数据分析统计学方法模板(10篇)

时间:2023-08-12 09:04:31

导言:作为写作爱好者,不可错过为您精心挑选的10篇数据分析统计学方法,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数据分析统计学方法

篇1

1.定量资源

对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因索方差分析;

2.定性资源

对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用X-检验;

3.回归分析

对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;

篇2

随着大数据时代的到来,各企业采用了新的策略,获得了更多的利润。对于统计专业来说,改变发展策略,使培养出来的专业人才能够适应大数据背景的需求是其主要任务。目前,高校统计学专业逐渐认识到大数据时代综合性人才培养的重要性,并对专业建设进行了相关改革。

一、大数据时代对统计学的影响

大数据时代的到来对现代统计专业的发展造成了新的冲击,要确保培养出来的人才能够起到应有的作用,首先要了解大数据时代对统计专业所造成的影响。

(一)大数据时代使数据结构和数据性质发生变化

网络技术以及基于网络技术的电子商务等新的数据记录模式标志着大数据时代的到来。大数据时代,不再依赖于抽样调查的记录模式,网站浏览、视频监控都将形成大量数据。传统的数据结构甚至是数据性质发生了变化。大量的数据信息对于需求者来说,如何甄别其可用价值成为关键。传统的数据可以二维表格显示和整理。但大数据时代所产生的数据具有多样化和复杂化特征,往往包含了大量的音频、视频、HTML等。这要求大数据的收集具有较强的目的性,才能实现其价值。

(二)大数据时代要求统计分析方法和统计思维更新

大数据时代的主要特征为数据多且复杂,数据分析要求分析者对总体进行分析。在这一背景下,参数统计不再具有意义,假设检验法也随着总体分析而失去价值。数据的复杂化对传统大数据统计思维造成了巨大的冲击,要求统计者具有活跃的思维。只有对传统数据的改变进行分析,并且树立新的统计方法。

二、大数据时代下的统计学发展新策略

为适应大数据时代的需求,统计学专业的发展势必要对传统模式进行改革。目前,多数高校统计学专业已经认识到大数据对于其发展带来的冲击。为此,本文提出了以下策略,以及能够帮助统计学取得更好发展。

(一)加强统计应用性教学

根据大数据时代数据的总体分析特征,数据分析人员应掌握全面的分析方法。在人才培养过程中,应致力于培养实践分析能力,提高数据和资料收集能力,并且培养其强烈的数据价值观,使其能够从众多数据中找到所需的。另外,对传统模式进行改革,增加大数据统计内容,以适应时代的需求。基于大数据的结构特点,实施资料透视化教学,提高分析者对复杂数据的分析能力。

(二)培养大数据统计思维

在人才培养过程中,新的统计思维的培养具有重要意义,即强调数据分析实践能力的提高。统计思维的培养有助于数据分析者对复杂的数据进行区分,从而整理有效信息。在大数据时代,不仅要以传统的平均思维、动态思维和变异思维为基础,还要注重基于整体分析的大数据思维。另外,还要培养数据分者的复杂性思维,以应对复杂的数据库。总之,大数据时代需要数据分析者具有全面的、创新性的思维。

(三)强化基础性统计知识

统计学自身具有复杂性,其改变多且抽象。基础的统计知识是进一步掌握大数据分析思维的基础,可见学习基础性统计知识的重要性是不言而喻的。为此,应该采取深入浅出的方法,利用多媒体等方式使复杂的数据统计清晰化、简单化。结合具体的案例使数据分析者正确认识统计概念、掌握统计原理和方法。此外大数据分析不再是一种专业,而是更倾向于一种技术,这要求我们将大数据分析与统计学以外的相关知识相互联系。注重真实相关与伪相关的讲解,强调商务智能的开发和分析。只有具有坚实的基础,才能确保数据分析者大数据分析思维的养成,适应现代社会的需求。

(四)加强复合型人才培养

为适应大数据时代的需求,复合型人才的培养是关键。所谓复合型人才,是指其不但要具有专业的数据分析能力,还要相应的具备管理以及其从事专业的技术。大数据时代,高校应建立全面的人才培养模式,注重培养人才的数据分析能力、编程能力等,使其真正了解大数据,懂得如何利用大数据对其所处的行业起到积极作用才是关键。总之,大数据时代对综合性人才具有更高的需求,大数据时代不仅培养的是一种能力,而且是一种思维,是对全新模式下的数据的分析和利用。高校作为人才培养的重要基地,其教学模式的改革、对大数据时代所需教学模式的认识是高校的主要任务。

