高层建筑结构的设计原则模板(10篇)

时间:2023-08-09 17:16:53

导言:作为写作爱好者,不可错过为您精心挑选的10篇高层建筑结构的设计原则,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

高层建筑结构的设计原则

篇1

Abstract: with the rapid development of economy, high-rise buildings in most of our cities also have emerged. For high-rise building structure is concerned, its choice of structural system, and more importantly and load factors, therefore, this paper discusses the structure of the high-rise building design must first with different structure system based on the influence of, choose the most reasonable scheme.

Keywords: high building; Structure design; strategy

中图分类号:TU318文献标识码:A 文章编号:

1高层建筑结构设计的原则

适用、安全、经济、美观、便于施工是进行高层建筑结构设计的原则。一个优秀的建筑结构设计往往是这五个方面的最佳结合。完美的建筑结构设计就是在努力追求这五个方面的最佳结合的过程中产生的,适用、安全、经济、美观、便于施工是结构设计人员最终努力的目标,是结构设计的最佳体现。

结构设计一般在建筑设计之后,“受制”于建筑设计,但又“反制”于建筑设计。结构设计不能破坏建筑设计,应满足、实现各种建筑要求;高层建筑设计不能超出结构设计的能力范围,不能超出安全、经济、合理的结构设计原则。结构设计决定高层建筑设计能否实现,从这个意义上讲,结构设计显得更为重要,虽然一栋标志性建筑物建成后,人们只知道建筑师的名字,但一个适用、安全、经济、美观、便于施工的结构设计也是工程师们的骄傲和成就。

2高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各

专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平

面的布置、立面体形、楼层高度、施工技术的要求、施工工期长短和投

资造价的高低等。其主要特点有:

2.1 水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比(N=WH);而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比(水平均布荷载:M=1/2qH2,水平倒三角形荷载:M=1/3qH2),如图一示。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2 侧移成为设计的控制指标与低层或多层建筑不同,结构侧移成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H 的4 次方成正比:

此外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:①因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,因P- 效应而使结构产生的附加内力,甚至破坏;②使居住人员产生不安全感;③使填充墙或建筑装饰开裂或损坏,主体结构出现裂缝或损坏,影响正常使用。

2.3 抗震设计要求更高,延性成为结构设计的重要指标有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。结构的抗震性能决于其“能量吸收与耗散”能力的大小,即决于结构延性的大小。延性是表示构件和结构屈服后,具有承载能力不降低、具有足够塑性变形能力的一种性能,通长采用延性系数μ来衡量延性的大小,μ=u/y如图2。

3.3概念设计与理论计算同等重要

概念设计是指一些难以做出精确力学分析或在规范中难以具体规定的问题,必须由工程师运用“概念”进行分析,做出判断,以便采取相应措施。概念设计带有一定经验性。高层建筑结构的抗震设计计算是在一定假定条件下进行的。尽管分析的手段不断提高,分析的原理不断完善,但是由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多。尤其是当结构进入弹塑性阶段之后,会出现构件的局部开裂,甚至破坏,这时结构就很难用常规的计算原理去进行内力分析。实践表明,在设计中把握好高层建筑的概念设计,从整体上提高建筑的抗震能力,消除结构中的抗震薄弱环节,再辅以必要的计算和结构措施,才能设计出具有良好抗震性能的高层建筑。将注重概念设计作为高层建筑结构的最高原则提出其主要内容为:应特别重视建筑结构的规则性(包括平面规则性和竖向规则性);合理选择建筑结构体系包括:a.明确的计算简图和合理的地震作用传递途径;b.避免因部分结构构件的破坏而导致整个结构丧失承受重力、风载和地震作用的能力;c.结构体系应具备必要的承载能力和良好的变形能力,从而形成良好的耗能能力;采取必要的抗震措施提高结构构件的延性。

3高层建筑的结构体系

3.1框架结构体系

由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由梁联系起来,形成空间结构体系。框架结构的优点是建筑平面布置灵活,可以做成有较大空间的会议室、餐厅、车间、营业厅、教室等。需要时,可用隔断分割成小房间,或拆除隔断改成大房间,因而使用灵活。外墙采用非承重构件,可使立面设计灵活多变。但是框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。不高于15层宜采用框架结构,可以达到比较好的经济平衡点。

3.2剪力墙结构体系

剪力墙结构体系是利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构体系。墙体同时作为维护及房间分隔构件。剪力墙间距一般为3~8m,现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求容易满足,适于建造较高的高层建筑。而且其抗震性能良好,在历次的地震中,都表现了很好的抗震性能,震害较少发生,程度也很轻微。但是剪力墙结构间距不能太大,平面布置不灵活,而且不宜开过大的洞口,自重往往也较大,不是很能满足公共建筑的使用要求,而且其成本也较大。

3.3框架-剪力墙结构体系

框架-剪力墙结构体系由框架和剪力墙组成。剪力墙作为主要的水平荷载承受的构件,框架和剪力墙协同工作的体系。在框架-剪力墙结构中,由于剪力墙刚度大,剪力墙承担大部分水平力(有时可以达到80%~90%),是抗侧力的主体,整个结构的侧向刚度大大提高。框架则承受竖向荷载,提供较大的使用空间,同时承担少部分水平力。由于有了剪力墙,其体系比框架结构体系的刚度和承载力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙和外墙) 的损坏。这样无论在非地震区还是地震区,都可以用来建造较高的高层建筑。还可以把中间部分的剪力墙形成筒体结构,布置在内部,外部柱子的布置就可以十分灵活;内筒采用滑模施工,的框架柱断面小、开间大、跨度大,很适合现在的建筑设计要求。

除了上述的几种结构体系外,还有其他一些结构体系,如薄壳、膜结构、网架等。随着时代的进步,会涌现出越来越多更好的结构体系。这就需要不断学习,从各方面考虑运用经济合理的手段到达目标。

4结语

总之,高层建筑的高度和数量,从一个侧面反映一个国家科学技术水平和经济发展程度但对于高层建筑亦应适当控制,即要与原有建筑相协调,还要与城市历史特点相协调。

参考文献

篇2

Abstract: With the increase in high-rise buildings, seismic resistant analysis and design is becoming more and more important. This paper combines personal experience on high-rise building structural design principle is analyzed, and the seismic design common problems were analyzed, and puts forward some corresponding methods and measures for improvement.

