时间:2023-08-03 16:09:22
导言:作为写作爱好者,不可错过为您精心挑选的10篇工程结构设计概况,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
中图分类号:TU37文献标识码: A 文章编号:
引言
混凝土结构一直是我们最常用的结构,《混凝土结构设计规范》(GB50010-2010)修订反映我国近十年来混凝土结构学科的科研成果和工程建设中的新经验,标志着我国混凝土结构的计算理论和设计水平有了新的提高与发展。
1、钢筋的混凝土最小保护层厚度的调整
鉴于《混凝土结构设计规范》(GB50010-2002)中规定混凝土保护层最小厚度是指纵向受力钢筋的外表面至混凝土表面的距离,除长期干燥或永久置于水中的混凝土构件外,其他环境下的构件并不能满足设计使用年限内防止钢筋严重锈蚀的耐久性要求,并且为防止混凝土构件中最外侧箍筋和分布筋首先锈蚀并导致混凝土顺筋开裂和剥落,对其保护层厚度的要求应该与主筋相同,《混凝土结构设计规范》(GB50010-2010)从混凝土碳化、脱钝和钢筋锈蚀的耐久性角度综合考虑,不再以纵向受力筋的外缘,而以最外层钢筋(包括箍筋、构造筋、分布筋等)的外缘计算混凝土保护层厚度,规定混凝土保护层最小厚度是指钢筋的外表面至混凝土表面的距离,很显然,《混凝土结构设计规范》(GB50010-2010)规定的混凝土保护层最小厚度既保护了纵向受力钢筋,又保护了箍筋、分布筋,比《混凝土结构设计规范》(GB50010-2002)规定混凝土保护层最小厚度有所加大。对由纵向钢筋和箍筋组成的梁、柱构件,混凝土保护层最小厚度的调整使正截面设计中截面有效高度 h0=h-as( 若仅布置一排钢筋时,《混凝土结构设计规范》(GB50010-2002)为 as=c+d纵/2,《混凝土结构设计规范》(GB50010-2010)为 as=c+d箍+d纵/2,见图 1)有所减少;对由纵向受力钢筋和分布钢筋组成板构件而言,新旧混凝土结构设计规范规定的保护层厚度不变,不影响正截面设计中截面有效高度 h0=h-as。《混凝土结构设计规范》(GB50010-2010)除了修改对钢筋的混凝土最小保护层厚度定义外,还对结构构件所处耐久性环境类别进行了划分,对应环境等级修改,《混凝土结构设计规范》(GB50010-2010)调整了混凝土最小保护层的最小厚度 c(mm),对一般情况下混凝土结构的保护层厚度稍有增加,而对恶劣环境下的保护层厚度则增幅较大。
2、钢筋锚固和连接方式的改进
我国钢筋强度不断提高,结构形式的多样性也使锚固条件有很大的变化,根据近几年系统试验研究及可靠度分析的结构并参考国外标准,《混凝土结构设计规范》(GB50010-2010)提出 ιab即基本锚固长度,取代了原先的 ιa,从基本锚固长度的计算公式看,公式并没有改变,但改变 ft取值,《混凝土结构设计规范》(GB50010-2010)提出当混凝土强度等级高于C60时,ft按C60取值,而《混凝土结构设计规范》(GB50010-2002)则是当混凝土强度等级高于 C40 时,ft按 C40 取值。这主要是根据实验研究表明,高强混凝土的锚固性能被低估,原先的最高强度等级取 C40 偏于保守,其实这也是为推广高强度钢筋,如果采用原先的公式计算,高强度钢筋的基本锚固长度有些长。另外,《混凝土结构设计规范》(GB50010-2010)删除《混凝土结构设计规范》(GB50010-2002)中锚固性能差的刻痕钢丝,同时提出当混凝土保护层厚度不大于 5d 时,在钢筋锚固长度范围内配置构造钢筋的要求。当不考虑锚固长度修正时,取相同直径 d,采用《混凝土结构设计规范》(GB50010-2002)和《混凝土结构设计规范》(GB50010-2010)计算受拉钢筋锚固长度。
3、钢筋用量的分析
工程概况①:按《混凝土结构设计规范》(GB50010-2002)计算,梁、柱、墙受力钢筋采用 HRB400 级,梁、柱箍筋和墙中构造筋以及板中钢筋均采用 HRB335 级。
工程概况②:按《混凝土结构设计规范》(GB50010-2010)计算,梁、柱、墙受力钢筋采用 HRB400 级,梁箍筋和构造筋、墙构造筋以及板中钢筋均采用 HRB335 级。
工程概况③:按《混凝土结构设计规范》(GB50010-2010)计算,梁、柱、墙受力钢筋采用 HRB500 级,梁箍筋采用 HRB400 级,墙构造筋及板中钢筋仍采用 HRB335 级。
通过中国建筑科学研究院研发的 PKPM 程序模拟计算,其计算结果如下:
3.1剪力墙结构
工况②与工况①比较:在钢筋强度等级相同的条件下,按《混凝土结构设计规范》(GB50010-2010)计算的钢筋总用量(748.84t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(747.83t)略有增加,比值为 1.001;其中梁箍筋(HRB335 级)的用量因规范修订稿中受剪公式的改变有较明显增加,梁中受力主筋(HRB400 级)的用量因《混凝土结构设计规范》(GB50010-2010)中裂缝宽度计算公式的改变有所减少;板和墙的钢筋用量受最小配筋率控制,基本无变化。工况③与工况①比较:工况③仍按新修订的《混凝土结构设计规范》(GB50010-2010)计算,但梁中箍筋改为 HRB400 级,梁、板和墙中的受力主筋改为 HRB500 级。可以看出,钢筋总用量(742.23t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(747.83t)略有减少,比值为 0.993;其中梁箍筋用量仅略有增加,而梁中受力主筋的用量则减少明显,梁中钢用量合计减少约 5.6%;板和墙的钢筋用量仍受最小配筋率控制,变化不大。工况③与工况②比较:工况③和工况②均按《混凝土结构设计规范》(GB50010-2010)计算,只是工况③提高钢筋强度等级,可看出两种工况下钢筋总用量基本相同,主要是因为板和墙的钢筋用量受最小配筋率控制变化不大,而梁中箍筋和受力主筋用量则有明显减少。
3.2框架结构
工况②与工况①比较:在钢筋强度等级相同的条件下,按《混凝土结构设计规范》(GB50010-2010)计算的钢筋总用量(229.73t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(231.13t)略有减少,比值为 0.994;其中梁箍筋(HRB335 级)的用量因规范修订稿中受剪公式的改变有较明显增加,而梁中受力主筋(HRB400 级)的用量因规范修订稿中裂缝宽度计算公式的改变有所减少;板的钢筋用量受最小配筋率控制,基本无变化;柱的钢筋用量略有增加。工况③与工况①比较:工况③仍按《混凝土结构设计规范》(GB50010-2010)计算,但梁和柱的受力主筋改为 HRB500 级。可以看出,钢筋总用量(217.35t)比按《混凝土结构设计规范》(GB50010-2002)计算的钢筋总用量(231.13t)减少约 6%(比值为 0.940);其中梁箍筋用量增加较明显,而梁中受力主筋的用量则减少明显,梁中钢用量合计减少约10.9%(比值为 0.891);板和柱的钢筋用量仍受最小配筋率控制,变化不大。工况③与工况②比较:工况③和工况②均按《混凝土结构设计规范》(GB50010-2010)计算,只是工况③梁和柱的受力主筋改为 HRB500 级。可看出提高受力主筋强度等级后钢筋总用量减少约 5.4%(工况③钢筋总用量为 217.35t,工况②钢筋总用量为 229.73t,比值为 0.946)。
