机通信网络可靠性优化设计方法分析
计算机通信网络可靠性优化设计是计算机通信网络系统建设的重要内容,有利于确保计算机通信网络系统的安全运行,促进计算机通信网络技术的进步和发展。在具体实施过程中,需要对计算机通信网络所有设备、软件、硬件、网络协议以及各分层的可靠性进行全面系统化设计,计算机通信网络通常有以下三种可靠性优化设计方法。
1、 最优选择方法
该方法就是研究出各种满足网络可靠性要求的方案并进行比较,在几个方案中甄选出最优方案并对设计方案进行进一步的求精和优化。此外,在费用充足的条件下,还可以通过设计一定冗余的方式来增强计算机通信网络的可靠性,从而确保计算机通信网络系统扩容和升级的顺利进行,促进计算机通信网络可靠性设计最优化的实现。
2、 多级容错系统设计方法。容错系统的建立,是当前对付网络故障非常有效的方法之一,特别是对于大中型网络是至关重要的。当计算机网络出现故障时,网络的容错系统可保证网络继续正常运行,多级容错技术使网络具有一定的自保和自愈能力,即使网络出现多种故障,容错技术仍能使网络系统正常工作。
3、分层处理方法。分层处理法的应用对于解决计算机通信网络所面临的此类问题有着非常重要作用,按照对计算机通信网络进行分层的方式,定义为系统层、服务层、物理层及逻辑层等不同层次上的差异化可靠性度量指标,从而制定针对性方案措施,以提高计算机通信网络系统的可靠性,实现计算机通信网络技术设计的最优化。
结束语
计算机通信网络的可靠性是信息网络系统安全的根本要求,反映着计算机网络系统在规定时间及范围内所能完成指定功能的概率和能力。在计算机通信网络系统运行过程中,计算机通信网络安全的可靠性直接关系到系统应用的有效性,是计算机通信网络正常运行的基础性前提。计算机通信网络可靠性的内容主要包括计算机网络的抗破坏性、生存性以及系统部件在多模式下工作的有效性,要求计算机通信网络部件和基础结点必须为各用户终端提供可靠的链路,从而确保计算机通信网络的正常工作。
参考文献
[1]张晓杰,姜同敏,王晓峰.提高计算机网络可靠性的方法研究[J].计算机工程与设计,2010(03):76-78.
电力通信系统基于电力线进行通信,电力线通信(Power LineCommunication,英文简称PLC)技术是指利用电力线传输数据和媒体信号的通信方式,把载有信息的高频信号加载于电流,然后用电线传输给相应的适配器,再把高频从电流中分离出来并传送到处理端以实现信息传递。该技术最大的优势是在现有电力线上实现数据语音和视频等多业务的承载,以实现四网合一。通常电力通信的业务可分为关键运行业务和事务管理业务两大类。关键运行业务是指远动信号、数据采集与监视控制系统和调度电话等;其对通信的实时性、安全性和可靠性要求很高。而事务管理业务包括各种电话和电话会议,电视、信息数据等。其业务种类多、通信流量大,需要宽带传输。
2 电力通信可靠性的需求
随着电力通信网的发展,大量电力系统业务需要通过电力通信网进行传输,电力系统对于通信网的依赖性增大,通信网故障对电力系统的影响也越来越严重。因此,电力部门对电力通信网的质量要求也越来越高,不但要求电力通信网能够提供足够的通信能力,更要求电力通信网要具有很高的安全性、可靠性。而目前电力通信网管理体系不健全,可靠性评估手段不完整以及发展不平衡导致的设计水平低都是需要改进的地方。
所以确定电力通信网的可靠性,一般情况下,可以设定一个开放的标准模型进行评定。并且区别与传统于通信网的可靠性要求,某些指标需要重新进行讨论、修正,以满足电力系统对通信网可靠性的要求。,增加电力系统特点的评价指标,这样建立的可靠性评价体系才有实用价值。
3分层次设定项目指标的可靠性分析方法
