时间:2023-08-23 16:24:58
导言:作为写作爱好者,不可错过为您精心挑选的10篇统计学概率,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
作者简介:付建军(1956,8-),男,汉族,北京交通运输职业学院普通课教研室主任,高级讲师,研究方向:课程开发
数学学科作为所有自然学科的基础,对科学技术的各个领域有着极强的推动作用,而信息科学作为新时代的主流技术,也已经逐渐渗透到人们生产生活的方方面面。当然,二者在发展中还面临着许多的挑战和阻力,对于概率统计与信息科学二者的结合研究,其意义就在于加强学科间的渗透从而给各个学科带来更加广泛的运用,给学科自身发展探究带来便捷。
1简介概率统计与信息科学的发展
1.1关于概率统计学
概率与统计是一门从数量方面研究随机现象规律性的数学学科,概率与统计的概念被广泛运用到各个领域及部门。概率统计学的运用及其广泛,随机事件的研究结果对于当代各类数据分析整合都有着重要的作用。与此同时,概率与统计的学科特点也决定了其研究的难度较大,概率与统计的结论得出往往建立在大量的实验与实践基础上。作为一门应用型数学学科,其广泛性必将为未来科学技术和人们生活水平带来不可估量的影响,而其自身研究条件的局限性,尤其是实验条件的不足,将直接影响到未来自然科学发展,也势必会减慢人类在科技创新之路的发展进程。
1.2关于信息科学
信息科学主要包含信息论、控制论、计算机理论、人工智能理论和系统论,其中,信息论、控制论和系统论在信息科学中占有主要地位,而计算机理论是数学研究中的应用重点。信息科学的兴起直接带领人类走向了信息化时代,对于人类文明的有着不可估量的作用。信息科学发展到今天,其作用已经不仅仅针对于学科本身以及信息行业,在信息化趋于高度发达的今天,将会为人们的生活带来质的飞跃,对于不同的行业领域,都将有信息科学的推动,信息化带来的是未来自动化和智能化的飞速前进。而信息科学自身也在不断地发展完善,数学学科作为自然科学的基础理论学科,对于信息科学的发展也不例外,只有从基础上进行完善和补充,才能帮助信息科学走上更加成熟更加美好的未来之路。
2信息科学与概率统计学的内在联系
在信息科学已经逐步成熟的今天,其所包含的各项技术已经为人们的生活带来了更加智能化、便捷化的体验。当然,信息科学是建立在数学基础上的学科,其技术须有数学理论、数学方法的支持与论证。[1]概率统计对于现代数学更有着重要的意义,其所涉及的随机规律的研究将更加符合生产生活的需求,而随机规律的运用在信息科学中体现的更淋漓尽致,信息科学的大多数结果都需要建立在庞大计算与实践的基础上,这就需要对结果的普遍性进行概率与统计的研究分析,同样,对于概率统计学科的发展,信息科学能够很大程度的减少研究过程的繁冗,加速概率统计学的发展和进步。由此可见,这两个科学领域存在紧密的内在联系,将概率统计与信息科学整合研究对于其自身发展以及整个应用型科学的发展都有着重要的意义。
3信息科学与概率统计学的整合策略
3.1重视对二者探究观念的结合
信息科学的发展带来了许多先进的生产技术,将其应用于概率学的研究探讨可以带来事半功倍的效果,而如何将二者更加紧密的结合在一起,创造出更大的社会价值,首先就要要求在思想观念上将概率统计学与信息科学联系起来。例如,在对于概率统计的研究或者论证中,根据其研究特点将概率统计中的数学模型抽象出来,针对其特点进行信息化的整合,力求将繁冗的步骤简化,减少人力物力的过度消耗。同样,对于信息科学,要在对其先进性进行发展改进时考虑到概率统计的运用,利用概率与统计的结果和普遍性规律对信息科学技术进行改良与进化,使得信息科学在实际中的应用更具有合理性。科学具有广泛的共同性,并且都不是单一存在的,只有建立起学科间穿插研究、互相渗透的观念,才能在科学技术的发展进程中更大程度的的实现多样化,挖掘出自然科学更大的潜力。[2]
3.2重视将整合后的理论用于实践
理论是实践的基础,而实践才使得理论具有意义,这句话对于各个领域,尤其是自然科学的探究上有着重要的意义。对于概率统计与信息科学的渗透发展,仅仅局限于“敢想”是不够的,在充分的思考后,要将想法勇于实践才能真正的实现二者的结合发展。而如何将理论用于实践,不知是需要专业知识的支持,还需要对环境因素、人为操作因素、结果预估等等进行全方位的统计,在推行到实践的过程中,始终保持科学严谨的态度,把控每一个环节,抓好每一个细节,才能更好的将理论运用于实践中去,才能赋予学科间渗透结合更完整的意义。
3.3重视对实践结果的推广