三、总结

统计学是经济学的基础课程,传统的统计人才培养具有定向性。而随着大数据时代的到来,数据产生的形式多样,且具有复杂性。大数据分析不仅是作为一种专业存在,而是应以一项必备的技术而存在。大数据时代,传统的统计思维和统计方法发生了改变,统计人才培养方式的改革也就势在必行。(作者单位:海南师范大学)

参考文献:

[1] 朱怀庆.大数据时代对本科经管类统计学教学的影响及对策[J].高等教育研究,2014(3).

[2] 姚寿福.经济管理类本科专业统计学课程教学改革思考[J].高等教育研究,2012(3).

篇3

中图分类号:G632 文献标识码:A 文章编号:1674-2117(2014)10-0008-02

1 大数据的统计涵义

通常来说,凡是数据量超过一定大小,导致常规软件无法在一个可接受的时间范围内完成对其进行抓取、管理和处理工作的数据即可称为大数据。业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征:数据体量巨大、数据类型繁多、价值密度低、处理速度快。

大数据潮流让我们获得了海量的数据,数据已经成为相关行业创造价值的重要资源。因此,许多IT企业和互联网企业都已将业务范围延伸至大数据产业,探索大数据驱动的业务模式。2012年,美国政府投资2亿美元启动的“大数据研究和发展计划”,更是将大数据的研究上升到国家战略层面。然而,大数据的真正意义不在于数据量的巨大,而在于对数据信息进行专业化的处理,核心是对数据进行分析。面对大数据,越来越多的领域都开始运用数学特别是统计学的工具,挖掘大数据中真正蕴藏的价值。正如西内启在《看穿一切数字的统计学》书中所指出的,“从数据中得出有意义的结果,关键在于控制和减少误差,得出因果关系,单纯收集数据并加以全部量化分析在很多情况下会得出谬误结果,”而科学的统计学方法是得出因果关系的最佳方法。

从统计学角度看,一方面,大数据具有类型繁多、结构复杂、体量巨大等特点,海量数据以分布式方式进行存储,特别是图片、音频、视频等非结构化数据的广泛存在,传统的统计方法和统计分析工具已无法满足大数据分析的需要,亟需统计方法的革新。另一方面,数据分析结果需要用生动、直观、容易被接受的方式展示给读者,可视化分析能够直观地呈现大数据的特点,阐释数据与数据之间的联系。因此,统计学要挺立大数据潮头,创新统计分析工具、可视化分析方法,以大数据的挖掘和应用为核心,将传统文本、图像的统计、分析向数据分析转变,以适应大数据时代的发展及其对统计学带来的挑战。

2 大数据时代统计学教育面临的挑战与应对

据互联网数据中心(Internet Data Center)预测,中国大数据技术与服务市场将会从2011年的7760万美元快速增长到2016年的6.16亿美元,而据业界专家估算,中国大数据市场的人才需求量至少为100万人,其中统计人才、技术更是捉襟见肘。传统数据收集和分析技术的知识结构已不能满足大数据时代对“数据科学家”的要求,多家企业在面对大数据发展时遭遇人才瓶颈。大数据相关人才供给不足将会成为影响大数据市场发展的一个重要因素。

当前,全世界范围内已有数百个高校开设了大数据分析专业。卡内基梅隆大学和新泽西州立大学在培养目标和课程设置上项目设置偏重于计算机方向。课程设置偏重统计学与运筹学(包括决策科学)的典型学校有田纳西大学和约克大学。2013年,北京航空航天大学与慧科教育合作开办了国内首个“大数据技术与应用”软件工程硕士项目研究生班,这是目前国内唯一一个培养大数据行业专业型人才的项目,但其培养目标、知识体系是面向计算机领域,而立足统计学基础的大数据分析人才培养项目,在国内可谓是凤毛麟角。