分析电力通信网可靠性可以从理论和实用两个主要方面进行入手。目前的研究中已经从实用化的角度提出“电力通信网的可靠性工程”。根据可靠性工程的内涵并结合电力通信网的构成,对电力通信网可靠性工程可划分为6个层次,业务层、拓扑层、路由层、设备层、运行层、管理层。通过对各层次研究可知,电力通信网的可靠性研究主要是建立在上述各个层面的整合计算,并结合安全性进行具体的分析获得的具体指标以及数据。
结合传统网络系统可靠性分析过程,可以采用一个螺旋式循环上升的过程进行分析。在可靠性要求基础上提出问题和原因,并设定解决方案,利用对解决方案的跟踪评估继续设定可靠性要求。
结合电力通信网的运行方式首先提出可靠性指标体系,即建立数学模型分析可靠性加权效应。但是网络应用领域不同,环境参数不容,可能的影响因素也不相同,所以使用的指标体系也会发生一定的变化。
选取的指标代替整个网络中不同的模块,会计算出不同情况下的理论数值,然后综合评估,建立评价模型。模型中各个指标设定为相对的计算值。所以通过采用逐层线性加权的方式得到通信网可靠性的综合指数。
上述目标使用的各个项目各不相同,结合现有通信网可以设定类似如下的项目:网络物理设备稳定运行度量项目,包括3个指标,项目平均故障时间MTBF,平均修复时间MTTR,不可用度U。其中这三个指标的理论关系为U=MTTR/MTBF。若设定若干串联单元则U为每个单元的可用度之和,若并联设置,则U为每个单元的可用度之积。对于此项目的计算,最后获得的值设定为一个KiGi值。网络物理设备层面的计算项目可以包括硬件损耗和升级产生的硬件替换,数据库备份产生的备份时间以及数据通信在物理层产生的传输延迟对业务的影响等。
网络运行层侧重于电网及设施环境对网络运行的影响和故障的规律,此与网络设备层类似,利用产品失效率,为已工作到时刻尚未失效的产品进行计算,例如设定实效概率,在某个时间端内的实效概率的倒数为平均故障时间,计算整个的平均故障时间之和,获得运行层各个节点的项目指标。不可抗力,如地震和冰灾的发生,盗窃等认为破坏的影响,都会直接导致可靠性下降。本文给出的解决方是设定各种灾害的相对“有效”影响能力,即对应的加权值,即给出每个影响运行的情况的加权平均数值,以便计算合理的项目指标。
业务层和拓扑以及路由层对于电力通信网的影响普遍小于设备层和运行层,这和电力通信网能够承载的带宽以及目前使用的业务关系很紧密,但是我们仍然可以设定足够的项目及项目指标获得可靠性度量值,设定过程可以参考目前的运营商通信网络的运行参数设定过程,包括业务链路带宽延迟需要,服务器程序运行稳定性计算需求,管理人员和操作人员的错误发生率和正常工作持续时间需求,业务忙闲对应的话路拥塞等等。
一、计算机通信与控制系统运行的可靠性的定义
计算机通信与控制系统运行的可靠性是指计算机能在规定的系统时间和系统条件下,准确完成用户指令的概率,在实际的操作中由于计算机通信硬件、软件及其他影响因素的综合作用,100%往往是不可能达到的。计算机通信与控制系统运行的可靠性是计算机网络规划、设计的重要技术指标,因此,对计算机通信与控制系统运行的可靠性的研究是非常重要的。
二、计算机通信与控制系统运行的可靠性研究
(一)通信的安全性通信的安全性包括以下两个方面:第一,通信线路的安全性,即要保证各项通信线路的正常使用,一旦通信线路出现故障,则会在很大程度上影响通信效率,甚至会产生通信错乱,造成严重后果。第二,通信信息的安全性,即要保证数字信息的安全性,防止信息被恶意拦截,信息的安全性是提高系统运行可靠性的必要条件。(二)网络的坚固性坚固性即抗破坏性,网络的坚固性指的是计算机网络中的各个部件和各个节点之间必须做到紧密连接,为客户提供最高效、最可靠的信息传输通道。网络就好比是整个计算机通信系统生命的“血管”,因此,只有保证网络环境的纯净,保证网络传输通道的抗破坏性,才能切实的提高网络的坚固性,维护整个计算机通信系统的安全性和可靠性。(三)系统软件的生命周期和抗干扰性软件具有一定的生命周期,且随着软件的使用,其运行效率会越来越低,可靠性也会随之降低,同时,系统软件的抗干扰性也会在很大程度上影响软件的整个生命周期。