Key words: high-rise building; seismic; principle; attention problems

中图分类号:TU761.6文献标识码:A 文章编号:

1、高层建筑的概述

在古代人们就开始建造高层建筑,比如埃及的亚历山大港灯塔,高100 多米,为石结构。现代高层建筑发展迅速,在大中城市随处可见。高层建筑是指超过10 层的住宅建筑和超过24 米高的其他民用建筑。高层建筑可以带来明显的社会经济效益;首先,使人口集中,可利用建筑内部的竖向和横向交通缩短部门之间的联系距离,从而提高效率;其次能使大面积建筑的用地大幅度缩小,有可能在城市中心地段选址;第三,可以减少市政建设投资和缩短建筑工期。由于高层建筑的高度比较高,所以解决水平抗剪问题成为关键,而抗震是解决水平抗剪 问题的一个重要因素。然而对于不同的结构形式,同一设防烈度下,抵抗地震能力有很大区别,因此选择合适的结构形式对于高层建筑尤为重要。

2、高层建筑抗震结构设计的基本原则

2.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。

2.2 尽可能设置多道抗震防线

①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

2.3对可能出现的薄弱部位,应采取措施提高其抗震能力

①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

3、高层建筑结构抗震设计应注意的问题

3.1应重视建筑结构的规则性

结构的平面布置不规则、平面布局的刚度不均都会对抗震效果产生不利影响。因此,在高层建筑结构抗震设计中,不应采用严重不规则的设计方案。在高层建筑中抗震设计中,提倡平、立面布置规正、对称、减少偏心,建筑的质量分布和刚度变化均匀。以往震害经历表明,此种类型的建筑在地震时比较不容易受到破坏,容易估计出其地震反应,易于采取相应的抗震措施。

3.2对地基的选择

选择坚硬的场地土建造高层建筑,可以明显地减少地震能量输入,从而减轻地震的破坏程度。高层建筑宜避开对抗震不利的地段,当条件不允许时应采取可靠措施,使建筑在地震时不致由于地基失稳而遭受破坏,或者产生过度下沉、倾斜。 为了保证高层建筑的稳定性,要求基础要有一定的埋置深度。埋深基础四周土壤的被动土压力,能够抵抗高层建筑承受水平载荷所产生的倾覆和滑移。天然地基基础埋深为建筑高度的1/15,桩基基础埋深为建筑高度的1/18。针对地下室分缝处,应有500以上空隙用砂回填夯实;若地下室一面为开口,应保证开口以下至少2米以上覆土。

3.3结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

3.4抗侧力结构和构件应设计成延性结构或构件

目前我国采用的传统抗震结构体系是延性结构体系,即适当地控制结构的刚度,但容许结构构件在地震时进入非弹性状态,并具有较大的延性,提高结构的耗能能力,以消耗地震能量,减轻地震作用,减小楼层地震剪力,使结构物裂而不倒。在施工时应采取软垫隔震、滑移隔震、摆动隔震、悬吊隔震等措施,改变结构的动力特性,减轻结构的地震反应。

3.5多道设防

多道设防,就是设有多道抗震防线,避免因部分结构的破坏而导致整个体系丧失抗震能力。一个好的抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接来协同工作。强烈的地震后往往伴随多次余震,倘若只有一道设防,在首次受到破坏后再遭余震,建筑结构将会因损伤积累而导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,并建立一系列分布的屈服区,主要的耗能构件应有较高的延性和适当刚度,以提高结构的抗震性能,尽量避免倒塌。

4、如何做好防范高层建筑抗震意识

4.1应当注意防震缝的设计,必须留有足够的宽度。

4.2平面形状或刚度不对称,会使建筑物产生显著的扭转,震害严重。

4.3凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重。

4.4高层部分和低层部分之间的连接构造不合理。

4.5框架柱截面太少,箍筋不足,柱子的延性和抗震能力不够而发生剪切破坏或柱头压碎。

4.6由于沿竖向楼层质量与刚度变化太大,是楼层变形过分集中而产生破坏。

4.7地基的稳定性问题要特别注意。

4.8伸缩缝和沉降缝宽度过小,碰撞破坏很多。

4.9不应在建筑物端部设置楼梯间,楼板有大洞口,因刚度不均匀而产生扭转。

4.10外纵墙门窗洞口过大,连梁尺寸太小,容易产生破坏。

篇3

Abstract: the author architectural design experience, introduces the high-rise building now shear wall structure design, and the shear wall structure calculation principle and the shear wall structure reinforcement of the wall are discussed in this paper.