结束语
在我国当前迅速发展的工程建设领域中,混凝土结构是我国工程建设中应用最广泛的一种结构形式之一,全面修订的混凝土结构设计规范在新材料应用、设计理论发展等方面有重大进步,对确保工程质量,促进我国钢筋混凝土结构设计水平,进一步提高及混凝土结构学科的发展起到有力的推动作用。
参考文献
近年来,我国建筑行业快速发展,建筑市场的竞争日益激烈,相关施工单位想要获得更好的发展,必须高度重视建筑工程高层结构设计和造价控制,高层结构设计对于整个建筑工程项目的安全性和稳定性有着决定性的影响,并且如果高层结构设计阶段的造价控制不合理,会给施工单位和建设单位造成巨大经济损失,因此应采用科学合理的方法,加强建筑工程高层结构设计造价控制,推动建筑工程的可持续发展。
一、建筑工程项目概况
吴川市河海路阳光花园小区某建筑工程地下室有3层,地上建筑高度约93.5m,1到4层为商业裙楼,5层以上为住宅区[1],高层结构为剪力墙框架结构体系,剪力墙通过建筑楼面梁式结构转换为框支柱,从而满足大跨度、大空间的建筑空间要求。
二、建筑工程高层结构设计策略
1、结构布置设计
建筑工程高层结构布置设计,应结合建筑结构的抗震设计原则和高层结构工作原理,降低结构的刚度突变和扭转效应,重点考虑西部结构的力学性能,使各个构件各尽所能,实现预期目标。同时,结合建筑工程项目实际情况,做好建筑结构的布置和选型,设计人员通过建筑结构形式表达出创意和构想,实现实用又美观,设计人员在保障建筑工程高层结构安全的基础上,应积极创新建筑结构形式,在设计阶段重点分析建筑高层结构的竖向和平面布置,确保建筑工程高层结构的科学性和合理性,并且平面布置应尽量规则、简单,缩小质心和刚心之间的距离[2],在水平荷载条件下避免建筑高层结构发生较大扭转,对于建筑结构的竖向布置,使承重构件在整个建筑结构中贯穿起来,竖向刚度应渐变,避免在突变区域水平荷载应力集中,损坏建筑工程高层结构动力荷载。另外,建筑工程高层结构设计应综合考虑多方面因素,确定最合理、最经济、最简单的建筑结构方案,如建筑结构中的竖向承重构件,如剪力墙、墙柱等,不仅需要承载竖向荷载,还需承受地震作用和风力荷载,因此在布置竖向构件时,应将竖向构件放置在有利于分担温度应力和水平荷载的区域。
2、地基基础设计
建筑工程地基土层比较复杂,当前还没有标准的模型来精确进行地基模拟描述,因此在建筑工程地基基础设计时,相关设计人员应结合工程实践经验和基本理论知识,分析和预测地基基础容易出现的各种问题,编制最佳的设计方案。通常情况下,建筑工程高层结构设计主要是将地基、基础和上部结构看作独立、离散的单元进行力学分析和计算,但是为了确保地基基础设计的合理性,不能仅仅着眼于建筑工程地基基础,还应考虑到地基不均匀沉降有可能会造成上部结构的变形或者开裂,因此在设计时应将上部结构、基础和地基看作一个整体,仔细分析三者之间的相互作用,了解基础刚度变化对于建筑工程高层结构的约束作用,综合多方面因素,设计出最佳的地基基础方案。
3、构造措施设计
建筑工程高层结构时,为了保障建筑结构在动力荷载和静力荷载作用下的安全性和稳定性,不能仅依靠简单的计算分析,特别是建筑工程区域发生地震时,建筑工程高层结构的一些关键构件遭受损坏、墙体坍塌,因此必须要采取一些可提升建筑工程高层结构延性和整体稳定性的抗震措施,如建筑工程高层结构施工设计要求,配置适量的钢筋材料,一方面减轻建筑结构重量,另一方面,可避免水泥硬化和温度应力造成的混凝土开裂,防止建筑工程整体坍塌或者遭受严重破坏。
三、建筑工程高层结构设计阶段造价控制措施
1、构建科学合理的设计管理体制
为了实现对建筑工程高层结构设计造价的有效控制,应构建科学合理的设计管理体制,首先,明确建筑工程高层结构设计造价控制的主体,落实建设项目责任制,先有企业法人然后确定项目,由企业法人负责项目的筹资、筹划、建设、资产保值、债务本息归还、生产经营等过程管理[3],承担建筑工程项目的投资风险。通过实行投资风险约束机制,使设计单位在建筑工程高层结构设计阶段做好造价控制,提高建筑工程项目的经济效益和社会效益。
2、采用招投标机制,做好设计优选工作
建筑工程设计在确定设计单位主要通过委托设计、邀请招标、公开招标三种方式,这三种方式各有各的特点,业主应结合建筑工程项目的实际特点和具体要求,选择最合适的招标方式,加大对建筑工程项目的造价管理,将工程造价控制和确定中标单位联系起来,使相关设计人员在建筑工程高层结构设计过程中精心设计、全面策划、周密考虑,获得最大化的经济效益。引入市场竞争机制,做好建筑工程设计招标工作,选择最优的设计单位和最佳设计方案,重点解决设计阶段的造价控制和技术管理问题,通过这种方式,会促使设计单位提交造价合理、创意独到、技术先进的设计方案,增强其竞争意识和紧迫感,提高建筑工程高层结构设计质量,用最合理的工程造价和最佳的设计,有效控制建筑结构设计成本。
3、加强结构设计造价控制
为了确保建筑工程高层结构设计的经济性、准确性、合理性和先进性,防止相关技术操作和功能要求冲淡对建筑结构设计造价控制的要求,建设单位应明确该建筑工程项目的投资要求和使用功能,在招标文件中对投标单位采用价值工程方法和原理优化设计方案提出要求[4],招标过程中,应严格审查招标单位的整体实力和资质信誉,按照我国建筑设计招标细则,构建合理的评标办法和合理的评标机制,确保设计单位公平、合理的竞争,并且设计单位应结合建筑工程项目的清单计价规范,详细估算每个设计方案的经济性,选择最佳的建筑工程高层结构设计方案,提高经济效益。
4、推行设计监理
建筑工程高层设计阶段的造价控制不能仅仅依靠设计单位和政府管理,应积极推行设计监理,由监理单位监理整个设计过程,充分发挥监理的约束和协调作用,将造价控制在标准的限额范围内,还可促使相关设计单位优化结构、改善管理。同时,建筑结构设计监理还应构建投资控制系统,对整个设计过程进行实时跟踪,避免建筑设计的缺陷和失误,设计单位和建设单位应加强对建筑工程高层结构设计变更的控制和管理,提前实现一些非发生不可的项目变更,考虑到建筑工程高层结构施工的切实可行和图纸设计的合理性,不断优化和改进建筑结构设计,确保整个建筑工程的稳定性和可靠性。
结束语:
随着现代化城市进程的加快,高层建筑项目越来越多,建筑结构也越来越复杂,这对于建筑工程高层结构设计和造价控制提出了更高的要求,结合建筑工程项目的实际情况,优化和完善结构设计,采用科学合理的造价控制措施,实现建筑工程的综合效益。
参考文献:
[1] 何辉常,王静.浅谈建筑工程设计阶段的造价控制[J].科技信息,2011,20:510.