三、影响计算机通信与控制系统运行可靠性的因素
(一)计算机病毒入侵计算机病毒一直是对计算机通信与控制系统威胁性最大的因素,同时,破坏性较强的计算机病毒还会对整个计算机通信系统造成长期影响。一般,计算机病毒具有以下几个特点:第一,隐蔽性,即病毒往往是“寄生”在某个软件的某段代码之中,要找到它犹如大海捞针,而一旦代码段被执行,则病毒就会得到“释放”。第二,传播性,计算机病毒的传播途径通常就是计算机网络,计算机病毒通过网络,可以从一台计算机为出发点,大面积的感染与此计算机存在网络连接的其他计算机,例如木马病毒、熊猫烧香等病毒,都具有极高的传播性。第三,繁殖性,即病毒可以通过不同的计算机环境,不断进化延伸,变生出新的计算机病毒。第四,潜伏性,即计算机病毒不会无缘无故的消失不见,在其没有被执行时,往往会长期潜伏于计算机系统中。(二)计算机硬件设备计算机硬件是计算机通信系统正常运行的基础,对整个计算机通信系统的影响最大,一旦硬件出现故障,则会导致整个系统全面瘫痪。计算机硬件设备包括用户终端、数据交换设备、信息处理器等,其中用户终端是保证用户可以正常的接受信息,是整个系统的关键所在,数据交换设备和信息处理器则偏向信息的收集和处理,是保障通信信息安全性和可靠性的关键因素。
四、提高计算机通信与控制系统运行可靠性的对策
(一)优化网络拓扑结构首先,网络拓扑结构必须要经过精心的设计和合理的规划,确保整体和局部之间的紧密连接。其次,网络拓扑结构的连通度和结构的直径是影响整个计算机网络的关键因素。最后,网络拓扑随着计算机网络的发展,并不是一成不变的,随着其核心概念的不断延伸和发展,网络拓扑结构的自身特性也会不断的更新和进步。(二)优化通信网络管理通信网络管理包括两个方面的管理,第一个是网络线路的综合管理,即不断的优化网络通信线路,提高整个系统的可靠性,第二个是通信信息的安全管理,即通过降低网络传输的差错率、信息丢失率,来保证通信信息在网络中的传输是安全的、完整的。(三)建立多级容错系统和分层处理机制计算机网络经过多年发展,已经变得极为庞大,复杂度也非常高,因此,建立必要的多级容错系统和分层处理机制是非常必要的。一旦通信系统出现网络故障,则可以通过多级容错系统及时补充相关功能,短时间内无需更换元件,也可以保证系统的正常运行,同时,通过对系统进行合理的分层处理,不仅可以更方面的管理整个通信系统,而且对相关故障的检测也会更有针对性,极大的提高了通信系统的可靠性。
五、结语
综上所述,通过对计算机通信与控制系统运行的可靠性分析和相关提升策略的分析可知,计算机通信与控制系统的可靠性需要从通信安全性、网络坚固性和系统软件的抗干扰性三个方面进行考虑,才能确保计算机通信与控制系统的正常运行,信息时代下,保障计算机通信与控制系统运行的可靠性变得越来越重要,如何采取更有效的手段提高系统运行的可靠性,如何提高硬件质量,防范病毒入侵,将成为下一步计算机通信与控制系统运行可靠性研究的重要方向。
参考文献:
电信网络全IP化是一个大趋势,从软交换网络和IP承载开始,直到在LTE阶段建立一个全IP化、接入网与固网融合的纯IP核心网,完成标准上的端到端IP化。
一、背景分析
移动通信核心网(以下简称核心网)IP化是电信网络IP化的一个分支。从功能域上分为CS域和PS域两个主要部分,均基于IP技术进行组网,各业务网元通过IP骨干网实现互连,网络中信令、业务、网管、计费等流量都由IP骨干网承载,整个网络结构趋于扁平化,便于网络冗余和拓展。网络路由都采用动态IGP路由协议进行选路,业务保护通常都通过多级设备或链路冗余实现。