Keywords: high building, structure calculation, the shear wall structure design, calculation principle

中图分类号:[TU208.3]文献标识码:A 文章编号:

1 高层建筑的概念设计

《高层建筑混凝土结构技术规程》(以下简称《高规》)规定:高层建筑结构不应全部采用短肢剪力墙结构。短肢剪力墙较多时,应布置简体(或一般剪力墙),形成短肢剪力墙与简体(或一般剪力墙)共同抵抗水平力的剪力墙结构。抗震设计时,简体和一般剪力墙所承受的第一振型底部地震倾覆力矩不能小于结构总底部地震倾覆力矩的50%。一般认为,短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩的30%~50%时属短肢剪力墙结构。短肢剪力墙结构抗震性能都是比较差,经济指标也是不好,所以在实际工程中尤其是地震区尽可能避免采用。设计中应体现使其结构竖向和水平向具有合理的刚度及承载力的分布,尽量将剪力墙的墙肢截面高度(至少要保证一肢)做成大于8 倍墙厚才能符合一般的剪力墙。剪力墙也不用按开间布置,两间合并布置为大开间剪力墙,同时也就可以满足竖向荷载传递的要求。剪力墙尽可能设计成“L”形,有利于剪力墙结构的稳定性,同时能够形成较好的侧向刚度。在满足同样规范的每项指标的情况下,更能减轻结构的自重,减小结构构件,有利于降低工程投资。根据工程经验,对于“L”形、“T”形剪力墙,当一个方向的墙符合一般墙的要求时,另一个方向的墙肢也不能过短,较小的墙肢常常都会出现较大的配筋,一般应控制在1 m 左右,使墙端暗柱配筋接近构造配筋为宜。

2 剪力墙结构计算的基本假定

剪力墙的结构体系建筑是由一系列纵向和横向剪力墙及楼盖所组成的空间结构。剪力墙承受竖向和水平荷载作用。在竖向荷载作用下,各片剪力墙受力分析都较简单,但在水平荷载作用下则不相同,为简化计算,做以下基本假定:

(1)楼盖的自身平面抗弯刚度视为“无限大”,所以在水平荷载作用下,只产生刚体运动,并将水平荷载分配给每片剪力墙,而不发生水平方向的弯曲与变形;而在平面外,因为刚度很小,可忽略不计。按此假定,当结构不发生扭转时,每片剪力墙在水平荷载作用下侧向位移相等。这样,整个建筑上所承受的水平荷载就可以按每片剪力墙的等效抗弯刚度的大小,按比例来进行分配,然后再进行内力及位移计算。

(2)有效抗弯刚度应按剪力墙中的顶点侧移相等,应考虑弯曲变形和剪切变形后,所折算为竖向悬臂受弯构件的抗弯刚度。对于沿竖向刚度较均匀的结构,每片剪力墙都能按下式之一计算其等效刚度。均布荷载、倒三角形的荷载、顶点集中荷载。

3 剪力墙结构设计计算原则

剪力墙结构设计时,应按照规范要求综合来考察结构是否合理,下面是对结构设计中须重点关注的几种技术指标的调整原则的浅析,若有不对之处,请广大同行指正。

3.1 楼层最小剪力系数(剪重比)的调整原则

在满足短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩不超过30%的前提下尽可能少布置剪力墙,以大开间剪力墙布置方案为目标,使结构具有适宜的侧向刚度,使楼层最小剪力系数接近规范限值(不小于限值)。这样能够减轻结构自重,有效减小地震作用的输入,同时降低工程造价。

3.2 楼层层间最大位移与层高之比(位移)的调整原则

规范规定多遇地震作用标准值所以产生楼层最大的弹性层间位移在计算时,除以弯曲变形为主的高层建筑外,可以不用扣除结构整体的弯曲变形,应计入扭转变形。由此可见,对于一般的高层建筑,重点是楼层间的剪切变形和扭转变形。剪切变形的控制是以竖向构件的多少决定的,竖向构件足够多(剪重比偏大)但如果布置也不合理,就会造成扭转变形过大,同样也就无法满足层间位移的要求。因此,对于高层建筑应尽量使扭转变形最小,而不能仅根据层间位移不够不加分析地增加竖向构件的刚度。

3.3 结构扭转为主的第一自振周期

根据《高规》第3.4.5条规定,结构扭转为主的第一自振周期与平动为主的第一自振周期T1 之比,A级高层建筑不应大于0.90。限定周期比是使抗侧力构件的平面布置更有效、更合理,使结构不至于出现过大的扭转效应。在实际工程设计中,应把结构竖向构件尽量沿建筑周边布置,降低结构中间构件的刚度,这样就可以提高结构的侧向刚度,同时还能较大幅度的提高结构的整体刚度。

3.4 剪力墙连梁超限的调整原则

剪力墙连梁的跨高比不宜小于2.5,跨高比小于2.5 的连梁很容易出现剪力和弯矩超过规范限值。《高规》规定跨高比不小于5 的连梁宜按框架梁进行设计。即跨高比不小于5 的连梁刚度不应折减。而跨高比在5~6 之间时,若连梁刚度不折减则也易出现剪力或弯矩超限。作者认为该条文在实际工程设计中若能充分利用,将对节省工程造价有着非常明显的影响,如跨高比不大于5 的连梁(刚度需折减),通过减小剪力墙墙肢长度或减小梁高,使连梁跨高比变为大于6 的框架梁(刚度不折减),这样,后者的钢筋及混凝土用量将会均小于前者,这对于节省工程投资具有很重要的意义。

4 剪力墙结构的墙体配筋

对于剪力墙结构来说,剪力墙面面积大,因此合理的控制剪力墙配筋对于结构安全及工程的经济性具有十分重要的作用。剪力墙墙体配筋一般要求水平钢筋放在外侧,竖向钢筋放在内侧。配筋满足计算及规范建议的最小配筋率即可。但地下部分墙体配筋都是通过计算来确定。因为地下部分墙体的配筋大多由水压力、土压力产生的侧压力控制,而由于简化计算经常由竖向筋控制,此种情况下应增大墙体厚度,增加有效计算高度,可将地下部分墙体的水平筋放在内侧,竖向钢筋放在外侧。地下部分墙体钢筋保护层按《地下工程防水技术规范》第4.1.6 条规定:迎水面保护层应大于50 mm。