引言:
人防工程是战时防空、保障人民生命安全的重要措施,随着城市的发展,人防工程的建设越来越引起人们的重视。防空地下室是人防工程的重要组成部分。与其它类型人防工程一样,它具有国家规定的防护能力和各项战时防空功能,是实施人民防空的物质基础。如何设计好人防工程,使人防工程在战时能真正起到防空及保障人民生命安全的功能,这就要求我们设计人员深刻理解并严格执行《人民防空地下室设计规范》现将防空地下室设计中常见的问题进行分析和探讨。
1.人防结构设计的特点及原则
1.1人防结构设计的特点
人防地下室水平荷载作用及变形特征。(1)风荷载计算均扣除地下室的高度。地下室是否约束、约束的程度与风荷载计算无关。(2)设计设定地下室部分的基本风压为零;在地上部分的风荷载计算中,地下室顶板作为风压高度变化系数的起算点。结构在地震作用下的反应受地下室外的回填土约束程度的影响。(3)由地下室质量产生的地震力,主要被室外的回填土吸收。
1.2人防结构设计的原则
(1)对常规武器爆炸动荷载和核武器爆炸动荷载,设计时均按一次作用。(2)平战结合,取控制条件,在5级或6级人防设计中,结构的顶板基本上都由战时控制,而侧墙和底板则因地下室结构形式的不同而由实际情况确定。(3)只进行承载力的验算,由于在核爆炸动荷载作用下,结构构件变形极限已用允许延性比来控制,因而在防空地下室结构设计中,不必再单独对结构构件的变形与裂缝进行验算。(4)注意各部位的抗力(强度)协调,以免因设计控制标准不一致而导致结构的局部先行破坏,失去整个防护建筑的作用。(5)地面与地下承重结构体系要协调,不能出现两者强弱相差较大的情况。(6)人防地下室墙、柱等承重结构,应尽量与地面建筑物的承重结构相互对应,以使地面建筑物的荷载通过防空地下室的承重结构直接传递到地基上。(7)重视构造要求,人防设计的许多构造要求比一般的建筑要求更为严格,应充分保证结构的延性,“强柱弱梁(板)”、“强剪弱弯”。
2.人防结构工程设计内容与方法
2.1人防工程结构设计概况
某甲类防空地下室总建筑面积7350m2,除局部设备用房为非人防区,其余大部分为人防区。地下室人防区分设A、B、C、D共4个六级人防单元,人防单元共计5915 m2。本工程抗震设防烈度为7度,地震加速度为0.1g,采用框架剪力墙结构,框架抗震等级为三级,剪力墙抗震等级为二级。地下室不考虑风荷载作用。地下室梁、板混凝土强度等级为C30,墙柱混凝土强度等级按上部结构整体计算所得,采用C40混凝土。
2.2人防地下室底板设计
(1)地下室底板人防荷载确定。本工程采用先张法高强预应力管桩,属有桩基钢筋混凝土底板,且为饱和土,底板人防荷载取值为25 kNm2。(2)地下室底板反向荷载确定。依据建筑总平面布置图及室外道路标高系统,本工程设计抗浮水位标高9.2米,即相对标高为-1.05米。底板标高-4.550,底板厚度为0.3米,计算水深3.8米。底板疏水层为100~200mm,以均厚150mm计算,底板自重10.5kNm2,计算反向荷载扣除底板自重为(1.35×38-10.5)1.35=30.5 kNm2。(3)底板截面设计。按人防要求,底板最小厚度250mm,因板跨、荷载较大,本工程取底板厚度为300mm,保护层厚度50mm,可满足底板承载力及裂缝宽度0.2mm的要求。最大水头H为3.8米,底板厚h为0.3米,依据《高规》表12.1.9基础防水混凝土的抗渗等级确定办法,Hh=3.80.3=12.7,地下室底板设计抗渗等级为0.8MPa。底板设计采用PKPM结构设计软件进行计算,考虑人防荷载、水浮力的反向荷载并扣除底板自重的倒楼盖模型进行设计,反向荷载以恒载计算,底板自重为对结构有利恒载,取分项系数1.0,人防荷载为等效静荷载,分项系数为1.0。
2.3人防地下室顶板设计
(1)地下室顶板概况。顶板为绿化,覆土700mm厚,设计恒载为14 kNm2。小区内设有消防车道,消防车荷载按荷载规范取值,顶板人防等效静荷载标准值为70 KNm2。地下室车库柱跨为6×8米,经与设备专业配合后,地下室净高应不小于2.8米;(2)顶板截面设计。顶板设计采用PKPM结构设计软件进行计算,考虑人防荷载、覆土荷载,消防车荷载,活载等的单层楼盖模型进行设计。有限制的梁高,按通常的做法无法满足大跨度下的大荷载。采用降低底板标高以增加地下室层高为增大梁高拓展空间,这势必增加地下室的开挖深度,增加工程造价。加大梁宽可以解决配筋率过大的问题,但又造成梁截面过大,形成典型的肥梁胖柱型结构,这也是结构经济性要求所不容许的。最后经过研究采用框架梁端加掖的构造措施,这既解决了配筋率超限的问题,又满足地下室净高的要求,既节约了工程造价,又为各设备专业提供了足够的空间,实现了工程的可行性。(3)嵌固及后浇带设计。主楼部分地下室顶板作为上部结构的嵌固端,即要满足人防荷载,覆土荷载及本层活荷载的要求,又要满足本层结构的侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍的要求,且采用软件时程分析,进行补充计算,局部加强地下室及首层墙柱。在考虑有可能塔楼有对顶板构件水平力的传递,所以在地下室顶板主楼部分的设计中,按主楼整体计算的结果进行截面设计。本工程总长度达到136.8米,总宽度为70.4米,如何解决温度应力引起的收缩裂缝则是不容忽视的问题。传统的做法,地下室顶板底板以30~40米的间距设置800宽的非上下贯通后浇带,同时注意后浇带避开坡道及人防口部,后浇带在顶板覆土之前封闭,并加以养护。传统的做法也是最有效的做法,经验证明这种做法是防止超长结构温度应力导致裂缝的最经济的措施。(4)人防口部、人防隔墙及外墙的结构设计。地下室层高3.8米,口部大样均可套用国标07FG04图集,人防隔墙及外墙采用单向板模型计算,上部支座为简支端,下部支座为固定端,人防隔墙按弹塑性模型计算.外墙按弹性模型计算,控制裂缝宽度0.2mm。在外墙施工中施工方反映出一个问题,主楼外侧的柱与外墙整浇在一起,且主楼为小柱网,多为3米多的柱距,柱混凝土强度等级为C40,外墙混凝土强度等级为C30,施工中必然会造成外墙大部分都是C40的混凝土,大面积的高强度混凝土是必然造成大量的水化热,容易产生大量的收缩裂缝。后结合塔楼荷载及塔楼与地下室外墙结合截面,修正为整浇用C35混凝土,有效降低裂缝和水化热。
3.结语