目前对IP化电信网络可靠性影响较大的是链路中断、节点失效时,主备用端口、设备、路由倒换的时间过长。以传统路由协议来说,故障检测是通过路由器之间发送“Hello”分组完成的,在没有特定硬件的帮助下,这种方式的检测周期较长,发生故障时OSPF的最短检测时间约为2s,IS-IS约为1s。HSRP/VRRP协议的情况基本相同。这对语音、视频应用来说时间明显过长。同时,在现有的IP网络中并不具备秒以下的间歇性故障修复功能,而传统路由架构在对实时应用(如语音)进行准确故障检测方面能力有限,从发现故障到路由重新收敛,整个过程可能长达十几秒,期间会造成故障路由上的大量的数据丢失,当数据速率到吉比特时,故障感应时间长代表着大量数据的丢失,并且对于不允许路由协议的节点没有办法检测链路的状态。伴随着以实时数据通信为代表的3G业务的激增,实现快速网络故障检测和修复是当前网络维护管理中最重要的问题。
二、BFD应用设计方案
BFD (双向转发检测)能够尽快检测到与相邻设备间的通信故障,以便能够及时采取措施,要求网络设备能够快速检测出故障并将流量切换至备份链路以加快网络收敛速度,从而保证业务继续进行,减小设备故障或链路故障对业务的影响,从而提高网络的可用性。
通过使用BFD与主备保护协议、路由协议、VPN协议等传统网络控制协议互相配合,将BFD的毫秒级链路故障检测能力与网络控制协议的自动恢复能力结合,就能简单便捷使传统IP网络具备毫秒级故障恢复能力,并且BFD并不直接作用于网络控制协议的连接,而只是为网络控制协议提供一种快速故障检测能力。
BFD的服务接口非常简单,利用网络控制协议提供会话参数(相邻系统地址、时间参数、协议选项等),BFD快速返回通路状态检测结果,从中可以迅速得到通路状态的变化。BFD类似于光纤通信中的光信号丢失(LOS)指示,而网络控制协议根据BFD返回的结果使用自身的机制实施控制功能。
2.1网络边缘的部署
网络中上层业务的平台或网管通常由多种设备组成。为了节省网络设备端口,增加平台访问的可控性,这些设备通常组成一个局域网,通过出换机或者路由器接入网络。为提高网络可靠性,通常在接入交换机或路由器上部署热备份路由协议/虚拟路由冗余协议。在传统的HSRP/VRRP技术中,当一台路由器的链路出现故障时,备份路由器通常需要3s才能够进行切换,而HSRP/VRRP协议根据BFD的检测结果迅速进行主、备切换,可以使主备路由倒换时间缩短到1s以内。
2.2网络内部的部署
1 系统最可靠优化概述
通信和电子系统本身就是一个较为复杂的应用系统,其工程的设计和实现中存在多种复杂的关系和约束条件,因此其优化问题就成为了通信和电子系统的重要设计基础。在其设计和配合中,对系统的规划就成为了整个系统良性运行的前提和基础。从管理角度看,对系统的规划就是合理的安排各种资源在系统构建中的分配和作用,对于大型的系统工程的实施作用明显。系统越复杂其对其规划的要求就越严格。同时在设计中还需要将可靠性作为系统规划的前提,即在系统设计时不改变整个系统成本的前提下,实现最为可靠的运行配合 ,即合理的分配各个零部件的可靠度,保证其在各自功能范围内体现出最佳性能,并保证系统运行的可靠性。这里的可靠性设计还应把经济指标涵盖在内,即从技术角度、经济成本角度出发实现系统的可靠与经济性双赢。
在通信和电子系统的设计中,因为系统的复杂性,所以要求在技术指标得到满足的条件下尽量使得设计成本最低。尤其对于某些特殊要求的复杂系统,利用传统的设计方法很难达到此种目标,因此最优化的设计方法就成为了复杂通信和电子系统设计的重要手段。最优化问题对于通信和电子系统来说,就是指最优化的设计方案。即在指定的设计指标和元件、参数范围条件下,确定独立的设计参数,保证系统达到最经济的技术指标和性能。
2 通信电子系统的最可靠性