5 剪力墙设计

剪力墙要承受竖向荷载,一般都是结构自重和楼面荷载,通过楼面才传递到剪力墙。竖向荷载除了在连梁(门窗洞口上的梁)内产生弯矩以外,在墙肢内主要产生轴力。可以按照剪力墙的受荷面积简单计算。在水平荷载作用下,剪力墙受力分析实际上是二维平面问题,精确计算应按照平面问题进行求解。可借助于计算机,来用有限元方法进行计算。计算精度高,但工作量也是非常大。在工程设计中,可以根据不同类型剪力墙的受力特点,进行简化计算。 整体墙和小开口整体墙:在水平力的作用下,整体墙类似于一悬臂柱,可以按照悬臂构件来计算整体墙的截面弯矩和剪力。小开口的整体墙,因为洞口的影响,墙肢间应力分布也就不再是直线,但偏离也不大。可以在整体墙计算方法的基础上加以修正。联肢墙:联肢墙是由一系列连梁约束的墙肢所组成,可采用连续化的方法近似计算。壁式框架:壁式框架可以简化为带刚域的框架,用改进的反弯点法来进行计算。框支剪力墙和开有不规则洞口的剪力墙:此两类剪力墙都是相当复杂,最好能使用有限元法借助于计算机进行计算。框架结构和剪力墙结构,两种结构体系在水平荷载下的变形规律是完全不相同的。在结构的底部,框架能将剪力墙右拉;在结构顶部,框架也能把剪力墙向左推。因此,框架剪力墙结构底部侧移比纯框架结构的侧移要小一些,比纯剪力墙结构的侧移要大一些;其顶部侧移就正好相反。框架和剪力墙在共同承担外部荷载的同时,两者之间也能保持变形协调还存在着相互作用。框架和剪力墙之间的这种相互作用关系,即为协同工作原理。

6 结束语

随着现代商品住宅建筑在各大城市建设中的发展,高层住宅建筑也将会大量采用剪力墙结构。因为具有较好的抗震性能,且结构布置灵活、造价低、经济性好等各种优点,使我们在设计中更加注重各方面的优化设计,方可使结构在整体上安全合理,确保高层建筑的安全性。

参考文献

篇4

引言

一、抗震理念设计的理论概述

(一)抗震理念设计的概念

抗震理念设计是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,进行建筑结构总体布置,并确定细部构造的过程,概念设计指的是在不经过计算的基础上,由工程师基于设计理论基础和施工经验进行设计,并对当前的设计方案和设计概念进行评估,从而评估出符合抗震需求的设计方案。它包括分析、综合和评价三个步骤。

(二)抗震理念设计在高层建筑结构设计中的作用

高层建筑结构设计是一个复杂的过程,人们对地震时的结构认识存在局限,再加上材料性能和施工安装的变易性、模拟地震波的模糊性等因素的影响,进一步增加了高层建筑结构的不稳定性,因此,高层建筑结构设计应该重视抗震概念设计。在依据数值计算的基础上增加实践经验元素,有时甚至比分析计算更重要,抗震设计理念的应用,可以很好地满足能居民对建筑物安全性能的实际需要。高层建筑结构设计中抗震概念设计的利用必须引起高层建筑结构工程设计师的广泛重视,使其严格遵守抗震概念设计中的相关规定,摆脱传统的结构设计中只重视计算结果的误区,按照结构设计计算原则,再结合地区的抗震规范,最终保证高层建筑结构的抗震性能,保障居民的人身财产安全。

(三)抗震理念设计的基本原则

1、结构的整体性

在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性作用非常重要,相当于水平隔板,具有聚集和传递惯性力至各个竖向抗侧力子结构的作用,因此,这些子结构必须具备很强的抗震能力。当竖向抗侧力子结构分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。

2、结构的简单性

结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行准确分析,把握高层建筑抗震的薄弱环节,及时采取相应的措施,避免其出现。

3、结构的刚度

在地震作用下,结构的刚度和抗震能力大小是双向的,确定结构的刚度,然后合理的布置结构,能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,不仅仅要控制结构变形,还要尽可能降低地震作用对高层建筑结构的冲击。避免结构发生较大变形时产生重力二阶效应,导致结构失衡而被破坏,进而导致高层建筑的抗震性大打折扣。

4、结构的规则性与均匀性

高层建筑的竖向和立面的剖面布置应该规则,结构侧向刚度的变化应该均匀,以免传力途径、侧向刚度以及抗侧力结构承载力的突变,防止结构在竖向上的某一楼或少数楼层之间出现薄弱环节。

二、抗震理念在高层建筑结构设计中的应用

(一)抗震理念设计在结构体系上的应用

高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用,应依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似计算,确定结构设计方案的可行性以及主要构件的基本尺寸。为了保证建筑抗震概念设计的经济性与安全性,应该注意以下三个方面:其一,选择建筑结构体系时,对部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力坚持抗震设计原则中的赘余度功能和内力重分配功能;其二,选择建筑结构体系时,不仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应有合理的地震作用传递途径和明确的计算简图,符合不间断的抗震分析;其三,鉴于结构体系的变形能力取决于组成结构的构件和连接的延性水平,延性是建筑结构设计的重要指标,提高延性水平,可以通过采用竖向和水平向混凝土构件来实现,增强对砌体结构的约束,即使地震中,配筋砌体开裂也不会倒塌或散落,保证高层建筑不至于丧失的重力荷载能力。

