欧姆定律的实质模板(10篇)

时间:2023-08-07 17:05:50

导言:作为写作爱好者,不可错过为您精心挑选的10篇欧姆定律的实质,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

篇1

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

篇2

【摘 要】随着高中新课程改革的深入发展,教育教学大环境也随之悄然发生着。人们的教育理念发生了很大的变化,不仅改变了“老师教学生学,教师为主导”的片面教学观,还开始注重应用更好的引导方式来引导学生,倡导学习方式的多元化。哲学家狄德罗说过:“有了真正的方法,还是不够的;还要懂得运用它。至于如何去运用,这要我们不断从学习和反思中获取方法,做高效型教师,打造高效课堂。为此,根据我校实施“271”课程改革的大环境结合自己的教学实践和经验,推出了这种高中物理“合作讨论探究式小组学习法”,旨在转变教学过程中教师的教学行为和学生的学习方式。

关键词 高效课堂;高中物理的“有效教学”;物理教学;小组合作讨论探究式学习

在高中物理教学的课堂上,教师教得辛苦,学生学得痛苦。高耗低效,缺乏策略,成为教与学的阻碍。因此,教师应当充分利用好每一堂,特别是在新授内容的公式和规律的推导,教师要不断的有层次的向学生提出引导问题,有目的的引导学生去一层一层破解物理实质,让学生通过与小组成员合作讨论对新授进行的发散探究,学生因为自己积极参与了问题讨论,对问题的认识自然也就更深一个层次了这也就达到了深化知识目标目的。一堂好的物理课必然是一堂高效率的课堂教学,如何抓住课堂,开展高中物理的“有效教学”探索实践活动,这正是本文所要研究的内容。下面我们就于《闭合电路的欧姆定律》课题为例题探讨“271”讨论探究式学习高中物理的主要过程。

第一,教师课前要向学生详细解读教学目标:教学目标要明了,目标性强,教学前一定要让学生明确知道我们这节课的目标,学习起来才不会盲目,不会被动,也便于学生对学习的自我评价。

《闭合电路的欧姆定律》教学目标(部分展示):(1)经历闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,从而理解电源的电动势等于内、外电路上电势降落之和。(2)熟练掌握闭合电路欧姆定律的两种表达式及其适用条件。

第二,预习自学、自主探究:这个环节最具挑战性的,必须保证学生有足够的兴趣,全身心地投入进去,所以预习案和探究案要精心设计,按照学生学习的最初状态,让兴趣和创造的欲望引领学生自主学习。学生以预习案和探究案为学习“路线图”,预习自学,解决了传统课堂学生被动学习、盲目学习的问题。

《闭合电路欧姆定律》预习案(部分展示):分为①知识点预习②知识点应用预练

①知识点预习(部分展示):

闭合电路是由哪几部分组成的_______,电动势E、外电压U外与内电压U内三者之间的关系________。电动势等于电源_______时两极间的电压。用电压表接在电源两极间测得的电压U外_______E。

第三,提出质疑,探究案二次探究:在自主学习的基础之上,学生通过完成探究案上的训练题目,检验自学效果,提出质疑。质疑的过程,实际上是一个积极思维的过程,是发现问题,提出问题的过程,质疑是创新的开始,也是创新的动力,创新来自质疑。该过程教师当适时的发挥引导作用,引领学生朝着目标研究、比较、创新。学生在探究案的引领下进行二次探究,对教材和知识的把握也提升到一个新的层次,很好地解决了传统课堂学生缺乏独立思考、深入探究的问题。

通过你的自主学习,你还有哪些疑惑?①疑惑点:________ ②疑惑内容:________

《闭合电路欧姆定律》探究案(部分展示):

探究:闭合电路的能量转化

某闭合电路,外电路有一电阻R,电源是一节电池,电动势为E,内电阻r,当电键闭合后,电路电流为I。①整个电路中在t时间内电能转化为什么能?各是多少?