成熟的技术需要进行推广才能创造更大的效益,众所周知,概率统计学的研究过程面临着庞大的实验数据,要将这些数据分析并不是人力所能承受的,这就需要在对此学科的研究中大力推行计算机科学以及信息科学的技术。将二者充分的结合渗透,研究出兼具科学性、合理性和操作性的技术模式,为研究人员、教师和学生都创造出极大的便利,也为其自身技术水平的先进化和自然科学的整体发展水平提升做出了杰出贡献。
4结束语
概率统计学发展至今,其所研究的随机规律已经带给了人们许多便利,为人们的生产生活创造了可观的经济效益,信息科学也是如此。在时代的要求下,二者的结合渗透已经成为了突破自身发展瓶颈的必要途径,加强二者在研究观念上的结合、在实践应用中的结合、在技术推广上的结合将会在未来创造出更加优异的成绩。当然,在二者的结合发展中还将会面临各种各样的难题,要努力将专业知识与实践经验结合在一起,多角度的考虑问题,解决问题,势必会为科学的进步添上其浓墨重彩的一笔。
参考文献
一、传统教学中存在的问题及原因分析
中图分类号 G642.0 文献标识码 A 文章编号 1007-5739(2016)22-0287-01
生物统计学是研究数据资料的收集、整理、分析、解释的一门科学[1],也是畜牧、兽医、农学、微生物、医学等领域中不可缺少的统计工具,越来越多的数据分析离不开生物统计学的原理。在生物统计学中的上机实习是提高学生动手能力和解决问题能力的重要环节,在本次的教学改革与实践中,已经把二项分布、正态分布、普哇松分布等的概率计算纳入生物统计学的实践教学中。一方面可以让学生针对不同数据清楚其分布类型,针对不同分布类型选用不同的Excel函数模块,另一方面通过不同分布的概率计算,可以将课本上所学的知识很好地应用于实践数据分析。本文主要介绍利用Excel中的POISSON函数来计算普哇松分布的概率,现就POISSON函数的具体应用情况及注意事项进行介绍。
1 普哇松分布
普哇松分布(Poisson,也称泊松分布)是二项分布的一种极端形式,就是说某种试验结果或某种事件发生的概论极低(P很小)。因此,在应用中很容易将普哇松分布与二项分布混淆,普哇松分布的特点就是λ=π=σ2。普哇松分布的概论函数为[1]:
2 普哇松分布的概率计算示例
例题:已知某地区的牛群中每年出现怪胎的次数服从普哇松分布,每年出现怪胎的次数的平均数为2,计算该地区一年中出现3次怪胎的概率以及出现3次和3次以下怪胎的概率。对于这一问题,很显然牛群中每年出现正常胎和怪胎2种结果,而且怪胎出现的概率极低(平均2次),因此其属于普哇松分布。由于已经知道“每年出现怪胎的次数的平均数为2”,即就有λ=μ=2,因此该地区为出现3次怪胎的概率为:
2.1 出现3次怪胎的概率
利用以上公式可以直接计算普哇松分布的概率,但是因为需要记住公式,并且需要手动来计算,所以还是比较烦琐的。对于这一问题,可以借助Excel中的函数来快速计算出其概率。
首先在Excel中,选定空格按照以下顺序:插入―fx函数―统计―POISSON,出现图1提示框,在提示框中从上到下依次输入3、2、false,点击确定。就可以获得该地区出现3次怪胎的概率为0.180 4。
2.2 出现3次及3次以下怪胎的概率
首先在Excel中,选定空格按照以下顺序:插入―fx函数―统计POISSON,就会出现图2提示框,在提示框中从上到下依次输入3、2、true,点击确定。就可以获得该地区出现3次及3次以下怪胎的概率为0.857 1。
3 结语
随着计算机技术的发展,已经有更多的软件被应用于生物统计学,如Excel[2]、SAS[3]、SPSS[4-5]等,但是不同统计软件具有着不同的统计特点,如Excel统计功能更为简单,适合生物统计学的初学者。SAS统计功能比较宽广些,因其统计模块的限制,所以更适合能够自己编写程序的学者。SPSS的统计功能更为强大,几乎具备了所有的统计分析功能,操作相对简单、直观[6-8]。
虽然从统计分析上来看,SAS和SPSS的统计分析功能略胜于Excel,但是Excel也具有其独特的地方,如对二项分布、正态分布、普哇松分布等常用分布的概率计算来说Excel就显得简单多了。在普哇松分布的概率计算中虽然就是一个POISSON函数,但是针对不同问题这个函数里最后面的选项却不同,在POISSON函数的提示框中最后选项如果选“false”,则结果是显示P(X=x)的概率,而当最后一项选择“true”,则显示的概率是P(X≤x)[9-11]。
4 参考文献
[1] 张勤.生物统计学[M].北京:中国农业大学出版社,2009.