(二)抗震理念设计在结构构件上的应用

高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理地预见高层建筑结构先屈服或者破坏的位置,适当调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,是结构抗震耗能的有效措施之一,更是建筑抗震结构概念设计的重要内容。

总结

高层建筑具有层数多、体量大、工期长等特点,因此,结构设计较为复杂,抗震理念的应用更是加大了设计的难度,作为高层建筑结构设计中的重要组成部分,高层建筑结构设计应合理科学,可以有效提高高层建筑的抗震性。因此,相关设计人员应该熟练掌握设计的相关概念和知识,灵活运用抗震概念设计,全面考虑各项因素,保证高层建筑工程的质量和安全系数,尽量为我国设计出更多的精品建筑。

参考文献:

[1]华颖. 抗震概念设计在高层建筑结构设计中的应用[J]. 中华民居(下旬刊),2013,06:27-28.

[2]周定前. 抗震概念设计在高层建筑结构设计中的应用[J]. 中华民居(下旬刊),2013,05:64-65.

篇5

(2)高层建筑结构基础方案的合理化原则高层建筑的地质条件是高层建筑结构基础方案的设计参考依据。其结构基础方案的合理化要求对高层建筑的结构类型、施工条件、荷载分布情况、与邻近既有建筑物的关联性等因素进行综合考虑。高层建筑结构设计基础方案通常情况下要确保其能够最大程度发挥地基的潜力,高层建筑设计必须要具备相应的地质勘察报告。

(3)高层建筑方案的合理化原则高层建筑结构方案的合理化指的是高层建筑结构设计方案必须要与结构体系的结构形式的要求保持充分的一致性,同时要满足经济性的要求。结构体系的具体要求要保证具有简单性、受力明确性等,综合考虑工程设计的需求、施工材料、地理条件、施工条件等,同时还要兼顾建筑的暖气、水和电额的相互协调。

2高层建筑及超高层建筑结构抗震设计目标分析

高层建筑的抗震设计在整个建筑设计中具有重要的作用。在设计时要考虑到重现期大约为7度的地震,建筑物只能出现的损伤都可以忽略,在进行结构设计时要使结构的反应状态基本处于弹性反应状态。对于重现期与9度的地震水准较为接近的地震,在设计时要对最大地震的震动进行预计,并设计为在真正遇袭情况下能有效防止倒塌情况,并能够证实以下几点:

(1)对于结构中的所有的延性的构件,要保证其非弹性变形必须低于其变形能力;

(2)对于非延性破坏模式的结构部件,要求其对于力的需求要大于等于其名义上的强度;(3)对于超高建筑物或者较为复杂的建筑物的设计上,对于起到控制作用的构件还需要保证其在受到中等震级地震的振动下仍能够保持其自身一定的弹性。

3设计要点分析

(1)重视概念设计对于超高建筑结构设计以及复杂建筑结构设计上,要重视其结构概念的设计,在设计时要尽量提升建筑结构的规则性和均匀性;要确保结构的传力途径清晰和直接,尤其是结构的竖向和抗侧力传力的途径;在设计上包保证结构具有较高水平的整体性设计;设计时要将节能减排的置入,以建立合理的耗能机制,创建绿色建筑;在设计时要充分考虑到结构与建筑结构材料的利用率,确保形成较为完整的结构受力整体。这一设计过程的实现,得力于建筑师以及结构工程师之间的良好沟通交流,以更好的实现建筑和结构之间的统一。

(2)选择科学、合理的抗侧力体系大量研究表明,在设计时选择较为合理的结构抗侧力体系,能有效保证高层建筑以及复杂高层建筑的安全性。在选择时要注意结合建筑物的实际高度对结构体系进行选择;在进行建筑设计时要尽可能的确保结构抗侧力构件之间相互联结和组合;对建筑设计中可以根据多重抗侧力结构体系的具体情况进行设计,要综合分析每种结构体系的优点及适用性,对各种体系的贡献度进行合理的评估与评判。

(3)注重抗震设计在满足建筑的功能性的基础上,高层建筑和超高层建筑的重要设计环节就是抗震设计,该设计是建筑安全性较为重要的一步。在对高层建筑进行抗震结构设计时,建筑材料的选择一定要慎重,保证质量。大量研究表明,在地震时要减少能量的输入能够有效减少地震对高层建筑的损害。

要做到以下几点:

(1)在对建筑构件的承载力进行验收时要对建筑结构在地震作用下的层间位移限值实施较为有效的控制。

(2)在对高层建筑的具体工程项目进行设计时,要积极采取基于位移的结构抗震方法,对设计方案要进行定量的具体分析,确保结构的变形延性能够满足地震的预期要求。

(3)综合分析建筑构件的变形以及建筑结构的位移之间存在的精确大关系,有效确定构件的具体变形值。

篇6

中图分类号:TU208文献标识码: A

高层建筑设计与施工是一个系统工程特别是设计阶段的工作尤其要引起重视。高层建筑的结构设计还有其他的重点问题,比如扭转的问题,要求几何中心、刚度中心、结构重心合为一;此外还要注意抗风结构的设计,保护建筑的支撑结构和装饰结构等;抗震结构也是建筑高层设计的难点,这需要设计人员有灵活性。最后,设计人员要注意消防设计,尽量减少高层失火对人们的伤害。