(外电路中电流做功产生的热为:E外=I2Rt;内电路中电流做功产生的热为:E内=I2rt)

②电路中电能是什么能转化来的?在电源内部是如何实现的?(是有化学能转化而来的,依靠非静电力做功实现的。电池化学反应层非静电力做的功:W=Eq=EIt)

根据能量守恒定律可以得到怎样的一个等式:

(1)W=E外+E内(2)EIt=I2Rt+I2rt

(3)E=IR+Ir=U内+U外 或者(4)I=E/(R+r)

第四,①分组合作,讨论解疑:这个环节是高效课堂的重要组成部分,是课堂走向自主的基础。运用分组合作学习,在小组中学生能主动操作、观察、思考、讨论,学生参与教学活动的机会增多;分组合作学习有助于学生提高口头表达能力。在学习小组中学生相互启发、相互帮助、共同解决问题。这样更能能培养学生之间团结、协调的合作意识,提高学生的人际交往能力。②展示点评、拓展提升:这个过程可以让学生充分发挥初生牛犊不怕虎的精神,在黑板上展示疑难,展示困惑,展示方法,提高学生的思维水平和表达能力。

分小组讨论,展示点评:

(1)(2)两式反映了闭合电路中的什么规律?(能量守恒)

(3)式反映了闭合电路中的什么规律?(因消耗其他形式的能量而产生的电势升高E,通过外电路R和内电路r而降落。外电路电势降低,内电路电势升中有降)

(4)式反应了闭合电路中的什么规律?(电流与那些因素有关,这就是闭合电路的欧姆定律)

①内容:闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比,这个结论叫做闭合电路的欧姆定律。②公式:I=E/(R+r)③适用条件:外电路是纯电阻的电路。④根据欧姆定律,外电路两端的电势降落为U外=IR,习惯上成为路端电压,内电路的电势降落为U内=Ir,代入E=IR+Ir得E=U内+U外该式表明,电动势等于内外电路电势降落之和。

通过这样一次自主探究一次小组合作探究过程,学生通过功能关系的分析建立闭合电路欧姆定律学生应该感到熟悉并且容易理解,已经可能够娴熟地从做功的角度认识并理解电动势的概念了。

篇3

新课程下的中考的另一个特点,就是重视对实验探究能力的考查,促使同学们用新视角重新思考实验的过程,得到新的发现或收获,设计有关“过程与方法”的试题,考查同学们提出问题、做出猜想和假设、设计研究计划、分析处理数据、得出结论、学会评价的能力。

二、试题讲析

例1 如图l所示,电阻R1为12Ω,将它与R2串联后接到8V的电源上,已知R2两端的电压是2V,请求出电路的总电阻。

讲析 这是一道应用欧姆定律的基础题,解题的方法有两种:一种是从欧姆定律出发的分析法;一种是从电路的基本性质出发的综合法。即:求总电阻可以将R2的值求出来再求R1和R2的和;也可以用总电压除以总电流得总电阻;或根据电路的性质建立相应的关系式求解。

解法一:因为R1、R2串联,U1=U-U2=8V-2V=6V,I1=U1/R1=6V/12Ω=0.5A,I2=I1=0.5A,R2=U2/I2=2V/0.5A=4Ω,R总=R1+R2=12Ω+4Ω=16Ω.

解法二:因为R1、R2串联,I=I1=I2,则U/R1+R2=U-U2/R1,8V/R=8V-2V/12Ω,R总=16Ω.

解法三:因为R1、R2串联I1=I2,则U1/R1=U2/R2变形得R1/R2=U1/U2,R/R1+R2=U-U2/U1+U2,U/R1+R2=U-U2/R1,R总=16Ω.

例2 如图2所示,电源电压不变,当开关S闭合时,电表示数的变化情况是( ).

A.电流表、电压表示数均变大

B.电流表、电压表示数均变小

C.电压表示数变大,电流表示数变小

D.电压表示数变小,电流表示数变大

讲析 这是一道欧姆定律应用题,要判断电表的示数如何变化,关键是要知道电路中的电表示数变化的实质,当开关s闭合后,电路的状态由两个电阻的串联变为只有一个电阻R2的电路;原来电流表测的是R1和R2串联时的电流,现在R1和电流表被短路,电流表的示数为0,示数变小;电压表原来测的是R2上的电压,它是电源的一部分电压,而现在的电路中只有R2,则U2=U源,示数变大,本题选C.