人防地下室的结构设计既要考虑平时工况又要考虑战时工况,且目前电算软件功能都不是很完善,需要更深入地研究人防结构设计的技术问题,总结设计经验,提高设计水平。
中图分类号:TU318文献标识码: A
1. 预应力混凝土筒仓发展概况
筒仓结构作为贮存散料的构筑物,具有运行方式简单、保护环境、节约用地、损耗少等优点,因而它在煤炭、电力、港口、储运等行业中得到了广泛应用,随着工程中要求配置的筒仓容积也随之增大。当采用普通混凝土筒仓时,随着仓壁直径的增加,仓壁水平配筋量也越来越大,往往需要配置三排甚至四排钢筋才能满足设计要求,这大大增加了用钢量。采用预应力技术建造大型或特大型圆形筒仓,能解决普通混凝土结构钢筋用量较多的问题,而且较容易实现筒仓结构的承载力和抗裂要求,具有很好的经济效果。预应力技术运用在大直径圆形筒仓结构中,还可以减小贮料在仓壁内引起的拉应力,消除混凝土的开裂或者控制裂缝开展大小,避免因裂缝过大而引起钢筋锈蚀,降低筒仓结构的安全性及耐久性等缺陷。因此采用预应力混凝土筒仓必将是未来筒仓结构的发展趋势。
2. 预应力混凝土筒仓设计计算原则及步骤
2.1 主要采用的规范
《钢筋混凝土筒仓设计规范GB50077-2003》、《混凝土结构设计规范 GB 50010-2010》、《无粘结预应力混凝土结构技术规程 JGJ92-2004》及《火力发电厂土建结构设计技术规程 DL 5022-2012》。
2.2 设计步骤
1). 根据《钢筋混凝土筒仓设计规范 GB50077-2003》中3.3.2条估算混凝土筒仓的壁厚;
2). 根据《钢筋混凝土筒仓设计规范 GB50077-2003》中1.0.3条及4.2.3条条判断筒仓类型(深仓或浅仓);
3). 依据判别的筒仓类型及《钢筋混凝土筒仓设计规范 GB50077-2003》中4.2.2条~4.2.8条计算筒仓仓壁压力;
4). 根据《钢筋混凝土筒仓设计规范 GB50077-2003》、《混凝土结构设计规范 GB 50010-2010》、《无粘结预应力混凝土结构技术规程 JGJ92-2004》进行非预应力钢筋和预应力钢筋配筋计算(主要由仓壁的裂缝来控制预应力钢筋和非预应力钢筋的配筋量),并验算是否满足《钢筋混凝土筒仓设计规范 GB50077-2003》的构造要求。
3. 工程实例
3.1 工程概况
本工程某电厂两座直径为30m、单仓储量为20000t的大直径预应力筒仓,高为45.65m的钢筋混凝土筒仓,仓壁壁厚为0.50m、混凝土仓壁储料高度为30.650、漏斗中心锥高度7.00m,原煤质量密度为10.0kN/m3,内摩擦角取。仓壁厚度为500mm,采用C40混凝土。预应力筋采用1x7的钢绞线,钢绞线强度标准值fptk=1860N/mm2,钢绞线强度设计值fpy=1320N/mm2,其性能应符合行业标准《无粘结预应力钢绞线》(JG161-2004)的规定。锚具采用OVM15-n群锚体系对应的锚具,采用无粘结预应力技术。普通钢筋采用三级钢(HRB400)。据《钢筋混凝土筒仓设计规范 GB50077-2003》中3.3.2条对仓壁的壁厚进行初步估算值为:,本工程的筒仓仓壁厚度暂取为。
3.2 筒仓设计原则
在预应力混凝土筒仓结构中,仅对环向施加预应力,贮料产生的环向拉力由普通钢筋和预应力钢绞线共同承担。无粘结预应力混凝土筒仓按正常使用极限状态的验算。根据《钢筋混凝土筒仓设计规范GB50077-2003》5.1.5条第3款,本筒仓最大裂缝宽度的允许值为0.2mm。根据《火力发电厂土建结构设计技术规程DL5022-2012》条文7.4.12条第一款规定:仓壁可采用后张法无粘结预应力或有粘结预应力,预应力强度比宜取0.7,不宜超过0.75,且非预应力钢筋的配筋率不应小于全截面的0.4%。
3.3 筒仓内力计算
3.3.1 仓壁内力计算
由知该筒仓为浅仓。据据《钢筋混凝土筒仓设计规范 GB50077-2003》中4.2.6条知筒仓贮料顶面或者贮料重心以下距离处,作用于仓壁单位面积上的水平压力:
,其中、,故,则仓壁环向拉力。
考虑环境温度作用时,据据据《钢筋混凝土筒仓设计规范 GB50077-2003》中4.1.1条,直径30m的筒仓可按其最大环向拉力的6%计算。因此考虑温度应力时,取。
3.3.2 估算非预应力钢筋及预应力钢筋截面面积
取筒仓仓壁根部1m宽仓壁内力作为计算单元,进行无粘结预应力钢筋的截面面积估算,计算公式可以按下式:
根据算得的1m宽筒仓侧壁内预应力钢绞线的截面面积为1218.2mm2,筒仓侧壁底部取预应力钢绞线为1x7,预应力钢绞线截面面积为。据《后张法预应力混凝土设计手册》中3.6节,预应力总损失近似估算值,则。
根据《火力发电厂土建结构设计技术规程DL 5022-2012》条文7.4.12条第一款规定:仓壁可采用后张法无粘结预应力或有粘结预应力,预应力强度比宜取0.7,不宜超过0.75,且非预应力钢筋的配筋率不应小于全截面的0.4%。非预应力钢筋的截面面积最小值为,取非预应力钢筋配筋为22@150()。
3.3.3 预应力混凝土筒仓仓壁裂缝计算
根据《钢筋混凝土筒仓设计规范 GB50077-2003》、《混凝土结构设计规范 GB 50010-2010》、《无粘结预应力混凝土结构技术规程 JGJ92-2004》进行预应力混凝土筒仓仓壁裂缝计算。
预应力混凝土筒仓仓壁裂缝计算公式为: ,其中各参数取值如下:
;;
;,;
;
,取;
计算所得筒仓仓壁最大裂缝为0.022mm<,满足《钢筋混凝土筒仓设计规范 GB50077-2003》5.1.5条第3款要求。预应力钢绞线及非预应力钢筋余量很大,可以通过减小预应力钢绞线的截面面积及非预应力钢筋的截面面筋进行优化设计。
经优化后的预应力钢绞线及非预应力钢筋的截面面筋取值为: 预应力钢绞线为1x7@500,;非预应力钢筋为18@150,,计算所得筒仓仓壁最大裂缝为。
4. 结论
通过对圆形预应力混凝土筒仓结构设计思路及计算方法的论述及分析,并结合工程实例,简单的介绍了圆形预应力混凝土筒仓结构设计所需要遵循的设计规范,通过工程实例的优化分析,圆形预应力混凝土筒仓结构的预应力钢绞线及非预应力钢筋的配筋面积主要是有筒仓的裂缝控制等级来决定。而且通过在混凝土筒仓结构中采用无粘结预应力技术,可以减小贮料在仓壁内引起的拉应力,消除混凝土的开裂或者控制裂缝开展大小,避免因裂缝过大而引起钢筋锈蚀,降低筒仓结构的安全性及耐久性等缺陷。
参考文献:
[1]. GB50077-2003.钢筋混凝土筒仓设计规范[S].