1、高层建筑结构设计的概况及意义

随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。

2、高层建筑结构设计的特点

高层建筑结构可以设想成为支撑在地面上的竖向悬臂构件,承受着竖向荷载和水平荷载的作用,与多层建筑结构相比,高层建筑结构的设计具有以下几个方面的特点。

2.1、水平荷载成为设计的决定因素

图1高层建筑结构的受力及变形示意图

对于高层建筑结构,一般是竖向荷载控制着结构的设计。随着房屋层数的增加,虽然竖向荷载对结构设计仍有着重要影响,但水平荷载已经成为结构设计的控制因素。而且,与竖向荷载相比,作为水平荷载的风荷载和地震作用,其数值与结构的动力特性等有关,且具有较大的变异性。

在竖向荷载和水平荷载作用下,如图1(a)(b)所示,高层建筑结构底部所产生的轴力N和倾覆力矩M与结构高度H分别存在着如下的关系式,即:

结构底部的轴力

N=ωH

结构底部的倾覆力矩

式中,ω、q、qmax分别为沿建筑单位高度的竖向荷载、均布水平荷载和倒三角形分布荷载的最大值(kN/m)。

2.2、侧移成为设计的控制指标

我们知道,随着建筑高度的增加,水平荷载作用下结构的侧移急剧增大,水平位移增加的速度最快,内力次之。因此,高层建筑结构设计时,为了有效的抵抗水平荷载产生的内力和变形,必须选择可靠的抗侧力结构体系,使所设计的结构不仅具有较大的承载力,而且还应该具有较大的侧向刚度,将水平位移控制在一定的范围内。

2.3、延性成为结构设计的重要指标

对地震区的高层建筑,应确保结构在地震作用下具有较好的抗震性能。结构的抗震性能主要取决于其能量吸收与耗散能力的大小,而它又取决于结构延性的大小。因此,为了确保建筑结构在进入塑性变形后仍具有良好的抗震性能,需加强结构抗震概念设计,采取恰当的抗震构造措施,来确保结构具有较好的延性。

3、高层建筑结构设计的原则

高层建筑结构设计原则,是高层建筑结构设计过程中需要注意的重要标准和准则,也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下,才可以进行建筑结构设计。总体来讲,高层建筑结构设计原则主要包括以下几点:

3.1、基础方案合理

建筑结构基础方案是高层建筑结构设计的前提和基础,在实际的建筑结构基础方案设计中,需要根据实际施工地质条件,根据实际建筑结构施工需求进行设计。同时建筑结构基础方案需要配置完善的施工地质调查报告,最大程度的发挥建筑物地基的潜力,必要的情况下还需要对地基的变形做好相应的演算。另一方面,还需要对建筑物进行综合性分析,尤其是对于建筑物负荷以及上部结构类型,通过对这些综合性分析,最终选定最适合的基础方案,从而可以在提高设计质量的基础上提高经济效益。

3.2、计算简图适当

计算简图设计,也是高层建筑结构设计中需要注意的重要问题,主要原因在于高层建筑结构设计时需要对一些基本的数据进行计算分析,而这些计算分析都必须要建立在计算简图的基础之上。只有通过计算简图基础之上的数据分析,才可以提高高层建筑结构设计的安全性以及牢靠性。举例来讲,建筑物结构节点问题,建筑物结构节点并不是我们传统观念中的铰节点或者是刚节点,在进行计算简图设计时,需要对建筑物结构节点进行深入研究,提高计算简图计算的精确性,进而将计算简图的误差控制在合理的范围内。

3.3、结构措施完善

除了基础方案合理以及计算简图适当这两大基本原则之外,还有一条基本原则是经常忽略的,那就是结构措施完善原则。在进行建筑物结构的设计时,需要注意结构组件的延展性,例如建筑物中钢筋的锚固长度等。同时,还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响,对于这两方面的问题,在实际的设计过程中,需要遵循“强柱弱梁、强剪弱弯以及强压弱拉”的基本原则,只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。

4、高层建筑结构设计的问题

4.1、结构的规则性问题

新旧规范在这方面的内容出现了较大的变动,在这方面增添了相当多的限制条件。例如平面规则性信息、嵌固端上下层刚度比信息等,而且新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

4.2、超高问题

在抗震规范与高规中,对结构的总高度都有严格的限制。尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,必须对结构的该项控制因素严格注意。一旦结构为b级高度建筑甚或超过了b级高度,其设计方法和处理措施将有较大的变化。

5、高层建筑结构设计的对策

5.1、高层建筑结构的规则性

高层建筑结构的规定了结构嵌固端的上下层的刚度比、平面规则性等等,因此,应严格按照规范执行。

5.2、高层建筑结构设计短肢剪力墙设置

短肢剪力墙在新规的定义是,墙肢的截面的高度和厚度比在5~8的墙,这加大了在高层建筑中使用的难度。因此,在设计高层建筑结构的过程中尽量避免使用。

结束语

改革开放以来,伴随着国民经济的快速发展,加上科学技术的不断进步,我国高层建筑行业取得了重大的突破。高层建筑结构设计是否合理,不仅仅影响到高层建筑实施施工,而且还直接影响到高层建筑建设以及后期养护的顺利开展。

参考文献

[1]周世航.浅谈高层建筑结构设计存在问题及解决对策[J].广西城镇建设,2013,05:80-82.