通信和电子系统本身就是一个较为复杂的多层次系统,其复杂而精密的特点使其运行的可靠性成为了系统设计和实现的首要条件。通信系统的可靠性主要的标准就是其通信的质量,而系统可靠性具体的体现就是在正常工作中错误的概率最低,这个指标的实现取决于构成系统的各个部件的可靠性,以及系统本身的结构方式。主要设备结构的合理是提高可靠性的重要基础,也是提高可靠性的途径之一。通信系统的主要作用就是输入和输出,在完成这个数据处理的过程中,需要多个电气元件进行参与,即一个主要设备中有多个子系统进行串联组成一个工作系统。而主要系统和辅助系统将构成一个完整的通信系统,可见主要系统的可靠性将决定整个系统的可靠性,即只要主设备或者系统不出现故障该通信系统就正常。
在一个系统中,设计参数有两种,一种为固定参数即系统需要满足的基本性能,一种为设计参数,即待定的某些参数,固定参数是必须实现的,而待定参数则可以看做是优化变量,也就是通过设计参数的改变来影响整个系统运行的效果。此时,各种参数的变化范围就会成为影响系统运行的基本条件,可以理解为目标函数中的设计指标可以构成优化变量的约束条件。因此,寻求系统的最佳性能就是对目标函数的最大或者最小。
3 通信和电子系统的最优化算法
通信电路或者通信网络技术的实现都是在给定的技术指标前提下进行设计和实现的,对这些参数产生影响的条件有很多,如幅值、相位、频率等等。如果电路满足技术指标就可以看做为合格,否则为不合格。尽管初始设计保证所有的系统元件都为标准,即电路满足使用指标要求,但是因为外部环境因素的影响,个元件的运行参数是在一个容差范围内随机变化的。这种元件的容差就有可能使得批量产品的合格率小于需要。如何在设计中,根据指定的技术指标要求,确定 合理的电路元件的标称值和容差,使得产品合格率最大而成本最小,这就是优化设计的核心问题,这也是可靠性最优化计算需要解决的问题。
在对某通信系统进行优化计算中发现,可变容差法在接近可行区域收敛速度明显出现大幅下降,大量的时间都将被浪费在可行性修正上,目标函数的下降较小,只能通过降低收敛精度才能实现收敛的目标。即使这样最后的结果也还是会出现某个部件可靠性大于1的不理想状况。实践中SUMT法和乘子法均能得到满意的结果,但是为了确保计算的稳定性,前者的惩罚因素增速不能过大,因此相对采用的迭代次数就会增加,所以采用采用乘子法进行优化设计,及时先沿着搜索方向向外推算出最小点所在的区间,然后在此范围限定的情况下,二次插值,求得最优步长。
因为某系统价格模型中包含了正切函数,当完好率接近1的时候,函数值和导数值将急剧增加,尤其是导数值很有可能会溢出。通常采用的控制方法是:
(1)利用随机格点搜索目标函数值相对小的域内点,进行乘子法的改善点。随机搜索时都对部件可靠性的上线进行限制,即完好率在0.5-0.6之间。
(2)利用二点差分的近似计算价格函数的导数,以防止其产生溢出效果。根据目标函数的梯度和函数自动调整差分步长,保证导数估计值的截断误差和舍入值误差相近似相等。
利用前面的两种方式,求得某通信系统的两种价格模型的最大可靠性问题和最小成本问题。如下式:
将着这些参数代入到可靠性公式中,就可以得到某通信系统的最优化结果。并根据具体的数据对系统的构成进行合理的修正。
4 结束语
通信和电子系统设计应处处体现最优化方法的思想,即在一定客观条件制约下,选取最优路线(策略、方式、安排),以取得最好效益或实现既定目标。计算中应根据设计经验选择尽可能合理的初始点。然后用二阶段算法,即在第一阶段用一个简单的算法在较大的空间搜寻,求得一个改进的初始点,第二阶段再用比较高效的算法,从这个改进后的初始点出发,搜索求得问题的最优解。
参考文献
[1]高山杰.基于最优化理论与算法的通信系统功能构建[J].现代电子技术, 2010,(18) .