[2]. GB50010-2010.混凝土结构设计规范[S].
1.地下工程超长无缝结构设计原理
地下工程超长无缝结构设计的思路是“抗放兼施,以抗为主”,利用膨胀加强带所建立的预压应力,与混凝土抵抗收缩变形所产生的拉应力达到补偿平衡,这是设计的关键。膨胀加强带的构造一般共设置二道(包括底板、墙板、顶板),宽度2m,在加强带的两侧架设密孔钢丝网,网孔5mm,以防止带外混凝土流入加强带,带内增加水平构造钢筋,加强带混凝土强度等级要求比两侧混凝土提高一级,施工中,先浇一侧带外混凝土,浇到加强带时,改用膨胀混凝土连续浇捣。膨胀混凝土用于超长结构无缝施工,其限制膨胀率设计和设定非常重要,膨胀率偏小,则补偿收缩能力不足,无缝施工难以实现,膨胀率过大,对混凝土强度有明显的影响。微膨混凝土的设计,主要是在混凝土的配比中掺入适量的外加剂、添加剂,使得混凝土在凝固过程中产生水化热和凝固后的干燥收缩,即热胀冷缩所产生的变形压缩到最低的一种构思。
2.某工程概况
该工程为一商业广场,地下工程为现浇钢筋混凝土框架结构,长约440m,宽约420m,地下一层,局部二层,总建筑面积42万平方米,地下室占地面积16万平方米,建筑面积19万平方米。基础为嵌入式整体肋梁筏板,底板厚400-700mm,地梁尺寸多为1000×1500mm,外剪力墙厚350-400mm,混凝土设计标号C30/S10。结构属于超长无缝混凝土结构。
3. 超长无缝结构设计技术
3.1超长无缝结构总体设计
对于超长结构工程的无缝设计问题,目前已形成了较系统的经验和理论。膨胀剂在常规掺量下,一般可60m不设缝,当超过60m时,可采用“加强带”解决,带宽2m,“加强带”内大掺量,带两侧普通掺量。带两侧设钢丝网,目的是防止两侧混凝土流入“加强带”内。施工时连续浇筑,浇到加强带时改换配合比。
结合超长结构无缝理论和膨胀剂抗裂技术要求,根据本建筑要求及地基情况,底板分为A-F六个区域,使用掺YQA膨胀补偿收缩混凝土。每个分区内大约每40m设一条膨胀加强带,带宽2m;加强带二侧设孔径小于5mm钢丝网,带中膨胀混凝土掺入12%YQA膨胀剂,混凝土标号较底板砼增加5MPa。每80m设一条后浇加强带,带宽800mm,带中掺入12%YQA膨胀剂的膨胀混凝土,混凝土标号较底板砼增加5MPa。
对于工程地下室超长、结构及工程地质条件复杂,施工技术要求较高情况,除必须满足强度、刚度、整体性和耐久性外,还存在裂缝控制及防水问题。所以如何控制混凝土硬化期间水泥水化过程释放的水化热所产生的温度变化和混凝土干缩的共同作用,产生的温度应力和收缩应力导致钢筋混凝土结构开裂,成为施工技术的关键。
3.2后浇加强带与膨胀加强带设计
后浇加强带是一种扩大伸缩缝间距和取消结构中永久伸缩缝的有效措施,它是施工期间保留的]临时收缩变形缝,保留一定时间后,再进行填充封闭,后浇成连续整体的无伸缩缝结构,这是一种“抗放兼施,以放为主”的设计原则。因为混凝土存在收缩开裂问题,后浇加强带的设置就是把大部分约束应力释放,然后以膨胀混凝土填充,以抗衡残余收缩应力。后浇加强带间歇施工,总长度控制在80m左右。
为确保地下工程混凝土底板和墙板在施工和使用阶段不出现有害裂缝,采用了YQA膨胀剂。A-F区域各个分区内大约每40m设一条膨胀加强带,带宽2m;带两侧设孔径小于5mm钢丝网,带中用12%YQA膨胀剂,混凝土标号增加5Mpa,带外用常规掺量膨胀剂混凝土。每80m设一条后浇加强带,带宽800mm,按常规方法施工,带中用12%YQA膨胀剂。即“后浇加强带-膨胀加强带-后浇加强带”的设计及施工技术(图1)。
钢丝网 膨胀应力曲线
YQA YQA
2m
加强带 收缩应力曲线
图1后浇加强带设计做法示意图
膨胀加强带分段设计,每条总长度控制在80m左右,连续施工,即在80m的中段设一条加强带。膨胀加强带与后浇加强带设计示意如图2。
图2膨胀加强带与后浇加强带设计示意图
3.3膨胀剂使用设计
掺膨胀剂的补偿收缩混凝土在限制条件下使用,构造(温度)钢筋的设计和特殊部位的附加筋符合《混凝土结构设计规范》(GB50010)规定。
在地下室底板、外墙后浇缝最大间距不超过80m情况下,后浇加强带回填时间应不早于45d。
4. 大体积混凝土配合比设计
本地下工程混凝土工程量为25万立方米,混凝土配合比规模较大,优化配合比设计主要从以下个方面控制。
4.1混凝土原材料要求
水泥选用符合国家标准的普通硅酸盐水泥(GB175-1999)。YQA膨胀剂符合混凝土膨胀剂(JC476-2001)技术标准。粗骨料粒径不大于4.0cm,且含泥量小于1%,泥块含量小于0.5%。细骨料细度模数2.5以上,含泥量小于3%,泥块含量小于1%的中粗砂。其它外加剂达到国家规定的品质指标,使用前作适应性试验。YQA型混凝土膨胀剂可以与减水剂、缓凝剂等复合使用,YQA混凝土中掺用的其他外加剂,符合《混凝土外加剂应用技术规范》(GBJ50119),满足施工条件要求。各种材料的运输与保管按有关标准执行。但是,对于膨胀剂作如下规定:在运输与保管过程中不得受潮和混入杂物,并应单独存放;膨胀剂有效期为一年。
4.2大体积混凝土配合比设计
根据设计要求及工程的不同部位、混凝土标号、膨胀率和收缩率、以及施工时所要求的混凝土塌落度指标进行YQA混凝土试配。
搅拌站选择泵送剂时,除对减水率进行要求外,必须考虑其缓凝时间,因为工程在秋冬季节施工,比较实验室凝结时间而言现场的混凝土凝结速度要快一些,因此必须根据气温变化调整缓凝剂的掺量,确保现场混凝土的初凝时间不得少于10小时。入模混凝土坍落度120-130mm,同时确保混凝土不得有泌水现象。
抗裂混凝土,其性能应满足下表的要求,限制膨胀率与干缩的检验按补偿收缩混凝土的膨胀率及干缩率的测定方法进行。
表1有关混凝土的抗裂技术性能
项目 限制膨胀率(×10-4) 限制干缩率(×10-4) 抗压强度(MPa)
龄期 水中14天 水中14天,空气中28天 28天
性能指标 ≥1.5 ≤-3.0 满足设计要求
表2填充用膨胀混凝土的技术性能
项目 限制膨胀率(×10-4) 限制干缩率(×10-4) 抗压强度(MPa)
龄期 水中14天 水中14天空气中28天 28天
性能指标 ≥2.5 ≤-3.0 满足设计要求
本工程C30/S10混凝土配合比设计如下:
表3混凝土配合比设计参数表
水泥 YQA 粉煤灰 砂子 石子 缓凝减水剂 水
280 22.4 43 789.6 1005 4.96L 190
混凝土7天膨胀值128×10-6,抗压强度36.9Mpa,满足设计要求。
参考文献:
[1]龚晓南.复合地基理论及工程应用[M].杭州:浙江大学出版社,2002.