本题的问题是有些同学看不懂电路状态变化的实质,死抠欧姆定律,电流或电压的变化是与电路的变化有关,但知道了现在的电路的变化特征就简单多了,识别电路是我们解电学题的前提,如果电路的状态不清,则应用的电路性质也就会出错,这种能力要加强。

例3 在如图3所示的电路中,电源电压U=4.5V,且保持不变,电阻R1=4Ω,变阻器R2的最大阻值为15Ω,电流袁的量程为0~0.6A,电压表的量程为0~3V,为了保护电表,变阻器接入电路的阻值范围不能超出( ).

A.3.5Ω~8Ω

B.2Ω~3.5Ω

C.0~8Ω D.0~3.5Ω

讲析 本题是欧姆定律的又一种应用形式,是状态电路中的变阻器的取值范围问题,解这类题目的关键是从电路的状态出发,找出符合电路要求的电学关系式,题目中的两个电表同时要满足不超过量程的要求,即:串联电路中的电流不大于0.6A,电阻R2两端的电压不少于3V,所以我们可以用欧姆定律,写出符合电路要求的数学不等式组然后求解。

依题意,由欧姆定律可得

由①②两式解得3.5Ω≤R2≤8Ω,所以应选A.

本题与物理上其他题目一样,关键是理清电路的特征,能写出符合电路特点和要求的数学关系式,然后通过数学的手段解出结果,所以仅有基本知识是不够的,更要练就解相关问题的技能。

例4 小明利用如图4所示的装置探究电流产生的热量与哪些因素有关?在两个相同的烧瓶中装满煤油,瓶中各放置一根电阻丝,且R甲大于R乙,通电一段时间后,甲瓶玻璃管中的煤油上升得比乙高,该现象能够说明电流产生的热量与下列哪个因素有关( )。

A.电荷量 B.电流 C.电阻 D.通电时间

讲析 题目的表象是:甲瓶玻璃管中的煤油上升得比乙高,这与哪些因素有关?煤油是因为受热膨胀,液面上升的;相同条件下,甲中的液面升得高,说明甲瓶中的电阻产生的热量多R甲和R乙是串联在电路中的,则电流、通电时间以及电荷量(电流和通电时间的乘积)相等,A、B、D选项都不是影响因素;根据焦耳定律甲的电阻大,甲放出的热量多,则电流产生的热量与电阻的大小有关,应选C.

本题实际上探究的是焦耳定律的影响因素,使同学们能进一步了解其内容、理解它的应用同时本题中也渗透了“控制变量法”的探究思想。

例5 一个电热水壶,铭牌部分参数如下:额定电压220V,额定功率模糊不清,热效率为90%,正常工作情况下烧开满壶水需要5min,水吸收的热量为118800J,此时热水壶消耗的电能为_______J,其额定功率为_______W,电阻是_________Ω.若实际电压为198V,通过电热水壶的电流是_________A,1min内

电热水壶产生的热量是________J.(假设电阻不随温度改变)

讲析水所吸收的热量已知,电热的利用率知道,则消耗电能可以由热量的利用率求出;用电时间已知,消耗的电能已求,则由电功率的定义求电功率,电水壶的电阻由R2=U2额/P额求出,在实际电压下的电流I=U/R,实际电压下的电热水壶所产生的热量Q=IRt.

答案:132000 440 110 1.8 21384

本题是欧姆定律和焦耳定律应用的基础题,也是通过练习使同学们掌握基本知识的重要途径,简单的是这样的填空题,复杂的可以演变成综合应用题;这些题目也是中考中同学们易失分的地方。

例6 CFXB型“220V 1100W”电饭煲的原理图如图5所示,它有高温烧煮和焖饭、保温两挡,通过单刀双掷开关S进行调节,R0为电热丝,当开关S接高温烧煮挡时,电路的功率为1100W,当开关S接焖饭、保温挡时,电路的总功率为22W。

(1)电饭煲在高温烧煮档时,开关S应与哪个触点连接?

(2)电热丝R0的阻值多大?