中图分类号:TP393.06
计算机通信网络的可靠性是信息网络系统安全的根本要求,反映着计算机网络系统在规定时间及范围内所能完成指定功能的概率和能力。在计算机通信网络系统运行过程中,计算机通信网络安全的可靠性直接关系到系统应用的有效性,是计算机通信网络正常运行的基础性前提。计算机通信网络可靠性的内容主要包括计算机网络的抗破坏性、生存性以及系统部件在多模式下工作的有效性,要求计算机通信网络部件和基础结点必须为各用户终端提供可靠的链路,从而确保计算机通信网络的正常工作。
1 计算机通信网络可靠性理论的概述
计算机通信网络的可靠性是信息网络系统安全的根本要求,反映着计算机网络系统在规定时间及范围内所能完成指定功能的概率和能力。在实际应用中,计算机通信网络可靠性理论包含计算机通信网络的可靠性和可靠度两方面内容。可靠性是计算机通信网络保持连通并满足通信要求的能力,是计算机通信网络设计、规划和运行的重要依据和参数之一。而计算机通信网络可靠度是指计算机通信网络在规定条件下完成规定功能的概率,涉及到二终端可靠度、λ终端可靠度以及全终端可靠度三种类型。
2 影响计算机通信网络可靠性的因素
计算机通信网络可靠性是确保计算机通信网络综合性能的关键技术标准之一,对计算机通信网络可靠性进行优化设计,要求必须首先明确造成计算机通信网络可靠性问题的原因,从根本上解决确定计算机通信网络可靠性设计优化的方向,以促进计算机通信网络可靠性设计的针对性和有效性的实现。
2.1 传输交换设备对网络可靠性的影响。传输设备主要是用布线系统和网络集线器,实践表明布线系统所造成的计算机网络故障问题一般是最难查找的,为此而付出的代价往往也是最大的。因此设计时应采用标准的通信线路和布线系统,同时考虑留有一定的冗余和容错能力。网络集线器是一种网络连接设备,它可将所连设备的错误与计算机网络其它部分隔开,从而构成了保证计算机网络可靠性的第一道防线。但集线器是一种单点失效设备,若它自身发生故障,则与其相连接的用户就无法工作。
2.2 计算机网络拓扑结构对网络可靠性的影响。拓扑结构是计算机通信网络设计规划的重要内容,从根本上决定着计算机通信网络的可靠性,对于维护计算机通信网络的可靠性有着关键作用。在计算机网络中,各组成部分之间的连接主要取决于计算机网络的拓扑结构,因此进行网络拓扑结构对计算机网络可靠性影响程度的分析,就成为计算机网络可靠性设计的基本前提。
2.3 网络管理对网络可靠性的影响。在计算机通信网络可靠性设计过程中,计算机通信网络设计的复杂性来源于不同设备供应商的所提供网络产品的规格和复杂程度很高,这就需要计算机网络管理人员采用非常先进的技术手段,监视网络运行状态,及时发现和排除故障,采集、统计和分析网络运行的相关状况,以保证信息传输的完整、及时、有效,从而提高计算机通信网络可靠性,。
3 计算机通信网络可靠性设计的原则
计算机通信网络可靠性直接关系到计算机通信网络系统的运行安全,在计算机通信网络系统设计的优化是对计算机通信网络技术可靠性的提高。在计算机通信网络优化设计实践过程中,要遵循相应的原则标准,主要有以下几个方面:
3.1 提高计算机通信网络的可靠性,需要遵循一定的国家标准,采用开放式的计算机体系结构,选用充分支持异种设备和异构系统的连接,尽可能使系统具备较强的扩展与升级能力,并且要保证先进性、实用性和通用性的结合,选择先进且成熟的网络技术和最适合的网络拓扑结构。