[2]郑喜若.地下室工程结构设计探讨与研究[J].黑龙江科技信息,2011(4):267.
[3]地下工程防水技术规范[S].GB50105-2001.
中图分类号:TU318文献标识码: A 文章编号:
1. 前言
随着科学技术的迅速发展以及时代的不断进步,广大人民群众的生活质量和生活水平得以逐步提高,并且也对建筑物的结构设计提出了更高的要求。为了与人们不断增长的物质文化需求相满足,为了与广大消费者的迫切需求相满足,在建筑结构方面,我国的建筑行业的设计也得以发展与改革。现阶段,国外先进设计理念对我国的建筑行业产生了较大的影响,我国的建筑结构设计人员以此为基础且结合设计经验,借助于概念设计的理念来设计建筑结构。所谓概念设计具体指的是在未经过任何计算的基础上,尤其是在没有条件将精确的力学分析加以展开的前提下,或者是在没有明确定义设计规范的情况下,立足于建筑结构设计的整体,从而将设计工作展开。概念设计给建筑行业注入了新鲜的活力,需要设计人员提起高度的重视。
2. 建筑结构设计中应用概念设计的重要性
在以往传统的建筑结构设计工作当中,往往结构工程设计人员按照以往的设计经验,并经过不断的追求完善及归纳总结,从而在实际工作中实现设计理念及设计经验的创新和进步。随着经验的不断丰富、时间的不断推移以及设计理念的逐步完善,所设计出的产品变得越来越成熟。然而,因而诸多工程普遍的缺乏创新性,习惯于按照传统的设计手册及设计规范,并且借鉴以往的设计手法和设计风格,来将建筑结构设计工作展开,不仅缺乏对国内外先进设计理念和设计技术的高度重视,而且在设计中进行运用及改进,也常常只是忠于传统设计,对设计程序有着较强的依赖性,担心手工设计和创新会背离设计要求。另外,有些设计人员对设计程序的运用依赖性过强,过分大胆的使用程序给出的运算数据,没有以质疑的精神以及认真的态度对待设计工作,进而导致建筑结构设计中一系列错误问题的出现。与此同时,结构设计往往会涉及到许多方面的建筑学知识,有些知识是在实践工作中总结出来的,有些知识则是自己的领悟及想法,而并非仅仅包括学校所学到的理论性、系统性知识,因而不容易记忆且较为分散,所以,在设计工作中很难综合的加以运用。
概念设计的必要性及重要性就在于不但能够结合传统设计理念的优势,而且能够改进传统设计中的缺陷,从而在整体的角度将计算理论中所存在的漏洞加以避免。比如,在混凝土的结构设计工作中,内力设计的理论支持虽然是弹性理论,然而界面设计的计算支持实际上则是塑性理论,该不同便会导致实际情况与计算所得结论的偏差。为了对这样的情况加以有效的防范,那么就需要熟练的把握良好的概念设计。所以,建筑结构设计人员必须切实的具备先进的概念设计理念及技能,以便于对结构的工作性能更好的加以理解。
3. 概念设计在建筑结构设计中的应用
3.1建筑工程概况
该建筑工程地处市区,地下一层,地上十二层,其中设计顶上最上面的两层为坡屋顶和复式屋顶,总体建筑面积超过九千平方米。采取带短支墙与异形柱的剪力墙—框架结构,二类场地土,七度的场区抗震设防烈度,0.10克的基本地震加速度。
3.2基础选型及场地条件
应当尽可能选择有助于抗震的场地,防止在对抗震危险不利的地段对甲——丙类建筑进行建造,如果确实无法加以避开,则需要采用有效的措施将其不利影响消除或者减少,通常在初步设计之前将选址工作和勘探工作完成。本工程场地有着相对较好的条件,将一层设计成地下室,有利于结构整体的抗震性,所以通过与地址条件相结合,选用质量经济可靠、施工速度快及稳定性好的混凝土预应力管桩。
3.3结构体系的选择
剪力墙—框架结构、剪力墙结构、框架结构以及筒体结构是高层混凝土结构经常采用的结构体系,设计规范中详细的规定了它们各自的适用高宽比及宽度。设计人员应当对其优缺点与设计范围进行充分的了解,同时与建筑的功能相结合,从而选择出最佳的结构体系。本工程综合考虑了抗侧力性能与平面灵活布置,选取剪力墙—框架且带异型柱的结构。
3.4结构分析程序及结构计算分析原则的选用
在计算结构位移以及分析结构内力时,在简化处理、计算假定和分析模型等方面,应当与结构的实况尽可能的接近。按照弹性方法计算位移和内力,采用塑性理论设计截面。如果平面楼板有着无穷大的刚度,则不需要对平面外刚度作过多考虑。如果楼板有着较大开洞的设计,则需要对楼板的弹性变形进行充分考虑,在结构分析程序的选用上提起高度重视,避免计算结果出现误差。本工程的计算分析采取的是广厦CAD的SSW程序(本工程的计算分析采取的是中国建筑科学研究院PKPMCAD系列软件结构软件,结构计算采用SATWE结果)。
3.5结构立面、平面及外形尺寸
在建筑结构平面的布置上,应当尽可能确保对称、规则和简单,使结构的质量中心与刚度中心重合,以便于将扭转减小,结构的竖向布置必须切实做到刚度连续及均匀,防止出现薄弱层及刚度突变。如果有着抗震设计方面的要求,则应当自上而下的减小结构的刚度及承载力,当布置上下层结构出现变化时,应当对结构转换层加以设置。对于设计规范明确规定出的规则结构,需要对抗震进行进一步验算,同时实施有效的加强措施于抗震薄弱部位,避免采用不规则的设计方案。本工程的平面呈现单轴对称,但是缺乏规则性,为了防止采取严重不规则的结构设计方案,加设一道拉梁于两栋突出的角柱,从而更好的切合规则性要求,避免了立面刚度的突变。
4. 结束语
综上所述,以往传统的建筑结构设计存在着较大的缺陷,对建筑物的整体性能有着不利的影响,所以,设计人员应当高度重视概念设计,并且将其切实的应用到建筑结构设计中,从而促进建筑物结构性能、安全性能以及使用性能的提高。
【参考文献】
[1]刘建立 王礼辉 郭松立.概念设计在建筑结构设计中的应用探究[J].建材与装饰,2012,3(23):156-158.