[2] 王香萍,王文凯,李俊凯,等.EXCEL中关于生物统计中两组平均数的应用方法及探讨[J].考试周刊,2011(6):180-181.
[3] 黄中文,张丹.生物统计与SAS教学中大学生自主学习能力的培养[J].新乡学院学报(社会科学版),2013,27(5):140-142.
[4] 白俊艳,贾小平,张小辉,等.生物统计学课程改革与实践[J].畜牧与饲料科学,2013,34 (10 ):57-58.
[5] 白俊艳,徐廷生,张小辉.生物统计附试验设计课程考核方式的改革与实践[J].教育教学论坛,2015(18):247-248.
[6] 李萍,胡琼波. Excel 2000在生物统计中的应用[J].岳阳职业技术学院学报,2005(3):51-53.
[7] 林树茂,吕敏芝,田允波,等.应用Excel进行畜禽性状相关和回归分析[J].家畜生态学报,2005(4):89-90.
[8] 赵秀敏.Excel和SPSS在生物统计课程教学中的应用[J].河南农业,2014(18):30-31.
统计学已有 2000 多年的历史,按其发展的历史阶段和统计方法的构成看,统计学包括描述统计和推断统计。那么统计内容学习的难点在哪里呢?
学习统计的核心目标就是发展学生的统计观念。我们对统计知识的教学出现了偏差。我们的教学重视知识点的传授,对统计知识的考核也局限在知识点的考核。因此在教学过程中,重点放在有关数据的计算上,学生没有经历统计过程,难以形成正确的统计观念。学生的生活经验中,潜在地存在统计意识。我们教学的重点是帮助学生挖掘这种潜意识,注重培养学生有意识的从统计的角度思考有关问题,也就是当遇到有关问题时能想到去收集数据和分析数据。
对统计思想和概率意义的理解,是教学的重点,也是难点。不要把统计教学变成单纯的数据处理和计算技巧的讲解;不要把概率教学变成复杂的概率计算的训练;不要纠缠一些无关紧要的细节而干扰主题。由于对于这部分知识,学生具备一些基础,所以教学要针对学生的问题进行设计,而不能仅仅依据自己的主观臆断或凭经验。例如对于三种事件的教学,有的教师将时间均匀分配。这种课堂的效率比较低。关于什么叫必然事件,什么叫不可能事件,对于学生来说,应该是没有太大的困难的。重要的应讲清什么是随机事件。一定是在相同条件下,可以重复实验下,可能发生可能不发生的。可以设计一些问题来让学生区分,不是在相同条件下的情形不确定的事件;不能重复实验的情形等等。根据初中学生的能力水平,可以突出统计和概率所研究的随机现象的这种偶然性,它是怎么发生的,这个随机性具有什么样的特征。应该把整堂课的教学的重点放在这个可能性事件,怎么去刻画和描述上。教师要明白你想解决学生什么问题,学生哪一点是原来不懂的,这堂课我希望他能够懂些什么,这个目的要明确。这是教学中应遵循的规律。特别是这些新增内容,教师要在前期对学生的掌握情况作充分的调查,以增强教学的针对性。概率的统计规律性本身就是通过实验发现的,用样本推断总体的方法,可以认为是实验科学。
在初中阶段,由于课时以及学生认知水平的限制,我们不可能也没有必要用严密的方法揭示一些稳定性规律,评价统计方法的优劣。设计恰当的实验,直观认识随机性规律、树立概率观点、理解统计思想是必要的,也是可行的。面对概率统计的教学,大多数教师比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项,又加上记忆或平时不曾经常地应用等原因产生的遗忘或知识的流失,造成教师的“一桶水”已经不多了, 那么要想教好概率统计,首先,需要教师先学好概率统计的内容,即要先装满“一桶水”甚至“一眼泉”;其次要上升到比较高的层次来理解这些知识、思想和方法,即要有高质量的“一桶水”;最后教师在教学过程中,还要结合学生的理解,学生的问题逐步深化自己的理解和认识,即要善于从“一杯水”中吸取营养,以增加“一桶水”使之成为“一眼泉”。