3.2 提高计算机通信网络的可靠性,一定要保护现有的计算机网络的投资,充分的利用计算机网络资源,合理有效去调配现有的硬件设施和网络应用软件,要合理科学地选择计算机网络软件,并且时刻注意其功能是否满足最新需求,及时注意安全系统和网络管理子系统的要求。
3.3 提高计算机通信网络的可靠性,主要采用余度设计和容错设计,在网络系统中,各台计算机可通过网络护卫后备机,当某台计算机出现了问题,这台计算机的任务便可以由其他的机器进行处理,从而有效的避免了单机无后备的状况。提高计算机通信网络的可靠性,还应该选择较好的网络链路介质,保证主干网络具有足够的带宽,从而使整个网络具有较快的响应速度。
3.4 提高计算机通信网络的可靠性,除了制定相应的网络管理条例和规章制度外,还要加强应用人员的管理和定期培训,对运行中的网络进行自动检查和维护,养成良好的维护和应用的计算机网络的习惯。
4 计算机通信网络可靠性优化设计方法分析
目前,我国计算机通信网络系统建设仍不完善,计算机通信网络的安全性问题普遍存在,计算机通信网络可靠性设计优化势在必行。在具体实施过程中,需要对网络所有设备、软件、硬件、网络协议以及各分层的可靠性进行全面系统化设计,从根本上解决计算机通信网络技术的安全性问题。计算机通信网络通常有以下三种可靠性优化设计方法:
(1)最优选择。所谓最优选择就是首先研究出各种满足网络可靠性要求的方案,然后进行比较,在几个方案中甄选出最优方案并对设计方案进行进一步的求精和优化。在费用充足的条件下,还可以通过设计一定冗余的方式来增强计算机通信网络的可靠性,从而确保计算机通信网络系统扩容和升级的顺利进行,促进计算机通信网络可靠性设计最优化的实现。
(2)多级容错系统设计方法。容错系统的建立,是当前对付网络故障非常有效的方法之一,特别是对于大中型网络是至关重要的。当计算机网络出现故障时,网络的容错系统可保证网络继续正常运行,多级容错技术使网络具有一定的自保和自愈能力,即使网络出现多种故障,容错技术仍能使网络系统正常工作。
(3)分层处理方法。分层处理法的应用对于解决计算机通信网络所面临的此类问题有着非常重要作用,按照对计算机通信网络进行分层的方式,定义为系统层、服务层、物理层及逻辑层等不同层次上的差异化可靠性度量指标,从而制定针对性方案措施,以提高计算机通信网络系统的可靠性,实现计算机通信网络技术设计的最优化。
5 结语
在经济社会全球化发展的今天,计算机通信网络技术的进步和发展使得我们逐渐迎来了信息化时代计算机通信网络技术在各行业领域的推广给人们的工作、生活带来了极大的改变,使得计算机用户数量持续增加,对计算机通信网络的可靠性也提出了新的要求。这就需要在充分认识到造成计算机通信网络系统安全漏洞原因的基础上,高度重视计算机通信网络可靠性优化设计的实施,从根本上确保计算机通信网络的可靠性,以提高我国信息网络设计的水平,推动我国现代化信息建设。
参考文献:
[1]张晓杰,姜同敏,王晓峰.提高计算机网络可靠性的方法研究[J].计算机工程与设计,2010(03):76-78.
[2]杨常建,王进周,米荣芳.计算机安全面临常见问题及防御对策探讨[J].计算机与网络,2012(03):66-68.