2房屋建筑结构优化技术应用中需要注意的问题
2.1前期的参与
对于建筑施工项目而言,其前期的设计方案很大程度上直接决定了建筑施工质量和施工成本,但是不少建筑项目的前期方案确定时,并未进行结构设计的优化,忽略了建筑结构的合理性以及经济性,从而使得结构设计难度及成本在一定程度上被提高了。因此,对于设计人员而言,在建筑的前期设计中一定要重视优化设计方案的融入,从而达到节约成本、提高质量的目的。
2.2细部优化
当设计人员对建筑的结构进行优化设计时,其不仅要关注整体设计,更要关注到基本构件的精细设计。例如:在对现浇板进行设计时,应重视其受力程度,避免产生拐角裂缝。当前,随着科学技术的不断发展,优化设计的理论同计算机技术相结合,优化设计也从工程实践向着数学问题发展。因此,对于工程设计人员而言,其应全面掌握计算机技术的优化设计,提高建筑设计的合理性和准确性。
3工程实例
3.1工程概况
下文主要分析了某住宅建筑的结构优化设计,该住宅建筑地上32层,地下1层,结构形式为钢结构框架剪力墙。根据该建筑项目的实际需求以及现场情况综合分析之后,决定应用结构优化设计,实现对传统的结构设计模式的改进与创新。在优化设计中,以计算机为辅助,实现了对整个工程的全局优化。
3.2优化设计规范
在对该建筑工程项目进行结构优化设计时,设计人员严格地遵循有关结构设计的规范,针对结构设计中所存在的不足,如:安全性较差、要求过宽等,结合实际施工条件对其进行了优化处理。
3.3前期参与
在本工程中,设计人员在工程的前期规划中即结合了结构优化设计,根据工程项目的实际需求与施工条件,对建筑结构形式进行了科学取舍,保证其施工可行性与经济性。值得注意的是,在建筑前期规划中,设计人员不应仅凭自身的经验进行结构的优化设计,否则容易出现对建筑结构体系受力情况把握不当的现象,直接导致建筑质量不过关,不利于后期的施工,容易造成建筑建设成本的大幅度增加。
3.4概念设计
在建筑项目的建设过程中,若是其结构布局方式不同,设计效果也大不相同。因此,在对房屋结构进行优化设计时,应实现细部结构优化和概念设计的有机结合,从而切实有效提高结构优化设计效果。在本工程中,将建筑的概念设计作为了设计工作中的一大重点,贯穿于整个的设计过程之中。概念设计主要是对缺乏相应数值的细节进行处理,例如:地震设防烈度量化等情况,若是仅仅依靠相应的公式进行设计计算,得出的结果必然会和实际情况存在较大差异,而使用概念设计,则可将数值当作一种参考依据,实现对结构设计中细节的合理把握,提高结构优化设计的质量。
3.5结构优化设计的效益分析
在本工程中,优化后方案同优化前方案相比,更加科学合理;同时,其有效降低了施工成本,工程结束后,对整个工程造价进行计算,发现工程造价降低了26%。
中图分类号:TU97 文献标识码:A
在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。
一、复杂高层和超高层建筑结构设计
某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。
复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。
二、复杂高层和超高层建筑概念设计
(一)提升对概念设计的重视程度
近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。
(二)选择合理的结构抗侧力体系
在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。
(三)提高建筑抗震设计重视程度
提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。
(四)复杂高层和超高层建筑结构设计融合经济理念
在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。
三、复杂高层和超高层建筑结构设计精准性
(一)选择合理的结构设计软件,提升设计结果精准性
在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。
(二)加强荷载和作用力的考量
在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。
建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。
(三)科学计算自振周期
复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。
(四)建筑的垂直交通设计
复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。
结论
大型地下车库顶板结构设计方案无统一技术措施,往往随人而定。然而从笔者十多年实际工程实践中,发现车库顶板结构设计方案的选取对建造大型车库资金投入影响很大,除去施工组织设计、消耗施工费用外,更对大型车库设计的工程资源消耗关系很大,直接影响建筑成本和环保要求,笔者现以咸阳新煜置业有限公司中华世纪城北区3#车库为例,按不同结构方案进行设计计算比较。整理成文,发表于贵刊,供同行们斧正、交流。
1. 不考虑消防车荷载
1.1 工程概况:纯地下车库面积630平方米,X向长32.4米,跨度8.1米;Y向长19.4米。跨度6.1、7.2、6.1米。顶板覆土厚1.5米,顶板活荷载按10KN/m2,抗震等级三级。
(1)顶板次梁按双向布置,主梁X向400X800,Y向400X800,次梁300X700,最大配筋率控制在2.2左右。板厚180mm。见图1。
(2)顶板次梁按单向布置,主梁X向400X800,Y向400X1100,次梁400X800,最大配筋率控制在2.1左右。板厚180mm。见图2。
(3)大板模型,即顶板不布置次梁,主梁X向400X800,Y向400X750,,最大配筋率控制在2.1左右。板厚280mm、270mm。见图3。
1.2 在不考虑消防车荷载时,以上三种方案钢筋及混凝土用量对比如表1。
2. 考虑消防车荷载
2.1 工程概况同上,顶板考虑消防车荷载,因消防车荷载取值与板跨度有关,顶板次梁按双向布置时消防车荷载取30KN/m2;顶板次梁按单项布置时消防车荷载取35KN/m2;顶板不布置次梁时消防车荷载取20KN/m2,将上诉三种方案,进行计算调整,结果如下:
(1)消防车荷载取30KN/m2,顶板次梁按双向布置,主梁X向500X1000,Y向500X1000,次梁500X800、300X700,最大配筋率控制在2.3左右。板厚180mm。见图4。
(2)消防车荷载取35KN/m2,顶板次梁按单向布置,主梁X向400X800,Y向500X1150,次梁500X800,最大配筋率控制在2.4左右。板厚180mm。见图5。