知者随事而制。高等院校统计学专业要通过有效利用和整合人才培养资源,承担大学人才培养的责任,驾驭大数据的浪潮,占领大数据发展人才培养的制高点,体现高等院校向社会、企业提供智力支撑,输送企业亟需的复合型、实用性大数据分析人才的载体作用,确保产业科学、持续、高速的发展。一是教育资源的整合,走在前列的首都经济贸易大学、北京大学、中国人民大学、中国科学院大学、中央财经大学五所应用统计专业硕士培养单位在北京成立了“中国大数据教育协同创新体”,在高校之间实现学科融合、优势互补、强强联合,通过共享优质资源平台、共同建立课程体系、共同建设案例资源库、联合搭建实践实训平台等多种形式,创新人才培养体制机制。二是高等院校教育资源与业界资源的整合,通过与国有超大型企业、互联网翘楚的协同培养,立足应用统计专业硕士教育,建立人才培养基地,进行协同创新,探索构建应用统计(大数据分析)专业硕士人才协同培养模式。以缓解当前大数据人才供需矛盾为目的,建立“校校协同、校企协同、院系协同”的大数据分析方向人才协同培养模式,最终实现协同培养“数据科学家”的目标。[5]

3 面向大数据分析方向的应用统计专业硕士培养模式的构建

本研究认为,可以将大数据分析及相关的案例教学模式融入应用统计专业硕士学位研究生的培养过程,进而打破统计学传统的以阐述统计理论、公式推导、数学计算为主的教学模式。以情境浸润为基础,为学生呈现统计学在大数据领域应用为核心的教学模式,可以培养学生对大数据的挖掘、整合、分析价值的能力,以期更好、更快地适应企业对数据分析师、数据科学家的需求。

3.1 科学构建课程体系,突出大数据分析特点

大数据具有强烈的行业特点,在充分借鉴国外大学成功经验的基础上,大数据分析专业硕士的课程设置,强化数据分析能力和数据挖掘能力,注重上述技术在金融等领域的应用。必修课在讲授统计基础理论(描述、多元、时序、空间、可视化等)课程的基础上,为增强学生的大规模分布式计算技能,引入主流的大数据计算平台,如Hadoop分布式平台、MapReduce并行编程算法。与此同时,为提高学生动手能力,构建数据模型思维,开设《大数据分析案例》等多门课程。选修课方面,考虑到学生二次开发的需要,设置大数据开发基础课程,如C++、Java等。为突出应用统计专业硕士侧重应用的特点,开设面向数据的编程语言,如R、SAS、Python等课程。这些课程模块的设置并非体现某一学科知识的纵深发展,而是将相关学科的知识融合,有利于突出大数据分析的特点。

3.2 创新教学培养模式,注重培用结合

以“编组”方式开展教学活动。授课教师和学生均采用团队编组模式,多名教师协同工作,共同完成一门课程的授课任务。打破原有学科思维、教材的束缚。采用导师指导与集体培养相结合的方式。教师不可照搬旧有的教学大纲、课程内容,要学习和熟悉大数据相关知识体系与技术新进展,充分结合大数据分析需求和实际案例,使课程内容紧贴实际需求,注重培养学生对模型的理解,对数据的想象力,真正实现学以致用、培用结合。

采取“订制化”培养模式,突出培养与应用相结合的特点,力争做到人、岗的高度匹配。“订制化”培养模式打破了目前应用统计专业硕士统一培养、与市场需求脱节的模式壁垒,教学实践以市场需求为导向,依照企业的岗位标准、用人要求,强调以岗位需求制定培养方案,更好地满足用人单位对大数据分析人才的需求。

3.3 开展校企协同培养,构建问题导向、项目牵引的实践教学模式

根据国务院学位委员会的规定,应用统计学专业硕士学位研究生教育的目的是培养具有良好的统计学背景,系统掌握数据采集、处理、分析和开发的知识与技能,具备熟练应用计算机处理和分析数据的能力,能够并适应行业或职业实际工作需要的应用型高层次人才。因此,要摒弃普遍存在的重理论轻实践、重知识轻技能的教学方式。

协同创新培养在实践教学中建立了以问题为导向,以项目为牵引的运作机制,强调实践教学内容的呈现方式要面向企业需求,让学生参与到企业的项目运行过程中,引导学生建立业务建模能力,培养学生的数据资源整合能力,激发学生参与项目的积极性和自觉性。学生不拘泥于学校的实验实训基地和各类实验室,在第二学年中安排一定时间走出校门,进入到企业的实际环境中,参与企业的项目组织、实施过程,在实践过程中提升自我认知能力,在实践过程应用知识和理论研究实际问题的能力,培养和锻炼数据资源整合能力、沟通协调能力、IT支撑能力、业务建模能力,真正实现面向能力培养的目的。指导教师方面,在案例教学和实习阶段引进业务素质高、项目经验丰富、对大数据发展有敏锐洞察力的企业高级数据分析人员,指导学生在实习实践中提出问题、建立模型、解决问题的能力。

4 结语

应用统计(大数据分析)专业硕士人才协同培养模式,是一项可持续发展的应用统计专业硕士人才培养的新模式,是专业硕士教学实践的创新举措,也是在全国率先建立起来的立足统计学,在大数据分析人才层面建立的校校协同、校企系统办学体。体现了面向能力培养、面向社会需求培养、面向人才价值培养的“三个面向”的培养目标,着重培养学生分析数据、处理数据、展示数据的能力,对于培养“高层次、实用性、复合型、国际化”大数据分析人才意义重大,同时也是顺应大数据技术革命的浪潮,必将对大数据等新兴技术产业的发展注入活力。

(首都经济贸易大学,北京 100070)

参考文献:

[1]刘军.Hodoop大数据处理[M].人民邮电出版社,2013.

[2]大数据的四个典型特征[N].中国电子报、电子信息产业网,2012(12).

篇4

大数据在如今社会已经成为热点词汇,不仅在计算机领域,在其他各个行业都能够得到运用,为各个行业提供便捷,为了让大数据能够得到充分利用,下文将对大数据分析相关方面进行讨论。

一、大数据与大数据时代

(一)大数据大数据是在当今科技飞速发展的情况下,一种新兴的信息数据处理技术。随着社会科技的进步,各行各业对于数据的应用也越来越广泛,传统的数据处理技术耗时较长且精准度较为低下,已经不能满足现代科技对数据应用的要求。新时代的大数据系统具有超大的数据容量,同时兼容半结构化与结构化的数据,远远超出传统数据库管理系统的管理能力。因此新的大数据技术就此诞生。大数据在发展过程中,具有比为鲜明的特点。与传统数据处理技术相比,大数据具有数量庞大、多样化、速率快、价值高的特点。在信息处理的速度不断加快的当今社会,这样的特点为大数据的广泛应用打下了坚实基础。由于数据的数量较为庞大,且各种数据近年来的增长趋势呈指数型,其数据的种类和形式也各有不同。其次,合理利用大数据技术,能够在一定程度上降低成本,提高效率,因此,大数据处理各项关键技术的进一步的开发与利用已成为了提高自身效率,实现核心竞争力的重中之重。

(二)大数据时代大数据时代是指在物联网技术、计算机技术、数据信息处理技术的基础上,通过互联网途径,大量收集并处理分析数据资源,而形成一种新型的信息时代。大数据时代的主要核心内容是对庞大的数据体系进行处理以发挥价值,从而提升数据分析效率以及数据应用价值。大数据时代是由多种信息技术共同组成,可以有效地避免数据处理中不同步、使用不方便的情况发生,具有高效可靠的数据处理、整合、分析及汇总的功能。因此,大数据时代的新型数据处理技术可最大程度的对数据进行分析与挖掘,极大提高处理数据的效率。

二、大数据时代与统计学

(一)大数据时代与统计学的关系统计工作是集数据的搜集、整理、分析和解释为一体的系统的过程。大数据与统计二者互相依存,通过统计的方法和原理对数据进行整理和分析,提高数据的精确度和适用度,以此来实现数据的价值和利用率。由此看来,大数据与统计学的联系既紧密,又存在区别。大数据与统计学的关系甚为密切,它们都是关于数字的学科。统计学为大数据提供了了施展方向,而大数据将统计学引领至更深更广的空间。共性之一就是社会与数据。几乎所有的行业与大数据都有着密切联系,这些联系或直接或间接,而人们正是通过获取数据并进行分析,从而才能得到商业知识和社会服务等能力。大数据与统计学的区别。首先,信息规模不同。大数据的分析对象是与某事物有关联的所有数据,要求数据量庞大。统计学则是用样本来分析和推断总体的数量特征。在大数据时代,则可以通过各种方法和渠道获得全面而又完整的的信息资料,从而完成更多从前无法完成的事情。其次,动静标准不同。数据经过了搜集、整理、分析的过程就很有可能因为精确性不足而被认为失去了用处。而大数据时代,则不必再担心这个问题,数据的精确性和原始性不在被过分重视,人们可以接受复杂数据。第三,数据搜集形式不同。在以往数据搜集形式主要是抽样调查,方法局限。而在大数据时代,特点是信息爆炸和互联网飞速发展,这一情况得到改观。最后,思维方式不同。大数据时代人们的思维发生转变,人们开始更多的关注事物的相关关联。

(二)大数据对统计学研究工作的影响首先,大数据丰富了统计学的研究对象。在大数据时代,我们既可以以结构化数据作为测量单位对文本、图像和视频等进行分析,还可以对非结构化数据实行分析。其次,大数据影响了统计学的工作进程。统计数据需求丰富,原有的统计抽样分析不能在适应时代的发展,而现代科技方法如透过传感器自动收集数据等方法取代了传统方法,更加便捷有效。

三、大数据数据分析理念

篇5

统计思想需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的数理统计思想。

二、数理统计思想的特点

数理统计思想从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在数理统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)数理统计思想强调方法性与应用性的统一;(2)数理统计思想强调科学性与艺术性的统一;(3)数理统计思想强调客观性与主观性的统一;(4)数理统计思想强调定性分析与定量分析的统一。

三、数理统计思想

就是统计实际工作、数理统计学理论及应用研究中必须遵循的基本理念和指导思想。数理统计的思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。

1.均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有数理统计学理论,是数理统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。数理统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

3.估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

4.相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

5.拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模于此而预示的可能性”。

6.检验思想

数理统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

四、数理统计的思想方法?

1.要更正不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

2.要不断拓展统计思维方式

数理统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.要深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析、推断性数据分析和探索性数据分析等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

数理统计思想方法应用必须坚持以事实为依据、用数据说话的原则,把统计技术的应用与专业技术紧密结合,在考虑统计项目实施时,应从理论和事实层面上注重分析和使用条件,认真权衡各种关联因素。数理统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

参考文献

[1] 陈福贵.统计思想雏议[J]北京统计,?2004,(05).

[2] 庞有贵.统计工作及统计思想[J]科技情报开发与经济,?2004,(03).

篇6

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2 统计学中的几种统计思想

2.1 统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2 比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1 均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2 变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3 估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4 相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5 拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6 检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3 统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3 对统计思想的一些思考

3.1 要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1] 陈福贵.统计思想雏议[J]北京统计, 2004,(05) .

[2] 庞有贵.统计工作及统计思想[J]科技情报开发与经济, 2004,(03) .

篇7

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

篇8

 

 

1关于统计学 

 

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。 

 

2 统计学中的几种统计思想 

 

2.1 统计思想的形成 

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。 

2.2 比较常用的几种统计思想 

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下: 

2.2.1 均值思想 

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。 

2.2.2 变异思想 

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。 

2.2.3 估计思想 

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。 

2.2.4 相关思想 

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。 

2.2.5 拟合思想 

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。 

2.2.6 检验思想 

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。 

2.3 统计思想的特点 

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。 

 

3 对统计思想的一些思考 

 

3.1 要更正当前存在的一些不正确的思想认识 

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如gnp、人口增长率等等,均是凯特勒及其弟子们的遗产。 

3.2要不断拓展统计思维方式 

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。 

3.3深化对数据分析的认识 

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(dda)、推断性数据分析(ida)和探索性数据分析(eda)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。 

 

参考文献: 

[1] 陈福贵.统计思想雏议[j]北京统计, 2004,(05) . 

篇9

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2 统计学中的几种统计思想

2.1 统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2 比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1 均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2 变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3 估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4 相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5 拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6 检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3 统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3 对统计思想的一些思考

3.1 要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献

[1] 陈福贵.统计思想雏议[J]北京统计, 2004,(05) .

篇10

2统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。新晨

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).