(3)当电饭煲在正常焖饭、保温时电路中的电流多大?焖饭、保温10rain,电热丝R0产生的热量为多少?

讲析 电饭煲在高温烧煮挡时,电路中的功率是最大,在电压一定时,要得到最大功率电路中的电阻应最小,由图5可知,当R被短路时,电路中的电阻最小,电路中只有R0工作,则S应合到2位置,高温挡时的功率已知,电压为额定电压,R0由R=U2/P等求得,当电饭煲在正常焖饭、保温时,电饭煲的热功率最小,电路中的电阻最大,则R0和R串联,可求出此时的电流,再由Q=I2Rt求出R0产生的热量,

答:(1)与触点2连接。

(2)P=U2/R0,R0=U2/P=(220V)2/1100W=44Ω.

(3)P=IU,I=P/U=22W/22V=O.1A,Q0=I2R0t=(0.1A)2×44Ω×600s=264J.

本题是欧姆定律和焦耳定律应用的综合题,同学们要能综合考虑影响电路发热的因素,也就是理解焦耳定律定义公式(Q=I2Rt)和各种变形公式(Q=U2/R(t)、Q=UIt)的应用,其中也涉及到欧姆定律的灵活应用。

三、巩固练习

1.如图6所示电路中,R1=10Ω.当开关S闭合时,电流表示数为0.2A,电压表示数为4V.求:(1)电源电压;(2)R2的阻值。

2.如图7所示电路中,电源电压恒定,R1为定值电阻,R2为滑动变阻器,闭合开关S后,滑动变阻器滑片P自b向a移动的过程中(

)。

A.电流表A的示数变大,电压表V2的示数与电流表A的示数之比变小

B.电流表A的示数变大,电压表V2的示数与电流表A的示数之比变大

c.电压表V1的示数不变,电路消耗的总功率变大

D.电压表V2的示数变小,电路消耗的总功率变小

3.一只电炉的电阻为48.4Ω,接在电压为220V的电路中工作,它的功率是w,电炉丝工作时热得发红,而连接电炉丝的导线却不怎么发热,其原因是

4.在一次科技小组的活动中,同学们按照如图8所示的电路在AB之间接入一根细铜丝,闭合开关S后,调节滑动变阻器,使电流表的读数保持3A不变,过了一会儿,细铜丝熔断,在AB之间换接一根同长度的较粗的铜丝,再调节滑动变阻器到某一固定值,经较长时间粗铜丝没有熔断,在此过程中,电流表的读数保持3A不变小明同学针对所观察到的现象提出了一个问题:造成细铜丝熔断而粗铜丝没有熔断的原因是什么?(设电源电压保持不变)

(1)你认为造成细铜丝熔断而粗铜丝没有熔断的原因是什么?(请简述理由)

(2)若粗铜丝电阻为0.01Ω,求:在5s内粗铜丝共产生的热量。

(3)如果你家准备安装一台“220V 1500W”的电热水器,你应用选用(较粗/较细)的铜导线用作连接线比较安全。

5.如图9所示电路,电源两端电压保持不变,当开关S1闭合、S2断开,滑动变阻器的滑片P移到B端时,灯L的电功率为PL,电流表的示数为I1;当开关S1断开、S2闭合时,灯L的电功率为R1',电流表的示数为,I2,已知PL:P'L=9:25.

(1)求电流表的示数I1与I2的比值;

(2)当开关S1、S2又都断开,滑动变阻器的滑片P在c点时,变阻器接入电路的电阻为Rc电压表V1的示数为u1,电压表V2的示数为U2,已知U1:U2=3:2,Rc的电功率为10W,这时灯L正常发光,通过闭合或断开开关及移动滑动变阻器的滑片P,会形成不同的电路,在这些不同的电路中,电路消耗的最大功率与电路消耗的最小功率之比为3:1.求灯L的额定功率。

6.小明在研究性学习活动中,查阅到一种热敏电阻的阻值随温度变化的规律如下表,并将该型号的热敏电阻应用于如图10所示由“控制电路”和“工作电路”组成的恒温箱电路中。

“控制电路”由热敏电阻R1、电磁铁(线圈阻值R0=50Ω)、电源U1、开关等组成,当线圈中的电流大于或等于20mA时,继电器的衔铁被吸合,右边工作电路则断开;

“工作电路”由工作电源U2(U2=10V)、发热电阻R2(R2=50Ω)、导线等组成,问:

(1)工作电路工作时的电流为多大?电阻R2的发热功率为多大?