篇7

引言

随着科技和社会的不断发展和进步,高层建筑在城市化建筑中的比例也越来越大。高层建筑结构设计也越来越成为高层建筑结构工程设计工作的难点与重点。因此要重点对高层建筑的结构设计进行研究,高层建筑结构设计人员应根据具体情况进行具体分析,运用掌握的知识处理实际建筑设计中遇到了各种问题。

1高层建筑结构的特征

高层建筑结构不但承受着垂直方向的荷载,同时也承受着由外界的风产生的水平方向的风荷载,并且对于抵抗地震的能力也有相当高的要求。一般情况下的低层建筑受到结构水平方向上的风荷载的影响比较小,然而在高层建筑中,外界水平地震和风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑在风荷载作用下的水平位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在进行高层建筑结构设计时,首先要控制侧向位移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。

2高层建筑结构设计的原则

2.1选择合理的高层建筑结构计算简图

在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构设计不合理而发生事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,结构设计应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不再是简单的钢节点或者饺节点,我们要保证和计算简图的误差在规范规定的范围内。

2.2选择合理的高层建筑结构基础设计

按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的基础类型。

2.3选择合理的高层建筑结构方案

合理的结构设计方案在满足安全的前提下必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

2.4对计算结果进行准确的分析

随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

2.5高层建筑的结构设计要采用相应构造措施

高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

3高层建筑结构体系的选型

建筑的结构在抵抗来自于水平方向和竖直方向的荷载时构件的组成形式和传力的路径就是高层建筑的结构体系。通过包括墙,柱等的竖向构件和楼盖等水平构件将竖向荷载传递到基础,利用抗侧力体系将水平荷载传递到基础。

根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢-混凝土混合结构体系以及钢-混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足;钢-混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢-混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。

根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架-剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m高度以下的建筑;通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架-剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架-剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

4高层建筑结构的相关问题分析

4.1高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4.2高层建筑结构设计短肢剪力墙的设置问题

我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在5~8的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

4.3高层建筑结构设计嵌固端的设置问题

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

4.4高层建筑结构的规则性问题

在关于高层建筑的新规范中,对于高层建筑结构的规则性做出了很多限制,比如规定了结构嵌固端上层和下层的刚度比,平面规则性等等,并且硬性规定了“高层建筑不能采用严重不规则的设计方案。”因此,为了避免后期施工设计阶段的改动,高层建筑结构的设计必须严格遵循规范的限制条件。

5结束语

篇8

中图分类号:TU97文献标识码: A

引言

地震作为最严重的自然灾害之一,一旦发生,就会给社会带来巨大的人员伤亡和经济损失。近几年来,国内外地震灾害频发,无情地剥夺了上百万人的生命。而这些伤害基本上都是由于建筑物的倒塌引起的,尤其是高层建筑。若在建筑结构的设计当中能加强抗震概念的设计,将会从一定程度上减小损失。因此,如何才能够提高高层建筑的抗震性能的概念设计已经成为了建筑行业研究的重点工作。

一、抗震概念设计

传统的结构设计理论为建筑结构设计提供了一些计算方法,但是这些方法主要是针对结构设计中的一些细节,而忽略了对整体结构的考虑。因此,传统的结构设计理论并不能完全地适用于高层建筑的抗震设计,照本宣科式的结构设计不能满足现代建筑物的要求。在高层建筑的抗震设计当中,设计师们都会融入概念设计。抗震概念设计是指根据以往的工程经验和地震灾害的发生情况,从整体上研究工程项目的抗震决策,包括使用材料的种类、抗震方案以及结构的内部构造等等方面。

二、高层建筑结构设计中抗震概念设计的意义

高层建筑结构设计中应该非常重视抗震概念设计,因为高层建筑结构非常复杂,当发生地震时具有动力不确定性特点,人们对地震时对结构认识的局限性,再加上材料性能和施工安装的变易性、模拟地震波的模糊性等因素,导致计算结果和实际之间具有很大的差异。简单的依赖数值计算获得结构并不能有效的解决高层建筑的实际抗震问题,尤其是地质特征的差异性原因,导致许多国家甚至是地区指定的抗震规范都有明显的差异。高层建筑结构抗震概念设计在依据数值计算的基础上,还增加了实践经验元素,并且结构概念设计甚至比分析计算更重要,使得这一抗震设计理念能够满足区域差别下从事高层建筑结构设计的实际需求。强调高层建筑结构设计中抗震概念设计的重要性,其目的是为了引起高层建筑结构工程是在进行建筑结构设计时,特别重视相应的结构规程以及抗震概念设计中的相关规定,从而摆脱传统的结构设计中只重视计算结果的误区,要求结构工程师严格的按照结构设计计算原则,再结合地区的抗震规范,以此保证高层建筑结构的抗震性能。

三、高层建筑结构设计中抗震概念设计的原则

(1)结构的整体性。在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性起到十分重要的作用,其相当于水平隔板,不仅要求聚集和传递惯性力至各个竖向抗侧力的子结构,还要求这些子结构具有较强的抗震能力,能够抵抗地震作用,尤其是当竖向抗侧力子结构的分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。

(2)结构的简单性。结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行分析,准确的分析出高层建筑抗震的薄弱环节,然后采取相应的措施,避免薄弱环节的出现。

(3)结构的刚度。结构的刚度和抗震能力水平在地震作用下是双向的,确定结构的刚度,然后合理的布置结构能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,结构的刚度不仅仅应该控制结构的变形,还应该尽可能降低地震作用对高层建筑结构的冲击,如果结构发生较大的变形,将会产生重力二阶效应,导致结构失衡而被破坏,降低高层建筑的抗震可靠性,因此,在抗震概念设计中,应该重视结构的刚度设计。

(4)结构的规则性与均匀性。高层建筑的竖向和立面的剖面布置应该规则,结构侧向刚度的变化应该巨晕,避免侧向刚度以及抗侧力结构承载力的突变。沿着建筑物的竖向,机构布置和建筑造型应该规则和相对均匀,避免传力途径、刚度以及承载力的突变,防止结构在竖向上的某一楼或者少数楼层之间出现薄弱的环节。

四、抗震概念设计在高层建筑结构设计中的应用

(1)抗震概念设计应该重视高层建筑的结构规律。在高层建筑的抗震概念设计应用中,应该对高层建筑的体型设计进行科学的修正,保证在质量、刚度、对称、规则上分布均匀,保证设计的整体性,避免局部出现刚度过大的问题。高层建筑的结构布局对抗震概念设计具有十分重要的作用,简单、对称的建筑在地震中的应力分析和实际反映很容易做到,并且能够达到相一致,但是在凹凸的立面与错层设计的高层建筑中,当地震发生时将会产生复杂的地震效应,很难做到对高层建筑抗震效果的最佳分析。因此,高层建筑的抗震概念设计应该重视结构的规律性。

(2)抗震概念设计在结构体系上的应用。高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似手算确定结构设计方案的可行性以及主要构件的基本尺寸。抗震结构方案选择的合理性,直接影响建筑抗震概念设计的经济性与安全性。合理的选择建筑结构体系,应该注意以下三个方面:其一,选择建筑结构体系时,应该对因为部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力,应该坚持抗震设计原则中的赘余度功能和内力重分配功能,这一原则的重要性在许多建筑物地震后的实际状况中都得到了很好的印证;其二,选择建筑结构体系时,不仅仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应该有合理的地震作用传递途径和明确的计算简图,这些都应该和不间断的抗震分析相符合;其三,其中延性是建筑结构中的重要特性之一,结构体系的变形能力取决于组成结构的构件和连接的延性水平,提高结构构件的延性水平,是提高高层建筑抗震设计概念在建筑结构设计应用中的重点问题,通过采用竖向和水平向混凝土构件,能够增强对砌体结构的约束,当配筋砌体在地震中即使产生裂缝也不会倒塌或者散落,保证高层建筑早地震中不至于丧失对重力荷载的承载能力。

(3)抗震概念设计在结构构件上的应用。高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理的预见高层建筑结构先屈服或者破坏的位置,适当的调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,这是结构抗震耗能的一种有效措施,是建筑抗震结构概念设计的重要内容。

结束语

高层建筑的结构设计不仅仅是种技术,某种程度上更是一门艺术。无论什么设计,它都没有唯一的答案,只有通过不断的比较、研究,才能找到最优方案。这就要求设计师们不懈努力地去追求完善的设计方案。随着社会的发展,高层建筑的设计已经不能盲目地照搬课本上的规范和计算机程序,需要创新。总而言之,一幢建筑物,要想做到“小震不坏,中震可修,大震不倒”,就应该要做好文中所提到的几个重点。高层建筑物中的抗震结构设计使建筑结构的设计更加人性化,更加合理化。除此之外,抗震概念设计不仅拓宽了建筑结构设计的思路,同时还为高层建筑的设计提供了新的方向,在建筑行业当中发挥了重要的作用。

篇9

中图分类号:TU97文献标识码: A 文章编号:

随着社会经济的迅速发展和建筑功能的多样化, 城市人口的不断增多及建设用地日趋紧张和城市规划的需要, 促使高层建筑得以快速发展。高层建筑结构设计给工程设计人员提出了更高的要求, 作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要满足高层建筑结构的科学性和合理性。

一、高层建筑结构设计的意义及依据

1.概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

2.概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

二、高层建筑结构设计的原则

1. 选择合理的高层建筑结构计算简图

在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。

2. 选择合理的高层建筑结构基础设计

按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。

3. 选择合理的高层建筑结构方案

合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

4. 对计算结果进行准确的分析

随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

5. 高层建筑的结构设计要采用相应构造措

施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

三、高层建筑结构设计问题分析

1. 高层建筑结构受力性能

对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

2. 高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则L形、T形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

3. 高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B 级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4. 高层建筑结构设计短肢剪力墙设置

我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在5~8 的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

5. 高层建筑结构设计嵌固端的设置

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

6. 高层建筑结构的规则性

在关于高层建筑的新规范中,对于高层建筑结构的规则性做出了很多限制,比如规定了结构嵌固端上层和下层的刚度比,平面规则性等等,并且硬性规定了“高层建筑不能采用严重不规则的设计方案。”因此,为了避免后期施工设计阶段的改动,高层建筑结构的设计必须严格遵循规范的限制条件。

结束语:

随着高层建筑进一步的发展,高层结构的设计越发重要起来,结构设计是一项集结构分析,数学优化方法以及计算机技术于一体的综合性技术工作,是一项对国家建设有重大意义的工作,同时,亦是一门实用性很强的工作。为了革新高层建筑,体现其魅力,追求新的结构形式和更加合理的力学模型将是土木工程师们的目标和方向。

参考文献:

[1]何俊旭.高层建筑结构设计及结构选型探讨[J].价值工程,2010.2:214.

篇10

随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层住宅建筑得以快速发展。文章结合笔者多年的设计实践和体会,就高层住宅建筑工程结构设计中的一些问题加以探讨。

一、高层建筑结构的特征

高层建筑结构不但承受着由于外界的风产生的水平方向的荷载,同时也承受着在垂直方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,建筑结构受到低层建筑结构水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。

二、高层建筑结构设计的原则

2.1选择合理的高层建筑结构计算简图在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。

2.2选择合理的高层建筑结构基础设计按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。

2.3选择合理的高层建筑结构方案合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

2.4对计算结果进行;隹确的分析随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

2.5高层建筑的结构设计要采用相应构造措施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

三、高层建筑结构体系的选型

根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢筋混凝土混合结构体系以及钢筋混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足,钢筋混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢筋混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。

根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架一剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m高度以下的建筑 通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架一剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架一剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

四、高层建筑结构设计问题分析及对策

4.1高层建筑结构存在着超高的问题基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4.2高层建筑结构设计短肢剪力墙设置我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在5~8的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

4.3高层建筑结构设计嵌固端的设置一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。