(3)消防车荷载取20KN/m2,大板模型,即顶板不布置次梁,主梁X向450X900,Y向400X750,最大配筋率控制在2.4左右。板厚280、270mm。见图6。
2.2 在考虑消防车荷载时,以上三种方案钢筋及混凝土用量对比如表2。. 结论
从上面二类六方案验算结果可以看出,在不考虑其它因素影响,当无消防车荷载时,单向加梁模型最经济,当有消防车荷载时,双向加梁模型最经济,因此,我们建议:
(1)当消防车荷载范围相对整个地下车库比例较小时,亦可考虑单向加梁模型。高低比钢材:47590Kg-37089 Kg=10501 Kg,相差约10吨钢材,单位面积节省钢材约17Kg。砼;220-198=12( t),单位面积节省砼约19Kg。
(2)当地下车库面积较小,此时大面积均有30 KN/m2消防车荷载,可考虑双向加梁模型。高低比钢材;68196Kg-55691 Kg=12505 Kg,相差约12吨钢材,单位面积节省钢材约20Kg。砼;221-242=-21(t),单位面积负值约35Kg。
近年来,随着我国人民的经济水平不断提升,人们对生活质量和居住环境的要去越来越高。开发商若要迎合人们对房屋的要求,通过加大房屋建筑设计及建设资金的投入是最直接的方法,然而这样会导致建筑商无法获取较高的经济效益,因此选择通过优化技术来降低建筑建构设计的成本,达到提高经济效益的目的。
1结构设计优化
1.1结构设计优化的概况
结构设计优化,就是通过充分发挥房屋建筑材料本身的性能,以实现各个构件以及各个环节设计的相互配合,优化结构设计,达到房屋建筑结构的优化。结构设计优化较之于传统的结果设计,不仅具备传统结构设计的安全性,而且将社会中所具有的价值学以及审美学完美的结合其中,不断提高结构设计水平,促使房屋建筑的整体性协调发展。
1.2结构设计优化的意义
结构设计优化不仅仍具有传统结构设计的安全性能,而且还具有审美实用的特点,降低了房屋建筑的建筑成本,协调房屋的整体性,并使其具有较高的经济效益。结构设计优化使得房屋建筑的设计方案、设计决策更为科学化,提高对于房屋价格的安全性能和抗震性能的要求,有效地使房屋建筑的安全实用、经济美观,提高房屋建筑结构的设计水平。
1.3结构设计优化的实践价值
降低房屋建筑工程成本,增强房屋建筑结构经济性。房屋建筑的楼层的逐渐增高,其建筑墙体面积和柱体积也会随之增加,同时也会增加各个建筑材料的使用,增加建筑成本。如若优化房屋建筑结构设计,减少建筑材料的使用,节省建筑成本,节约用地,还能确保房屋建筑的安全性能以及抗震性能,提高房屋墙体的受力性能,增强房屋建筑结构的经济性,满足市场可持续发展的需求。
1.4结构设计优化的要点
(1)协调房屋建筑结构设计。结构设计优化需要建筑工程各个环节的相互协作,是一项较为复杂的工作。针对于房屋建筑结构设计,提高房屋的外观,而结构设计是针对房屋建筑内在结构进行优化合理的设计,二者相互结合,互相协作,以降低建筑造价,提高房屋的实用性和经济效益,实现结构设计的合理化。
(2)遵循结构设计规范。结构设计优化需要专业且经验丰富的技术设计人员,在结构设计过程中遵循结构设计规范。然而,结构设计规范是面向所有的建筑工程,有些规范并不适用,也不具备较高的安全性。因此,在对房屋建筑结构进行结构设计时,在遵循结构设计规范的前提下,结合房屋建筑工程的实际情况,具体问题具体分析,做出正确的判断,优化房屋结构设计,提高结构设计质量以及经济效益。
2结构设计优化在房屋建筑结构设计中的应用
2.1结构设计优化的前期准备
(1)建立房屋建筑安全监管体系。现如今,建筑项目监管虽有些改善,对建筑项目监管力度不够,容易引发质量安全事故。房屋建筑结构设计在进行方案施工时,应加强对于房屋建筑工程的监管,确保施工的安全以及建筑质量,防止重大事故的发生。因此,加强房屋建筑工程的质量安全监管,加大监管力度,做到灵活运用,重点勘察,建立起监管范围广、高水平的质量安全监管,为结构设计优化在房屋建筑结构设计中的应用做好前期准备,确保结构设计的安全进行。
(2)加强监管工作。专业水平的提高、专业化的加强,使得质量安全监管既注重房屋建筑施工现场,又注重房屋建筑工程的整体,监管的程序严谨,对每个阶段进行质量安全监管,使质量安全事故的发生率减小。加强对房屋建筑结构设计工程的质量安全监管,规范建筑工程各单位的行为,对建筑工程的每一个环节都进行质量安全监管,依照正规合理的程序进行建设,一切以“法”为准,使建筑工程各个单位拥有质量安全意识,担起质量安全责任,严谨行事,严格遵守法律法规,保障建筑工程的安全稳定,为结构优化设计的实施打下良好的基础。
(3)合理制定结构设计方案。一个结构设计方案的选择,直接影响着房屋建筑的工程进行。设计人员在对房屋建筑进行结构设计时,应充分考虑结构的合理性和可行性,对房屋建筑进行实体调查检测,依据建筑物的结果特点设计合理的结构形式,使其结构设计优化达到最佳效果,最终使房屋施工达到安全且合理的效果。
2.2结构设计优化的应用
(1)与土地用地的联系。建筑工程的实施,少不了占用的土地面积,总建筑面积就是各层建筑面积的总和,而房屋楼层层数的增加,就会相对减少房屋的占地面积,增加房屋建筑的高度以及房屋之间的间距,因此,土地用地并不随着房屋建筑的高度增加而减少,构不成反比关系。结构设计优化可以在房屋的实际情况上,优化结构设计,最大限度的扩宽房屋空间,提高房屋的实用性和整体协调,满足人民对于房屋结构的需求。
(2)与工程成本的联系。结构设计优化的实施,有效地降低房屋建筑的过程成本。因房屋建筑的总建筑面积的扩大,建筑高度的增加,土地占用面积相对较小。结构设计优化技术充分利用施工材料的性能,合理协调房屋建筑内部结构的各个单元间,不仅确保了房屋建筑的适用性和美观度,而且节省了施工成本,提升了建筑结构的经济性能。
(3)概念设计结合细部结构设计优化。将概念设计应用于没有确切数据的结构设计中,将数值作为辅助和参考,并在设计工程中灵活运用结构设计优化技术,注重细部的结构设计优化,以及房屋建筑地基的设计,优化房屋建筑结构。将概念设计与细部结构设计优化相结合,确保房屋建筑结构设计的安全适用,从而取得最大的经济效益。
(4)计算机技术的应用。随着科学技术的发展,计算机技术在人们的生活和工作中得到普遍运用,计算机能够解决很多人力难以计算和解决的问题,目前几乎各行各业都离不开计算机技术的应用。由于计算机技术的高效性和准确性,在房屋建筑结构设计中运用计算机技术能够有效实现优化作用。人力难以计算和统计的数据,计算机可以利用相应的软件和应用进行分析,并快速给出优化结果。同时计算机还可以起到模拟作用,让设计人员及造价人员能够更直观的了解到技术优化的作用。
3结束语
综上所述,随着人们经济水平的提升,人们对房子的要求不仅体现在质量上,其还注重房子的美观。建筑商为了能够在不影响经济效益的前提下,打造出符合人们需求的建筑工程,需要注重建筑结构设计的技术优化。通过上述分析可知,建筑商级设计人员首先要明确技术优化的作用及理念,通过前期设计优化、计算机应用、结构细部优化等方式,实现建筑造价的降低。
作者:胡雪莲 单位:重庆市市政设计研究院
参考文献: