数据分析的方法模板(10篇)

时间:2023-08-20 14:46:43

导言:作为写作爱好者,不可错过为您精心挑选的10篇数据分析的方法,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数据分析的方法

篇1

中图分类号:N37 文献标识码:B 文章编号:1009-9166(2009)02(c)-0063-02

现代企业的决策往往是在整合大量信息资料的基础上制定出来的,对数据的理解和应用将是企业决策的基石。与传统的操作型应用相比,数据利用的应用建设难度更大,它是随着管理水平而发展,同时又取决于业务人员的主观意识,这就决定了以数据利用为核心的应用建设不可能一蹴而就,而是一个长期迭展的建设过程。从2003年起工厂开始全面推进数据分析应用工作,经历过曲折,同时也有收获。经过多年的努力,工厂的数据分析应用工作开始进入良性发展阶段,笔者认为有必要对工厂目前数据分析应用工作作一总结和思考。

一、工厂数据分析应用工作开展现状

工厂数据分析应用工作推进至今已有四五年的时间,从最初全面调研工厂数据量和数据分析应用状况,将数据分析应用率指标作为方针目标定量指标来考核,到后来将数据分析应用工作的推进重心从量向质转移,采用以项目为载体进行管理,着重体现数据分析应用的实效性,再到目前以分析应用的需求为导向,以分析应用点为载体,分层次进行策划。经过上述三个阶段,工厂数据分析应用工作推进机制得到了逐步的完善,形成了广度深度协同发展的信息资源利用管理框架。截止到目前,工厂数据分析应用率达到96%,四个层次的分析应用点共计100多个,数据分析应用工作在生产、质量、成本、物耗、能源等条线得到广泛开展,有效推动了工厂管理数字化和精细化。2007年,工厂开始探索细化四个应用层次的推进脉络,进一步丰富工厂信息资源利用框架,形成层次清晰、脉络鲜明、职责分明的信息资源利用立体化的推进思路。

1、第一层次现场监控层。第一层次现场监控层,应用主体是一线工人和三班管理干部,应用对象是生产过程实时数据,应用目标是通过加强生产过程控制,辅助一线及时发现生产过程中的异常情况,提高生产稳定性。例如制丝车间掺配工段的生产报警,通过对生产过程中叶丝配比、膨丝配比、梗丝配比、薄片配比、加香配比等信息进行判异操作,对异常情况通过语音报警方式提醒挡车工进行异常处理;例如卷包车间通过在机台电脑上对各生产机组的工艺、设备参数、实时产量、质量、损耗数据的监控,提高对产品质量的过程控制能力。第一层次应用以上位机和机台电脑上固化的监控模型为主,制丝车间每个工序、卷包车间每种机型的应用点都有所不同,为此我们建立了制丝车间以工序为脉络,卷包车间以机种为脉络的应用点列表,围绕脉络对第一层次应用点进行梳理,形成第一层次应用的规范化模板。制丝车间第一层次应用点模板包括工序名称、应用点名称、应用模型描述、应用对象、应用平台、异常处置路径等基本要素。卷包车间应用点模板横向根据机种分,纵向按上班及交接班、上班生产过程中、下班及交接班三个时间段分,通过调研分别列出挡车工针对每个机种在三个时间段分别要查看的数据和进行的操作。随着模板的扩充和完善,一线职工的知识、经验不断充实其中,第一层次应用点模板将成为一线工人和三班管理干部日常应用监控的标准,同时可以规避人员退休或调动带来的经验、知识流失的风险。2、第二层次日常管理分析层。第二层次日常管理分析层,应用主体是一般管理干部,应用对象是产质损、设备、动能等指标,应用目标是通过加强对各类考核指标的监控和分析,提高工厂整体的关键绩效指标水平。例如制丝车间的劣质成本数据汇总和分析,通过对车间内各类废物料、劣质成本的数据进行汇总、对比和分析,寻找其中规律及薄弱环节,并寻根溯源,采取措施,降低劣质成本。例如卷包车间的产量分析,通过对产量数据、工作日安排、计划产量进行统计和汇总,结合车间定额计划、作业计划和实际产量进行分析,寻找实际生产情况与计划间的差异,并分析原因。第二层次应用以管理人员个性化的分析为主,呈现出分析方法多样化、应用工具多样化的特点。但是万变不离其中的是每个管理岗位的管理目标以及围绕管理目标开展的分析应用是相对固定的,至少在短期内不会有太大的变化。为此我们建立了一份以重点岗位为脉络的应用点列表,围绕脉络对第二层次应用点进行梳理,形成第二层次应用的规范化模板。模板包括岗位名称、管理目标、应用点名称、应用描述、涉及主要考核指标、应用平台、应用频次、分析去向等基本要素。通过构建第二层次应用点模板,明确了每个管理岗位应用信息资源支撑管理目标的内容和职责。随着新的管理目标的不断提出以及应用的逐步深入,模板每年都会有更新和扩充。3、第三层次针对性分析应用层。第三层次针对性分析应用层,应用主体是项目实施者,应用对象是各类项目的实施过程,例如QC项目、六西格玛项目、质量改进项目,或针对生产中的特定事件进行的分析和研究。应用目标是通过应用数据资源和统计方法开展现状调查、因果分析、效果验证等工作,提高各类项目实施的严密性和科学性。第三层次的应用工具在使用初级统计方法的基础上会大量应用包括方差分析、回归分析、正交试验、假设检验、流程图等在内的中级统计方法。以QC活动为例,我们可以看出其实施过程无一不与数据应用之间有密切的联系[1]。近年来,在质量改进项目和QC项目的评审工作中已逐步将“应用数据说话、运用用正确合理的统计方法,提高解决问题的科学性”作为项目质量考核标准之一。而六西格玛项目实施的核心思想更是强调“以数据和事实驱动管理”,其五个阶段[2]D(定义)、M(测量)、A(分析)、I(改善)、C(控制),每个阶段都要求结合如FMEA(失效模式后果分析),SPC(统计流程控制),MSA(测量系统分析),ANOVE(方差分析),DOE(实验设计)等统计方法和统计工具的应用。4、第四层次主题性应用层。第四层次主题性应用层,应用主体是中层管理者,应用对象是专业性或综合性的分析主题,应用目标是通过专业科室设计的专题性分析模型或综合性分析模型,为中层管理层提供决策依据。工厂在实施了业务流程“自动化”之后,产生了大量的数据和报表。如何将工厂的业务信息及时、精炼、明确地陈述给中层管理层,以此来正确地判断工厂的生产经营状况,是摆在我们眼前的一个突出问题。大家都有开车的经验,司机在驾驶车辆的时候,他所掌握的车况基本上是来自汽车的仪表盘,在车辆行使的过程中,仪表盘指针的变化,告知汽车的车速、油料、水温等的状况,驾驶员只要有效地控制这些指标在安全范围之内,车子就能正常地运行。我们不妨将仪表盘的理念移植于工厂,建立工厂关键指标及运行管理仪表盘,将工厂的关键信息直观地列在上面,及时提醒各级管理人员工厂生产运营是否正常。

⑴关键绩效指标监控系统。对分布在各处的当前及历史数据进行统一展示,以工厂关键绩效指标为中心,支持统计分析和挖掘,可为中层管理者提供工厂关键绩效指标一门式的查询服务,使各业务部门寻找、阐释问题产生的原因,以有效监控各类关键绩效指标,及时采取改进措施,提高生产经营目标完成质量。⑵系统运行状态监控系统。通过数据采集、手工录入等各种渠道收集各类系统的运行状态,及时掌握故障情况,采取措施加以闭环,将因系统故障造成对用户的影响减至最小,确保各类系统的稳定运行和有效应用。通过建立系统运行状态监控系统,中层管理人员上班一打开电脑进入系统,就能了解到当天及上一天各类系统的运转情况,发生了什么异常,哪些故障已经得到解决,哪些故障还未解决。⑶第四层次主题性分析应用。在展示关键绩效指标和系统运行状态的基础上,由各专业科室思考专业条线上的分析主题,采用先进科学的理念和方法对数据进行分析和挖掘。近两年来,工厂充分发挥专业科室的优势和力量,相继设计和开发了工艺质量条线的六西格玛测评系统,设备条线的设备效能分析系统,还有质量成本核算与分析系统。通过这些分析主题的支持,工厂管理人员可以更方便快捷地了解质量、设备、成本等条线上的关键信息,及时采取相应措施,从而提升管理效率。

二、数据分析应用工作存在的不足及思考

工厂数据分析应用工作的推进方法从最初的采用数据分析应用率单个指标进行推进发展到目前按上文所述的四个层次进行推进,每个层次的推进脉络已经逐步清晰和明朗,但事物发展到一定的阶段总会达到一个瓶颈口,目前工厂数据分析应用工作存在的问题及措施思考如下:

1、从推进手段上要突破信息条线,充分发挥专业条线的力量。信息条线作为推进工厂数据分析应用的主管条线,其作用往往局限在技术层面上的支撑。虽然信息条线每年都会规划形成工厂数据分析应用整体的工作思路和具体的实施计划,但是无论从工厂层面还是从车间层面来讲,单纯依靠信息条线从侧面加以引导和推进,使得数据分析应用工作始终在业务条线的边缘徘徊,与产量、质量、设备、消耗、成本、动能等各个条线本身工作的结合度有一定的距离。所以工厂要进一步推进数据分析应用工作,调动起业务人员的积极性和主动性,突破现有的瓶颈,应该考虑如何调动起专业条线的力量。一是可以在年初策划应用点的时候要加强专业条线对车间业务自上而下的指导,引导管理人员加强对缺少数据分析支撑的工序、岗位/管理目标的思考;二是建立平台加强各车间同性质岗位之间的沟通与交流,均衡各个车间的数据分析应用水平和能力;三是对车间提交的分析报告给出专业性的指导意见。2、要加强对数据中心的应用。数据中心的建立可以使业务系统从报表制作、数据导出等功能中解放出来,专注于事务处理,将数据应用方面的功能完全交给数据中心来解决。目前,数据中心已建立了涉及产量、质量、消耗等各个条线的Universe模型,并对全厂管理干部进行了普及性的培训。但是从目前应用情况来看,还比较局限于个别管理人员,追寻原因如下:一是业务系统开发根据用户需求定制开发报表,业务人员通常习惯于从现成的报表中获取信息。如果要求业务人员使用数据中心工具自行制作报表模板,甚至可能需要将其导出再作二次处理,那么业务人员一定更倾向于选择第一种方式。二是近几年来人员更替较多,新进管理人员不熟悉数据中心应用,导致数据中心应用面受到限制。随着今后MES的建设,业务系统中的数据、报表、台帐和分析功能将有可能由业务用户自行通过集成在MES中的数据中心前端开发工具来访问和灵活定制。因此,要尽快培养工厂业务人员数据中心的应用能力,包括数据获取以及报表定制方面的技能。笔者认为应对方法如下:一是对于岗位人员变更做好新老人员之间一传一的交接和培训;二是适时针对新进管理人员开展集中培训;三是通过采用一定的考核方法。3、提高新增应用点的质量。工厂每年都会组织各部门审视第一、第二层次应用点列表,围绕重点工序和重点管理岗位调研有哪些应用上的空白点是需要重点思考的,以新增分析应用点的方式进行申报和实施。同时针对第三层次针对性分析应用,工厂也会要求部门以新增分析应用点的方式将需要数据支撑的项目进行申报。作为一项常规性工作,工厂每年都会组织部门进行应用点的申报,并按项目管理的思想和方法实施,事先确立各个应用点的应用层次、数据获取方式、实现平台,并对其实施计划进行事先的思考和分解,确定每一个阶段的活动目标、时间节点以及负责人员,每个季度对实施情况予以总结,并动态更新下一阶段的实施计划。该项工作从2005年起已经连续开展了三年,部门可供挖掘的应用点越来越少,如何调动部门的积极性,保持并提高应用点的实效性,我们有必要对新增分析应用点的质量和实施情况进行考评,考评标准为:一是新增分析应用点是否能体现数据应用开展的进取性、开拓性和创新性;二是新增分析应用点是否能切实提高管理的精细化和科学化水平;三是新增分析应用点是否能采用项目管理的思想和方法实施,按时间节点完成各项预定计划。

三、结束语。随着近几年来技术平台的相继成熟以及管理手段的逐步推进,工厂业务人员用数据说话的意识已经越来越强,但是要真正使工厂管理达到“三分技术、七分管理、十二分数据”的水平,还有很长的路要走,这既需要我们的业务人员从自身出发提高应用数据的水平和能力,同时也需要工厂从管理手段和管理方法上不断拓宽思路、创新手段,真正实现数据分析应用成为工厂管理的重要支撑手段。

作者单位:上海卷烟厂

篇2

(一)统计规律分析

就是采用数理统计方法、模糊数学方法以及适用于小同环境要素的数学和物理方程等方法,对所得的监测数据进行深度剖析,做出详细的分析评价。这种数据分析方法主要适用于环境调查、环境规划和环评等工作。

(二)合理性分析

实际的环境监测中,影响环境要素变化的因素错综复杂,而有效的能用于综合分析的监测数据十分有限,所以我们需要考虑到各种环境要素之间的相互影响,以及监测项目之间的关系,理论结合实际全面分析数据的合理性,这样才可能得到准确可靠的、合理的监测数据分析结果。

二、提高环境监测数据分析质量的方法

为了促进环境执法工作的严肃和公正,在科学化环境管理政策中,提高环境数据分析质量很有必要。在前人的研究工作基础之上,我们提出了以下几种方法来提高数据分析质量。

(一)加强审核

加强各项审核是提高环境监测数据分析质量的重要方法,它主要是指加强对现有数据的综合审核。在进行例行监测或是年度监测计划时,我们的工作一般都是连续性的展开的,一年或是好几年,因此,我们可以建立一个动态的分析数据库,录入每次的监测数据,包括每个污染源的详细信息(污染点的地理位置和排放口的排污状况等),在以后的审核中,我们可以迅速地在数据审核中对于同一采样点、同一分析项目进行新旧数据的分析对比。当数据分析结果出现异常时,可以及时的发现并找到原因,这可以对污染应急事故的发生起到提前警示的作用。另外,在数据审核中,也要密切注意到同一水样、不同的分析项目之间的相关性,比如:同一水体中氟化物和总硬度、色度和pH的关系、氨氮和总氮之间的相关性等,这样也能及时发现数据分析中出现的误差。

(二)加强监督机制

通过调研我们发现,目前在传统的监测数据质量控制系统中依旧存在许多不足,我们可以通过引入反馈和交流机制,加强监督机制来有效提高数据分析的质量。首先,通过强化平面控制,在系统内部全面优化管理的模式,提高工作人员的分析技术水平,尽可能的减少或消除数据误差,以此来提高监测分析的准确性;其次,我们应该主动接受来自外界的监督,对于外界有异议的监测数据要进行反复的检测;再次,我们也应该多举办技术交流会,让技术人员可以与各级环境监测部门的人员沟通,学习他们的先进技术和方法,同时进行数据分析结果对比,找到自身的不足,发现问题并能及时更正。

(三)加强采样及实验室测量质量的控制

1.采样控制

工作人员在每次采样前,都应该根据实际环境情况来制定采样技术细则,做好采样控制,比如:需要校准仪器并确保仪器可以正常运转;使用的采样管和滤膜要正确安装,采样器干净整洁没有受到污染源的污染,其放置的位置也能满足采样要求等。采集好的样品,要妥善存放避免污染。如果样品不能及时进行检测,考虑到样品的稳定性,最好将样品密封并存放在于冰箱中。

2.实验室测量控制

在实验室进行样品测试之前,首先应该对所要用到的玻璃量器及分析测试仪器进行校验。日常工作中,也应该根据各种仪器保养规定,对仪器定期进行维护和校验,确保仪器可以正常运转工作。其次,需要准确调配各种溶液,特别是标准溶液,配置时要使用合格的实验用蒸馏水。测试数据时,先要测定标准样品并绘制标准曲线。测定样品时要检查相关系数和计算回归方程,并对实验系统误差进行测验,每一步都不能少。

篇3

分析网站流量这是首要工作,如果是网站建设初期,那么此时的流量分析就只要记住网站登陆搜索引擎后的流量基数即可。如果是网站建设中期的话,就要记录网站流量一周的平均值,如果是网站建设后期的话,就要记录网站流量的阶段性波动值!记录好了流量值之后,就可以很好的计划出下一步优化推广的流量值了。

网站优化数据分析方法二:关键词分析

网站关键词分析也是网站优化的重要工作之一!分析现在网站关键词的布局,分析网站有流量的关键词,分析网站还没有覆盖的与网站业务相关的关键词,分析出网站主关键词的排名情况,分析关键词的设计是否合理。分析顶级关键词是否占据了搜索引擎首页的排名,分析搜索关键词的质量高不高,与网站业务的相关度如何?!分析关键词转化率如何等等。

篇4

中图分类号:F01 文献标识码:A 文章编号:1006-0278(2013)02-024-01

在计量经济学中,我们一般应用的最多的数据分析是截面数据回归分析和时间序列分析,但截面数据分析和时间序列分析都有着一定的局限性。在实际经济研究当中,截面数据回归分析会遗漏掉数据的时间序列特征,例如在分析某年中国各省的GDP增长数据时,单纯的截面数据回归分析无法找出各省GDP随时间变化的特征,使得分析结果没有深度。而如果只用时间序列分析,则会遗漏掉不同截面间的联系与区别,例如在分析中国单个省市的GDP随时间增长的数据时,无法找出各个省市之间经济增长的联系与区别,因而同样无法满足我们的需要。而面板数据,是一种既包括了时间序列数据,也包括了相关截面数据的复合数据,是近年来用得较多的一种数据类型。

下面我们将基于2000-2009年中国各省GDP和财政收入的面板数据的实例来详细阐述面板数据的分析方法。

一、GDP与财政收入关系的经济学模型

财政收入是保证国家有效运转的经济基础,在一国经济建设中发挥着重要作用。随着中国经济发展速度的日益加快,财政收入不断扩大,而扩大的财政收入又以政府支出来调节和推动国民经济发展。正确认识财政收入与经济增长之间的长期关系,把握财政收入与经济增长之间的相互影响,发挥财政收入对经济发展的调节和促进功能,对于完善财税政策,深化财税体制改革,实现财政与经济之间的良性互动,具有重要的现实意义。文章就将从中国各省的面板数据出发研究,中国不同地域间财政收入和GDP之间的关系。

二、实证分析

(一)单位根检验

Eviews有两种单位根检验方法,一种在相同根的假设下的检验,包括LLC、Breintung、Hadri。另一种则是在不同根下的假设前提下,包括IPS,ADF-Fisher和PP-Fisher5。检验结果表明所有检验都拒绝原假设,因此序列GDP和CZSR均为一个2阶单整序列。

(二)协整检验

如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。

在最终的结果中,Pedroni方法中除了rho-Statistic、PP-Statistic项目外都拒绝GDP和CZSR不存在协整关系的原假设,同样Kao和Johansen检验方法也都拒绝原假设,因此,上述检验结果表明,我国各省2000-20009年的GDP和财政收入面板数据间存在着协整关系。既然通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的,因此可以在此基础上直接对进行回归分析,此时假设方程的回归结果是较精确的。

三、建立模型

混合模型:如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。

我们根据混合模型的回归结果,得到财政收入和GDP之间的回归方程为:

CZSR=227.3123+0.103224*GDP

(26.47637)(0.002839)

R2=0.810995 F=1321.587

显然从模型的回归结构来看,R2的值达到了0.81,有了比较好的回归解释力,同时,GDP的回归系数为0.103224,表明各省的财政收入平均占到了国民收入的10.3%左右。

变系数模型:显然,在中国各省之间由于处在不同的地区,因而拥有不同的区位优势,那么各省的发展水平显然就不一样。正是由于这种不同的地方政策、管理水平、文化差异等会导致经济变量间出现一些关联性的变化,此时在进行模型回归的时候,我们就有必要考虑变系数模型。

在回归结果中,R2的值达到了0.97,比混合模型拥有更好的回归解释力,而在变系数模型回归结果中,GDP的回归系数大于0.5的只有、青海、宁夏三个省份,也就是说这三个省份的财政收入占到了GDP的50%以上,他们同处于经济并不是很发达的西部地区,由此可以看出,处在经济发达地区的财政收入占GDP的比重要低,而不发达地区则要高。

四、结论

通过以上的分析检验,我们发现针对于中国财政收入和GDP的面板数据,我们应建立起变系数模型,并通过模型分析,我们可以得出这样的结论,中国各省间由于存在着地域经济发展水平不同、管理水平不同以及国家的相关政策等诸多不同,造成了各省之间在财政收入以及国民收入上面存在着一定的差异。而回归结果也告诉我们,我国西部地区的财政收入占GDP的比例要明显高于东部地区,地区发展落后地区的财政收入占GDP的比例也要明显高于东部地区。因此,这为我们改善我国落后地区的经济发展提供了一定的新思路,就是对一地区的税收征收可以适当放缓,而将GDP中以前政府占用的部分归还于民众和企业,因为,按照发达地区的经验表明,财政收入所占比重过高,经济发展的活力或者就不会很高,对于进一步刺激财政收入的增加也没有任何帮助。因此,我们应该适度降低财政收入占GDP的比重,从而增加经济活力,使西部地区以及落后地区及早的跟上东部发达地区的发展步伐,从而消除我国经济发展的地域不平衡。

参考文献:

[1]谢识予,朱洪鑫.高级计量经济学[M].复旦大学出版社,2005.

篇5

这就是为什么行业越来越倾向于使用特定的玩家反馈和可执行的分析结果来指导游戏设计调整。

了解真实的玩家观点并不容易。对发行商和开发者而言,玩家、平台和设备类型多样化导致分析学的数据追踪成了一大挑战。

那就是为什么我们最近发表了《Analytics Driven Game Design》白皮书,旨在使这个过程更加简单和有效。

以下是一些重要的设计和执行建议:

1、提前收集数据

人们往往不会把执行分析学的数据标注当作优先任务。

这是错误的,因为数据收集一般要贯穿整个开发过程,需要的时间是执行的三到五倍。

2、尽早收集事件数据

当事件及其参数定义好时,开发者就可以确定什么时候需要什么数据了。

一开始就把这样的数据结构结合到代码中,可以保证当代码需要这些数据时就能有现成的数据。

如果把事件收集放在开发过程的末尾,通常只能收集到60%有价值的数据,这说明没有充分利用分析学。

3、统一视角

复杂的游戏通常涉及多个系统。例如,登录系统可能不同于支付系统,这意味着数据来源通常有两个:服务器和游戏客户端。

因此,有必统一视角,即使户ID与登录活动保持一致。

这样,分析时就可以忽略数据来源,把所有信息放在一起。

4、同步时间标记

类似地,因为事件数据来自多个来源、时区和应用商店,有必要使用同步时间标记,以确保观察玩家行为的视角能够保持一致。

发送客户端数据时通常使用本地时间标记,而服务器数据记录的通常是保存数据的时间。

如果两个时间标记不一样,就会很难知道真正的事件顺序,从而不利于建立玩家行为档案。

5、创建单一登录ID

将这个独特的ID与一次登录中发生的所有事件联系在一起,对高效分析特别重要。

如果事件发生后才关联数据,必然会导致误差和错误。

考虑到大量初次玩家留存分析学专注于第一次游戏,统一而准确地定义你的登录活动是很重要的。

6、总是记录结果

事件的目标应该是记录结果而不是变化。

换句话说,记录任务的结果比记录任务中的各种变化更好。例如,记录当玩家完成任务时获得了什么,即得到多少经验点或杀敌数,比记录每一次射击更实用。

篇6

一、数据统计分析的内涵

数据分析是指运用一定的分析方法对数据进行处理,从而获得解决管理决策或营销研究问题所需信息的过程。所谓的数据统计分析就是运用统计学的方法对数据进行处理。在实际的市场调研工作中,数据统计分析能使我们挖掘出数据中隐藏的信息,并以恰当的形式表现出来,并最终指导决策的制定。

二、数据统计分析的原则

(1)科学性。科学方法的显著特征是数据的收集、分析和解释的客观性,数据统计分析作为市场调研的重要组成部分也要具有同其他科学方法一样的客观标准。(2)系统性。市场调研是一个周密策划、精心组织、科学实施,并由一系列工作环节、步骤、活动和成果组成的过程,而不是单个资料的记录、整理或分析活动。(3)针对性。就不同的数据统计分析方法而言,无论是基础的分析方法还是高级的分析方法,都会有它的适用领域和局限性。(4)趋势性。市场所处的环境是在不断的变化过程中的,我们要以一种发展的眼光看待问题。(5)实用性。市场调研说到底是为企业决策服务的,而数据统计分析也同样服务于此,在保证其专业性和科学性的同时也不能忽略其现实意义。

三、推论性统计分析方法

(1)方差分析。方差分析是检验多个总体均值是否相等的一种统计方法,它可以看作是t检验的一种扩展。它所研究的是分类型自变量对数值型因变量的影响,比如它们之间有没有关联性、关联性的程度等,所采用的方法就是通过检验各个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。(2)回归分析。在数据统计分析中,存在着大量的一种变量随着另一种变量的变化而变化的情况,这种对应的因果变化往往无法用精确的数学公式来描述,只有通过大量观察数据的统计工作才能找到他们之间的关系和规律,解决这一问题的常用方法是回归分析。回归分析是从定量的角度对观察数据进行分析、计算和归纳。

四、多元统计分析方法

(1)相关分析。相关分析是描述两组变量间的相关程度和方向的一种常用的统计方法。值得注意的是,事物之间有相关关系,不一定是因果关系,也可能仅仅是伴随关系;但如果事物之间有因果关系,则两者必然存在相关关系。(2)主成分分析。在大部分数据统计分析中,变量之间是有一定的相关性的,人们自然希望找到较少的几个彼此不相关的综合指标尽可能多地反映原来众多变量的信息。所谓的主成分分析就是利用降维的思想,把多指标转化为几个综合指标的多元统计分析方法,很显然在一个低维空间识别系统要比在一个高维空间容易的多。(3)因子分析。因子分析的目的是使数据简单化,它是将具有错综复杂关系的变量综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子,对变量进行分类。这些因子是不可观测的潜在变量,而原先的变量是可观测的显在变量。(4)聚类分析。在市场调研中,市场细分是最常见的营销术语之一,它按照一定的标准将市场分割为不同的族群,并使族群之间具有某种特征的显著差异,而族群内部在这种特征上具有相似性。聚类分析就是实现分类的一种多元统计分析方法,它根据聚类变量将样本分成相对同质的族群。聚类分析的主要优点是,对所研究的对象进行了全面的综合分析,归类比较客观,有利于分类指导。(5)判别分析。判别分析是判别样品所属类型的一种多元统计方法。若在已知的分类下,遇到新的样本,则可利用此法选定一种判别标准,以判定将该新样品放置于哪个类中。由定义我们可以知道判别分析区别于聚类分析的地方,而在判别分析中,至少要有一个已经明确知道类别的“训练样本”,从而利用这个数据建立判别准则,并通过预测变量来为未知类别的观测值进行判别。与聚类分析相同的地方是,判别分析也是利用距离的远近来把对象归类的。

参考文献

篇7

一、数据统计分析的内涵

数据分析是指运用一定的分析方法对数据进行处理,从而获得解决管理决策或营销研究问题所需信息的过程。所谓的数据统计分析就是运用统计学的方法对数据进行处理。在实际的市场调研工作中,数据统计分析能使我们挖掘出数据中隐藏的信息,并以恰当的形式表现出来,并最终指导决策的制定。

二、数据统计分析的原则

(1)科学性。科学方法的显著特征是数据的收集、分析和解释的客观性,数据统计分析作为市场调研的重要组成部分也要具有同其他科学方法一样的客观标准。(2)系统性。市场调研是一个周密策划、精心组织、科学实施,并由一系列工作环节、步骤、活动和成果组成的过程,而不是单个资料的记录、整理或分析活动。(3)针对性。就不同的数据统计分析方法而言,无论是基础的分析方法还是高级的分析方法,都会有它的适用领域和局限性。(4)趋势性。市场所处的环境是在不断的变化过程中的,我们要以一种发展的眼光看待问题。(5)实用性。市场调研说到底是为企业决策服务的,而数据统计分析也同样服务于此,在保证其专业性和科学性的同时也不能忽略其现实意义。

三、推论性统计分析方法

(1)方差分析。方差分析是检验多个总体均值是否相等的一种统计方法,它可以看作是t检验的一种扩展。它所研究的是分类型自变量对数值型因变量的影响,比如它们之间有没有关联性、关联性的程度等,所采用的方法就是通过检验各个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。(2)回归分析。在数据统计分析中,存在着大量的一种变量随着另一种变量的变化而变化的情况,这种对应的因果变化往往无法用精确的数学公式来描述,只有通过大量观察数据的统计工作才能找到他们之间的关系和规律,解决这一问题的常用方法是回归分析。回归分析是从定量的角度对观察数据进行分析、计算和归纳。

篇8

中图分类号:TP391 文献标志码:A 文章编号:1006-8228(2017)03-62-03

Abstract: This paper puts forward a method of analyzing public opinion and satisfaction on the evaluation data of scenic spots based on tourist demand template. By means of keywords template library building and expansion based on the template of tourism demand, the paper analyses and builds the model of the public opinion and satisfaction on the evaluation data. It solves the problem that unstructured content such as tourists' travels and evaluation cannot be efficiently searched and utilized by other tourists. It can not only provide tourists with scenic spots' comprehensive satisfaction value, but also satisfaction values in the specific area of cuisine, housing, transportation, travelling, shopping, and entertainment, and even more specific related content of the satisfaction value in those six aspects. Thus it helps visitors quickly understand the evaluation of the various parameters of the area.

Key words: template library; public opinion of scenic spots; satisfaction; evaluation data

0 引言

随着经济的发展,现在已经进入旅游智能化阶段和大数据的时代,游客通常通过查看媒体互动分享评价来决定自己旅游计划。然而,传统游客在游记中对景区景点的评价内容是非结构化、离散的,即难以采用一定的算法对其进行有规律地提取和组织,从而导致不能采用计算机智能对其提取分类。然而游客对“吃、住、行、游、购、娱”的评价获取需求颇为急切,因此需要采用一种新的技术来实现游客评价的自动化提取并对大量的数据进行高效的有价值的分析[1-3]。

1 本文提出的方法步骤及特征

本文提出一种基于旅游需求模板的景区评价数据分析舆情满意度方法,主要有基于旅游需求模板的关键词模板库构建(见图1)、关键词模板库的扩充(见图2)和针对景区评价数据的舆情满意度分析计算三个步骤。该方法的特征在于:所述的旅游需求模板主要由内容大类关键词、内容子类关键词和情感关键词构成,每个内容大类关键词下分属有其对应的内容子类关键词,每个内容子类关键词下分属有其对应的情感关键词[4-5]。

1.1 基于旅游需求模板的关键词模板库构建

主要由基于旅游需求模板引导评价的内容大类关键词、内容子类关键词和情感关键词构成,每个内容大类关键词下分属有其对应的内容子类关键词,每个内容子类关键词下分属有其对应的情感关键词。

关键词模板库初始由列举而成,所述的内容大类关键词包括吃、住、行、游、购、娱的六个类别;所述的内容子类关键词是在内容大类关键词的基础上构建的;所述情感关键词是对内容子类关键词的描述性词语。

1.2 关键词模板库的扩充

关键词模板库的扩充具体是采用以下方式对内容子类关键词和情感关键词进行扩充:

⑴ 在已构建的关键词模板库基础上,通过网络爬虫工具在内容大类关键词所在段落文字附近搜索内容子类关键词,将找到的在已构建关键词模板库中不存在的内容子类关键词作为新的内容子类关键词,并加入到关键词模板库中;

⑵ 在已构建的关键词模板库基础上,通过网络爬虫工具在内容子类关键词所在段落文字附近搜索情感关键词,将找到的在已构建关键词模板库中不存在的情感关键词作为新的情感关键词,对新的情感关键词赋权值后加入到关键词模板库中。

1.3 针对景区评价数据的舆情满意度分析计算

所述针对景区评价数据的舆情满意度分析计算具体是:由扩充后的关键词模板库通过网络爬虫工具搜索景区下的文字数据,抽取出内容大类关键词所在段落文字附近的内容子类关键词,再搜索抽取出每个内容子类关键词所在段落文字附近的情感关键词,从而获得所有情感关键词及其每个情感关键词对应的内容子类关键词和内容大类关键词,然后构建景区舆情与满意度的分析模型,通过景区舆情与满意度的分析模型获得以平均满意度值作为该景区的舆情满意度值。

2 景区舆情与满意度的分析模型

⑴ 先采用以下公式计算获得文字数据中所有评论中的关于某一个内容子类关键词的满意度值:

其中,表示第i个内容大类关键词下第j个内容子类关键词的平均满意度值,t是分值(1~5),表示i个内容大类关键词下第j个内容子类关键词对应分值为t的情感关键词的数量,Bij表示第i个内容大类关键词下第j个内容子类关键词,B{B11,B12,B13…B21,B22,B23…}代表内容子类关键词集合。

⑵ 再采用以下公式计算获得文字数据中一个内容大类关键词的满意度值:

其中,表示第i个内容大类关键词的满意度值,表示第i个内容大类关键词下第j个内容子类关键词的权值,n表示第i个内容大类关键词下内容子类关键词的数量,A{A1,A2,…,A6}代表内容大类关键词集合。

⑶ 再采用以下公式计算获得该景区的综合满意度值:

其中,Y表示景区的综合满意度值,i表示内容大类关键词的序号,i取值范围是1~6,表示第i个内容大类关键词下的的权值。

3 具体实施方式

3.1 基于旅游需求模板的关键词模板库构建

⑴ 内容大类关键词构建,主要包括吃、住、行、游、购、娱几个大类。

⑵ 内容子类关键词构建,主要是在内容大类关键词的基础上构建,比如和内容大类关键词吃相关的内容子类关键词有饭店、餐馆、快餐店、小吃街等。

⑶ 情感关键词构建,主要是在内容子类关键词基础上构建,比如和内容子类关键词‘吃’对应的情感关键词有味道很好,价格实惠,环境优美等。

3.2 关键词模板库的扩充

⑴ 基于需求模板引导评价的内容子类关键词库扩充,通过网络爬虫工具在内容大类关键词附近搜索相关的内容子类关键词并与已有的模板库进行对比,遇到新的内容子类关键词后,自动加入到模板库,比如遇到与内容大类关键词吃相关的新的内容子类关键词野味店等。

⑵ 基于需求模板引导评价的情感关键词库扩充,通过网络爬虫工具八爪鱼采集器,在内容子类关键词附近搜索相关的情感关键词并与已有的模板库进行对比,遇到新的情感关键词后,自动加入到模板库。

⑶ 情感关键词均已由用户进行赋分,给出分值(1~5),比如非常好/棒极了/美妙极了,这三个情感词表达的满意度是相同的,对应的分值都是5分,一般/凑合/还行对应的分值则都是3分;差极了/难受死了/简直就是受罪/再也不会去了,对应的分值则是1分。

3.3 针对景区评价数据的舆情满意度分析计算

⑴ 根据已有模版库构建评价体系表。内容大类关键词和内容子类关键词的权重和情感关键词的分值以及相同分值评论数量如表1所示,表中{}表示第i个内容大类关键词下第j个内容子类关键词对应分值为t的情感关键词的集合。

⑵ 通过网络爬虫工具搜索景区网页的每个帖子,按内容子类关键词,搜索所有相关的情感关键词,根据表1进行分类统计,把相应的情感关键词的数量记录到对应到中。

比如:通过网络爬虫工具搜到网页得到1000个情感关键词,有600个是与内容大类关键词‘吃A1’有关的,其中300个是与内容子类关键词‘味道B11’有关的,对应的情感关键词集{}及数量如表2所示。

由内容子类关键词满意度计算公式可知该景区关于吃的味道的满意度值为:

即:该景区关于吃的味道的满意度值为3.6,同理可以计算其他内容子类的关键词的满意度值。

4 结束语

通过这种方法得到满意度值,解决了以往游客的游记、评价等非结构化内容难以被其他游客高效搜索利用的问题,除了可以向游客提供某个景区的综合满意度值外,还可以向游客提供该景区具体的关于吃、住、行、游、购、娱六个方面的满意度值,以及比吃、住、行、游、购、娱更具体的相关内容子类关键词的满意度值,让游客快速了解该景区的各个评价参数。

参考文献(References):

[1] 维克托.迈尔舍恩伯格著,盛杨燕,周涛译.大数据时代:生活、工作与思维的大变革[M].浙江人民出版社,2013.

[2] 马建光,姜巍.大数据的概念、特征及其应用[J].国防科技,2013.2:10-11

篇9

所谓的交通事故预测是根据已发生交通事故的数据进行统计,在对事故原因进行分析的基础上,探寻事故规律,以针对交通事故做出更为合理的推测和判断。当前,交通事故预测方法相对较为多样,如回归分析、时间序列等,虽然都能对交通事故做出科学合理的决策性指导,但各具优缺点和适用条件,因而有关人员应在遵循交通事故预测思想的基础上,对几种主要预测方法进行分析,确保交通部门人员能够根据实际情况而合理选择交通事故预测方法。

1 交通事故预测思想

交通事故对人类造成的危害相对较大,对人类产生严重的威胁。从我国发展实践中可知,交通事故在一定程度上制约我国经济的发展进程,尤其对人类社会福利、医疗保险等方面的影响较大。据不完全统计,2015年全年间,我国交通事故约为10597358起,死亡人数约为68432人,财产损失高达10亿元以上。可见,交通事故威胁隐患相对较大。交通事故预测能够根据已发生交通事故进行统计、分析、处理,在遵循规律的基础上,对未来可能发生的交通事故作出科学合理的预测,该预测结果以科学逻辑推断为基础。就交通事故原因而言,道路环境、交通条件、车辆、驾驶员等都是影响因素。通过交通事故预测,我国交通部门人员能够对交通事故作出科学合理的判断和制定有效的预防策略,以最大限度降低和消除交通事故隐患。

2 交通事故主要预测方法

2.1 回归分析预测法

回归分析预测法在交通事故预测中的有效应用,主要分为线性回归和非线性回归两种方法。首先,背景交通工程研究所人员提出线性回归分析预测法,通过对自变量和因变量之间关系问题的探讨,对因变量趋势加以预测,其模型为:

Y=3577.79+93.3028lgX1+824.921lgX3+326.777lgX4+800.454lgX5-1149.051lgX6-224.902lgX8-45.0499lgX9-152.6081lgX10-287.191lgX11。

其中X1-X11分别表示临时人口、常住人口、机动车辆、自行车、道路长度、道路面积、灯控路口、交通标志、交通标线、失控部位、交警人数。

其次,英国伦敦大学SemeedR.J教授对欧洲国家十余载的交通事故资料进行研究,提出非线性回归分析预测法。对此,他建立幂函数曲线事故模型,

即:D=0.0003。其中D为交通事故死亡人数;N是机动车保有量;P为人口数量。

回归分析预测法能够对交通事故影响因素间的因果关系加以反应,以达到预测结果的目的,但对变化趋势的反应可能较为迟钝。该预测方法适用于样本量较大、数据波动小和极具规律性的预测实践中。

2.2 时间序列预测法

时间序列预测法主要有两种类型,分别为移动平均预测法和指数平滑预测法。首先,移动平均预测法是比较简单的平滑预测技术,通过计算项数时序平均值,对长期发展趋势变化做出科学合理的预测。内蒙古科技大学韦丽琴、徐勇勇利用时间序列ARIMA模型做出科学合理的预测分析,对交通事故加以预测。其次,指数平滑预测法的通式为:

Ft+1=αxt+(1-α)Ft

时间序列预测法属于定量预测方法,拟合效果良好,但在短期预测中,受诸多因素干扰影响较大,使预测结果具有不确定性。该方法适用于国内县区等区域范围较小的预测实践中。

2.3 灰色马尔科夫链预测法

道路交通系统属于动态时变系统,但影响交通安全的因素多且复杂。在灰色马尔科夫链预测法的指导下,相关人员能够通过灰色预测模型,做出短期预测,以缩小预测区间,提高预测效率。云南交通职业技术学院王刚对灰色马尔科夫链预测法而建立模型,对交通事故进行预测,根据实践可知,基于该模型的预测精确度十分高,取得良好的预测成效。

灰色预测以短期预测为主,马尔科夫链预测以长期预测为主,通过二者结合,可提高预测精度,但如若数据变化大,则灰色模型的吻合度和精度下降。借助该预测方法,能够对状态下的转移规律加以预测,并揭示交通事故时序变化总趋势。

2.4 贝叶斯预测法

贝叶斯预测法主要相对于交通事故中的车速问题而言。在交通事故中,车速是重要影响因素,如若车辆速度过快,则驾驶员反应的时间较少,其应急策略不足,造成重大交通安全隐患。贝叶斯预测法能够对未来交通事故发生的可能性进行预测。该预测方法应用中,必须建立在交通事故和车速有关联的基础之上,有助于交通部门人员更好开展数据统计和交通流进行观测。

2.5 灰关联分析及神经网络预测法

就灰关联分析及神经网络预测法而言,哈尔滨工业大学交通研究所和中国城市规划设计研究院的裴玉龙与张宇提出该方法,旨在通过交通事故影响因素分析,对事故进行进一步解析,并建立合理的模型理论和确定预测指标,对未来交通事故发展趋势加以预测。该预测方法的适应性较强,在我国交通事故预测工作实践中有着较为有效的运用,可解决传统预测方法难以解决的问题,建立在BP网络基础之上,并利用计算机开展辅计算活动。

2.6 多层递阶预测方法

多层递阶预测方法能够规避传统统计预测方法的缺陷,以现代控制理论“系统辨识”为重要基础,对对象的未来状态做科学的预测。动态系统数学模型为:y(k)=。在交通事故预测中,多层递阶预测方法是大数据时代背景下的重要处理方式,有利于增强预测效果。

3 结论

交通部门对交通事故进行合理的预测,有利于提高道路交通系统的安全系数。所以,相关人员合理选择交通事故预测方法具有必要性,为规避交通事故而做出科学合理的决策。目前,使用较多的交通事故预测方法主要有:回归分析预测法、时间序列预测法、灰色马尔科夫链预测法、贝叶斯预测法、灰关联分析及神经网络预测法等,因其各具优缺点和适用条件,因而要求相关人员必须对系列问题进行深入探究,确保公路交通事故预测的有效性。

参考文献

[1]李景文,高桂清.交通事故预测分析[J].中国安全科学学报,2015,6(01):20-23.

[2]刘志强.道路交通事故预测方法比较研究[J].交通与计算机,2013,19(05):7-10.

篇10

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)06-0155-02

大数据,或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对那些含有意义的数据进行专业化处理。本文将以东北地区数学专业教师大数据为基础,通过“加工”实现数据的“增值”,使其为决策与预测服务。

一、东北地区数学专业教师大数据来源及准备

通过查阅资料与调查,收集到东北三省各高校数学教师相关大数据,包括教师教龄(?S年)、收入(?S元)、税收(?S元)和职业病情况等方面的实际数据。由于得到的数据信息量大,轻重各异,所以首先需要进行数据预处理,即清除异常数据、错误纠正、格式标准化等,再通过数据挖掘技术,利用一系列相关算法和数据处理技术从大量的数据中提取人们所需要的重要信息,也就是上面所提到的实现信息的“增值”,同时大大提高数据处理效率,下面具体介绍本项目所采用的模型和计算方法。

二、东北地区数学专业教师大数据分析与结果

收集并处理好教师教龄、收入、税收和职业病情况等方面的数据后,本文主要针对三个方面进行了详细的分析:

1.教师收入随年份的变化

(1)数据范围:1994年-2014年东三省各高校数学教师收入(单位:元);

(2)计算条件:matlab软件,最小二乘回归分析,高性能计算工作站;

(3)求解过程:年份作为自变量x,收入为因变量y,从总体上看,二者统计关系大致符合一元线性的正态误差模型[3],即对给定xi的有最小二乘一元线性回归公式yi=b0+b1xi+εi,其中:

b■=■, ■=■■x■b0=■-b■■, ■ =■■y■

其中εi是由变量可能的内在随机性、未知影响因素等随机扰动造成的误差。总之,它可看成是众多细小影响因素的综合代表。最后,由Matlab提供polyfit函数实现回归函数拟合[4];

(4)结果分析:计算结果表明,随着年份的增加,教师收入也在不断增加。估计的因变量的系数b1约为191,也就是说,每过一年,教师收入大致可增加近191元。

2.教师职业病情况与教龄的关系

(1)数据范围:1994年―2014年东三省各高校数学教师教龄(单位:年)、职业病情况;

(2)结果分析:首先利用matlab软件,以横轴为某年东三省数学教师教龄,纵轴反映相应教龄的平均职业病情况(为方便,规定越接近纵轴正方向,职业病越严重)利用matlab软件绘制图形[5],发现教师教龄越长,职业病也愈加严重。每一年的教师职业病情况均可绘制一张图表,通过将这11张图表的最高值(即每一年职业病的最高值)做比较,发现其趋势是先逐年下降,最后趋于稳定。

3.对教师专业发展阶段的研究

(1)数据范围:2014年东三省各高校数学教师收入、教龄、税收和职业病大数据;

(2)计算条件:IBM处理器、大数据挖掘分类算法;

(3)求解过程:用神经网络研究方法(即模拟生物上神经元工作的方法)。图中每个椭圆形节点接受输入数据,将数据处理后输出,输入层节点接受教师信息的输入,然后将数据传递给隐藏层,隐藏层将数据传给输出层,输出层输出教师专业发展处于哪一专业成熟阶段;

(4)结果分析:若将教师专业成熟过程分为三个阶段:形成期、发展期和成熟期。那么利用IBM处理器和以上算法,在所调查的教师中,约70%处于发展时期,是其基本适应教育教学工作的时期;约20%处于形成期,是形成良好心理素质和正确教育思想的关键时期;约10%处于成熟期,是掌握教学主动权,成为学校教学骨干的时期;

(5)研究意义:研究东三省高校数学教师专业发展成熟阶段,可以基本掌握教师资源结构,从而能够遵循不同发展阶段的不同特征、观念、心理、发展需求,制定相应教研活动、政策和制度,促进教师全面持续发展[6]。

三、结果讨论

1.数据呈现以上结果的原因

(1)随着国家科教兴国战略的深入实施,教师的工资和待遇将被逐步纳入国家工作人员统一管理,教师的收入将得到很大的提高。另一方面,数学能力的培养是学习各专业、走入各行业的基础,国家将加大数学知识的教育力度,进而数学专业教师所付出的辛苦也更加不可小觑,综合以上几个重要原因,教师收入随年份增加而增加也是符合经济理论的。

(2)教龄越长,职业病也越严重的依存关系,我们容易理解。但随着时间的推移,职业病的严重性呈现下降趋势正是反映了我国科技的革新:环境的改变、教学设备和教学技术的更新使得教师的课堂教学更加高效和轻松便捷,如多媒体、电子白板使得课堂不再“尘土飞扬”。

(3)在对教师专业发展阶段的研究中,处于专业发展时期的教师所占比例最高,达到近70%。实际上,他们多数处于青壮年的人生阶段,是社会的中坚力量,又曾在高等教育多样化与综合化的背景下受到过良好的教育,并具有较丰富的教学经验和紧跟新时代的创新思想,自然在专业发展的角度也占有较大比例。

2.合理的相关预测

大数据最有价值的特点就是其“预见性”。上述数值结果表明,在经济平稳发展和社会稳定的前提下,东三省数学专业教师的收入在未来的几十年依旧处于增长趋势,教师职业病总体减轻,专业发展越来越成熟,使得教师队伍整体素质越来越高,而未来教师的考核奖励制度也会变得更加严格和全面。

3.建议

(1)无论是对教师行业还是其他行业感兴趣,都要关注其变化,分析其形势及趋势,以便对此行业的认知更加科学合理。

(2)本文采用的大数据处理所用模型和方法,可以进一步推广到其它相关领域,使之成为研究大数据的更通用的工具。

本文利用matlab软件、最小二乘法模型及IBM处理器分析了东北地区数学专业教师大数据,得出的结果对于掌握该地区数学教师基本情况并预测其发展趋势有着重要的作用,还为热心同类问题的研究者提供高效的方法和技术。当我们不能有效处理所获取的大数据,它们就是一些平凡的数字和符号。如果我们能够很好地驾驭大数据,它们必定会为我们带来诸多的方便。

最小二乘法模型在处理大数据时有一定的优势[7],统计分析,神经网络算法和遗传算法都是处理大数据的有效方法,如果能将这些方法有机的结合起来,将更能获得许多满意的数值分析结果。当大数据超过计算条件的时空允许时,不仅耗时费力,甚至使得计算成为不可能,通常需要采用并行算法等高效计算手段。在高性能计算方面,我们并没有用到并行算法,如果能利用并行算法,所处理的数值结果容量会更大更有参考价值。

参考文献:

[1]蔡锁章主编.数学建模:原理与方法.北京:海洋出版社,2000.

[2]维克托迈尔舍恩伯格.大数据时代.浙江:浙江人民出版社,2012.

[3]吴翊,吴孟达,成礼智编著.数学建模的理论与实践.长沙:国防科技大学出版社,1999.

[4]张德丰编著.Matlab数值分析与仿真案例.北京:清华大学出版社,2011.10(21世纪高等学校规划教材计算机应用)IBSN 978―7―302―26254―1.