(2)若发热电阻R2需提供1.2×104J的热量,则工作电路要工作多长时间(不计热量的损失)?

篇4

人类很早就认识了磁现象和电现象,我国在战国末期就发现了磁铁矿吸引铁的现象,在东汉初期就有带电的琥珀吸引轻小物体的记载。但是,人类对电磁现象的系统研究,却是在欧洲文艺复兴之后开展起来的,到19世纪才建立了完整的电磁学理论。在电磁学发展过程中,涌现了无数科学家通过科学假说、实验验证、理论分析等研究过程,一步步对自然规律进行揭示。其中比较典型的有:1785年库仑定律的发现,使电学进入了定量研究阶段,真正成为一门科学;1820年奥斯特电流磁效应的发现,揭示了电流能够产生磁场;1821年安培的分子电流假说,揭示了磁现象的电本质;1831年法拉第电磁感应定律的发现,进一步揭示了电和磁的密切联系;19世纪60年代,英国物理学家麦克斯韦在总结前人研究电磁现象成果的基础上,建立了完整的电磁场理论,并成功预言了电磁波的存在,1888年赫兹的实验证实了麦克斯韦的电磁场理论,从而电磁学发展到了顶峰。

二、电磁学的知识结构和知识规律

1.知识结构

2.知识规律

“电场”一章是学好电磁学的基础和关键,基本概念多,且抽象,如电场强度、电场线、电势和电势能等。教材从电荷在电场中受力和电场力做功两个角度研究电场的基本性质,许多知识要在力学知识的基础上学习。

“恒定电流”一章是在初中基础上的充实、扩展和提高,重要的物理规律有欧姆定律、电阻定律和焦耳定律,电路的等效处理方法和实验的设计是本章的重点。

“磁场”一章阐明了磁与电的统一性,用研究电场的方法进行类比,可较好地解决磁场和磁感强度的概念。由安培力导出洛仑兹力,由洛仑兹力导出带电粒子在匀强磁场中的运动规律等,因此,分析推理是本章的特点。

“电磁感应”一章的重要物理规律是法拉第电磁感应定律和愣次定理,这部分知识中,能量守恒定律是将各知识点串起来的主线。由于楞次定律较抽象,要通过实验进行分析、归纳,需加强学生的抽象思维能力。

“交变电流”和“电磁波”是在电场和磁场基础上结合电磁感应的理论和实践。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推到电磁波,从而对物质的波动性的认识提高了一步。

三、电磁学的研究方式:“场”和“路”

电荷周围存在电场,每个带电粒子都被电场包围着,运动电荷的周围除了电场还存在磁场,磁体的周围也存在磁场。现在的科学实验和广泛的生产实践完全肯定了场的观点,并证明了电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形式,是物质相互作用的特殊方式,也是电磁运动的实质。教材中以场为主线,主要有电场、磁场和电磁场。电场强度和电势是描述电场性质的两个重要物理量。磁感强度是描述磁场性质的重要物理量。电磁感应规律是反映电场和磁场间密切联系的一种物理现象。麦克斯韦从理论上指出了变化的电场和磁场总是相互联系的,一个不可分割的统一体,这就是电磁场。库仑定律、安培定律和法拉第电磁感应定律为建立麦克斯韦理论,提供了基础和实验规律。

电路知识具有广泛的实用价值,以路为主线,主要有直流电路、交流电路(包括振荡电路)。欧姆定律是从实验中总结出来的一条重要规律,是解决电路问题的重要依据。要会分析电路的连接方式(串联或并联)及等效处理方法,电功和电功率的计算,不仅能解决直流电路问题,还可以解决交流电路的问题。

篇5

物理教材中所阐述的内容主要是经典物理学的基础知识,这些理论是建立在牛顿时空观的基础上,以力学、电磁学为重点。本文就电磁学部分的教学谈谈自己的观点。

一、电磁学的知识体系

电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行。只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。

场是物质的相互作用的特殊方式。电磁学部分完全可用场的概念统一起来,静电场、恒定电场、静磁场、恒定磁场、电磁场等,组成一个关于场的体系。

“路”是“场”的一种特殊情况。物理教材以“路”为线的框架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。

“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法。

2.认识物理规律

规律体现在一系列物理基本概念、定律、原理以及它们的相互联系中。

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较,找出它们相互之间存在的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。

3.通过电磁场所表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的。大量实验证明,在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用,运动电荷的周围除了电场外还存在着磁场。磁体的周围也存在着磁场,磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。科学实验证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用,所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。转贴于

从场的观点来阐述路。电荷的定向运动形成电流,产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处。导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷,当导体中电势差不存在时,电流也随之而终止。

二、以知识体系贯穿始终,使理论学习与技能训练相融合

1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场部分是学好电磁学的基础和关键。电场强度、电势、磁感应强度是反映电、磁场是物质的实质性概念。电场线、磁感应线是形象地描述场分布的一种手段。

篇6

物理教材中所阐述的内容主要是经典物理学的基础知识,这些理论是建立在牛顿时空观的基础上,以力学、电磁学为重点。本文就电磁学部分的教学谈谈自己的观点。

一、电磁学的知识体系

电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行。只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。

场是物质的相互作用的特殊方式。电磁学部分完全可用场的概念统一起来,静电场、恒定电场、静磁场、恒定磁场、电磁场等,组成一个关于场的体系。

“路”是“场”的一种特殊情况。物理教材以“路”为线的框架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。

“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法。

2.认识物理规律

规律体现在一系列物理基本概念、定律、原理以及它们的相互联系中。

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较,找出它们相互之间存在的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。

3.通过电磁场所表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的。大量实验证明,在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用,运动电荷的周围除了电场外还存在着磁场。磁体的周围也存在着磁场,磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。科学实验证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用,所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。转从场的观点来阐述路。电荷的定向运动形成电流,产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处。导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷,当导体中电势差不存在时,电流也随之而终止。

二、以知识体系贯穿始终,使理论学习与技能训练相融合

1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场部分是学好电磁学的基础和关键。电场强度、电势、磁感应强度是反映电、磁场是物质的实质性概念。电场线、磁感应线是形象地描述场分布的一种手段。

篇7

分析电路在两种状态下,电流表、电压表示数的对应关系不能搞错。当电流小时,R1两端电压小,R2两端电压大,此时R2阻值也大。因此,当电压表示数是10V时,电流表示数是0.2A。

一、解题方法比较

大多数同学习惯从整体上用欧姆定律公式解题,即将三个基本量合用于一个式子。

(一)列方程组法

在此题目中,无法找到“同一状态”下,与所求量U或R1在同一段电路中对应的另两个量的具本数值,由此想到用列方程组的方法解之。

建立方程组就是利用一定的关系,在不同状态下将所求量与对应的已知量组织在一起。下面是几种列方程组的方法。

1.表示电路中不变的量。

不管滑片如何滑动,引起怎样的变化,在电路中总存在着不变的量(往往就是所求的量),可用变化的量表示这些不变的量。

(1)电阻器R1的阻值不变

(2)电源电压U不变

②U=0.2R1+10U=0.48R1+7.2

2.利用电路中不变的关系。

不变的关系就是电路三个基本物理量间的关系,根据电路的特点和方程中应包括所求量的要求,建立方程组有以下三种方法。

(1)电阻关系。

在串联电路中电阻的关系是:R=R1+R2,为了简化方程组,可先计算出变阻器在两种状态下的阻值(用电压表和电流表对应的示数计算,分别是50Ω和15Ω)。

(2)电流关系。

在串联电路中电流处相等,即I=I1=I2。但在本题中只需用与所求量有关的部分,即I=I1。R2的阻值可先求出。

(3)电压关系。

在串联电路中电压的关系是:U=U1+U2,建立的方程组与方程组②相同。

3.表示已知量。

用所求量表示已知量的数值,可将它们组织在一起,从而建立方程组。

(1)表示电流

(2)表示电压

⑥7.2=U-0.48R110=U-0.2R1

由上可知,列方程组的方法很多,列出的方程组形式各异,但每个方程组都可通过数学变形而相通。但解方程组②和⑥要简单一些,因其与另外几个方程组相比,可省去去分母的麻烦。

(二)比例法。

克服思维定势的影响,若将欧姆定律分而用之,即分别利用其中的两个比例关系,反而能更好地体现定律的实质,使解题过程更简洁。

1.电压相同时,电流与电阻成反比。

利用这一反比例关系,一定要注意其前提条件是“电压相同”。分析题意知,电路中只有电源电压(即总电压)不变,因而电流应与总电阻成反比。可先用对应电压、电流值求出R2的阻值。

2.电阻相同时,电流与电压成正比。

同样,利用这一正比例关系,也要注意其前提条件:电阻相同。由题意知,电路中只有定值电阻R1的阻值不变,因而可用“R1中电流与R1两端电压成正比”例方程。

(三)比差法。

在比例法的基础上,能不能再次“由分到合”是很多同学思考的问题。能否由欧姆定律整体使用而求解呢?

仔细推敲欧姆定律内容:当电阻不变时,电流与电压成正比。当电压发生变化时,电流发生相同比例的变化。即电压的差值与电流差值的比值(导体的电阻)是不变的,以下面推导佐证之。

因此,可以用比差法――电压差值和电流差值的比,求出定值电阻,继而求出其他相关量。实际的电路问题,基本上是通过改变开关的状态,或滑动变阻器滑片的位置来改变电阻,从而改变某部分电路的电压和电流,故此方法适用性较强。

本题中电路仅分成两部分,一部分电压增大值就是另一部分电压的减少值,即ΔU1=ΔU2。

纵观三类方法的解题过程,一般来说,比差法较为简洁,为首选方法,其次是比例法,再次是列方程组法。

但它们的理解难度则依次降低,运用比差法则还需经过简单的推导。但我们应不惜“多费一些功夫”,努力理解和使用简单方法,因为我们都懂得“磨刀不误砍柴功”的道理。

二、巧用条件,善用“比”的形式解题

运用“比”的方法解题,可省去很多解方程组的繁琐步骤,提高解题速度。只要巧妙利用问题中的条件,大多数这类问题中构造“比”式是比较容易的。

例2如图2所示,电源电压保持不变,当滑动变阻器的滑片P滑至a端时,电流表的示数是0.6A,当滑片P滑至b端时,电压表的示数是6V,R2的最大阻值是30Ω,求电源电压U和定值电阻R1的值。

分析只要着意从“比”式入手,便可知晓题中条件的应用方法。

1.比例法。

需先计算出滑片P滑至b端时的电流值:

以下可用两种比例关系解题:

2.比差法。

需计算出通过定值电阻R1的电流变化值及两端电压变化值。

ΔI=I-I′=0.6A-0.2A=0.4A。

ΔU=U-(U-U2)=U2=6V。

篇8

复杂的电学计算题很令人头痛,一般情况下,都需要首先分析电路,弄清电路连接的实质,然后再设法依据各种等量关系,列出相应的算式或方程式,最终解出要求的物理量.

(一) 有关欧姆定律的综合计算

例5 一个电阻为20Ω的用电器正常工作时,两端的电压是12V,如果要使用电器在18V的电源上仍能正常工作,则:

(1)应在电路中串联一个电阻,还是并联一个电阻?画出电路图;

(2)这个电阻的阻值是多少?

解析:(1)应串联一个电阻R2分压,其电路如图4所示;

点拨:欧姆定律是电学的基本定律和核心内容,在历年中考试卷中所占比例都很大,是中考考查的重中之重.掌握欧姆定律及其公式和熟练运用欧姆定律分析解决简单的串、并联电路问题是中考命题的重点.伏安法测电阻实验是这部分的一个主要基础实验,也是历年中考的重要考查点.

(二)有关电能、电功率、电热的综合计算

例6电饭锅的原理如图5所示,煮饭时按下温控开关S,使之与a、b接触,红色指示灯亮;饭熟后,温控开关S自动断开;当饭的温度低于68℃时,开关S自动上升与触点c接触,电饭锅处于低温加热状态,黄色指示灯亮;温度升至68℃时,温控开关S自动断开,如此反复.(红、黄指示灯的电阻很小,计算时可忽略不计)

(1)试分析R1、R2各起什么作用.

(2)若煮饭时发热板的功率为484W,而低温加热时发热板的功率为4.84W,求R2的阻值.

解析:此题通过温控开关的上下移动来改变电路的连接情况,以达到加热、保温的目的.可分别画出等效电路图,然后分别在各图中进行分析、求解.电饭锅的工作原理图略显复杂,解题时可根据电路情况适当简化,使之方便解题.

(1)当S与a、b接通时,等效电路如图6所示,R1跟红灯串联,然后与发热板并联,红灯所在的支路不影响发热板的功率.红灯起煮饭状态的指示作用,本身电阻很小,必须串联一个较大的电阻R1,所以R1起分压限流保护红灯的作用.

当S与c接触时,等效电路如图7所示.R2、黄灯、发热板串联,R2分去一部分电压,使发热板的功率减小,电饭锅处于低温加热状态,所以R2起分压降低发热板功率的作用.

点拨:这是一道典型的应用类计算题.应用类计算题信息量大,内容丰富,给出信息的形式多种多样,既可以是文字,也可以是图表、图像等.题中的物理过程、已知条件以及要解决的问题往往具有隐蔽性,因此,要解决这类问题首先要认真读题,理解题意,了解问题的背景,挖掘隐含条件,抓住问题的实质,然后再运用学过的物理知识去解决问题.

三、热学部分

中考中热学计算的比例较之力学、电学部分要小一些,但是,同样不可忽视.热学计算主要依据的公式有:

(1)燃料燃烧放热:Q=qm(q表示热值)

(2)物质升温吸热: Q吸=cm(t-t0)=cmt升

(3)物质降温放热: Q放=cm(t-t0)=cmt降

(4)热平衡方程: Q吸=Q放

例7 卖火柴的小女孩在严寒中只能靠点燃火柴取暖.一根火柴的质量约为0.065g,火柴的热值平均为1.2×107J/kg,求一根火柴完全燃烧能使1m3的空气温度升高多少摄氏度?〔已知空气的密度为1.3kg/m3,比热容为1×103J/(kg・℃)〕

解析:设火柴完全燃烧释放的热量全部被空气吸收,由Q吸=Q放得:

Q放=qm2

=1.2×107J/kg×6.5×10-5 kg

=7.8×102J

完全燃烧一根火柴能使1m3的空气升高的温度:

根据Q吸=cm(t-t0),Q吸=Q放得

点拨:本题把燃料燃烧的放热公式、热量的计算公式与密度知识结合起来,具有一定的综合性.应用公式时要注意其适用条件和范围.

四、综合计算

例8图8是一种测量小汽车油量装置的原理图.压力传感器R的电阻会随所受压力大小发生变化,油量表(由电流表改装而成)指针能指示出油箱里油的多少.已知:压力传感器R的电阻与所受压力的关系如表3所示.

若压力传感器R的上表面面积为5cm2,汽油热值为4.6×107J/kg,汽油密度为0.71×103kg/m3,电源电压为6V,g=10N/kg.请回答:

(1)当油与油箱总重为600N时,压力传感器R受到的压强多大?

(2)若油箱内的油为10kg时,汽油完全燃烧放出的热量是多少?

(3)如果空油箱的质量为5.8kg,油量表指针指向2×10-2m3时,电路中电流是多少?

解析:(1)(2)两问较简单,(1)p=1.2×106Pa;(2)Q=4.6×108J.

(3)油量表指针指向2×10-2m3时,箱内汽油质量为:m油=ρV=0.71×103kg/m3×2×10-2m3=14.2kg,

油和箱的总质量:m=m油+m箱=14.2kg+5.8kg=20kg,

总压力F=20kg×10N/kg=200N.

篇9

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

篇10

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.