关键词:高中课改;概率统计;教学改革
Key words: curriculum reform in high school;probability and statistics;teaching reform
中图分类号:G42文献标识码:A文章编号:1006-4311(2011)22-0186-02
1背景与现状
工程数学是高等数学在经济学、机械、电子等专业中的应用,即实际研究中能用得上的数学,它是工程、经济与数理统计相互交叉的一个新的跨学课领域,通常包括:概率、统计、矩阵等。在当前,进行高职高专,工程数学课程改革势在必行,刻不容缓,我们认为,其背景与现状是基于以下几个方面:
中学数学课程,经历了多次从学制到教材的的改革试验,近年来正逐步推行高中的国家课程标准,2008年全国大部分省市在进行新标准课程试验,今年的高考大纲以体现了这方面的要求。课程改革力度非常之大,会对概率统计教育产生比较大的影响。其主要表现在:增加了微积分、概率与统计的内容,让中学生初步具有分析处理随机问题及数据的能力,使学生解决问题的能力得到较全面培养,从全面提高全民素质方面予以肯定。
1.1 高中阶段的概率统计内容高中阶段的概率统计教学跨越了两个学期,主要教学内容有:随机现象与随机事件、概率的统计定义及其性质、概率的古典定义、特殊概率加法公式(互不相容事件),相互独立事件的概率乘法公式,n次独立重复试验,离散型随机变量及离散型分布列,两点分布、二项分布、泊松(ppisson)分布、正态分布,离散型随机变量的数字特征,抽样方法,教学时数40个左右。下面是陕西省2008年理科的一道高考试第18题:
18.(本小题满分12分)
某射击测试规则为:每人最多射击3次,击中目标即终止射击;第i次击中目标得4-i(i=1,2,3)分,3次未击中目标得0分,已知某射手每次击中目标的概率0.8,且各次射击结果会不影响。
(Ⅰ)求该射手射击两次的概率。
(Ⅱ)求该射手恰好射击?孜的分布列及数学期望。
解:(Ⅰ)设该射手第i次击中目标为Ai(i=1,2,3),则P(Ai)=0.8,p(■i)=0.2 p(Ai■i)=p(Ai)p(■i)=0.8×0.2=0.16
(Ⅱ)?孜可能取的值为0,1,2,3,?孜的分布列为表1所示。
E(?孜)=0×0.008+1×0.032+2×0.16+3×0.8=2.752
上述试题已表明:高考试题已考察学生掌握随机事件及其概率,离散型随机变量及其数字特征。由于积分没有向高中数学的下放,因而没有连续型随机变量及其分布。没有提及的是:事件的概率加法公式,并条件概率,全概率公式、贝叶斯公式,均未涉及,既是古典概率计算,也是一知半解,似是而非,主要表现在:
一是学生进入大学后,轻视概率统计学习,有不少学生不认真听课甚至缺课,但到后继课程(如统计)中需要数理统计知识时感觉非常困难;二是学生带来许多似是而非甚至错误的概念,使得老师不得不花更多的时间与精力去纠正,效果不甚理想;三是学生将所有的概率都归结为古典概率,没有掌握古典概率这个模型的实质:有限个结果,每个结果是等可能的,在他们眼里任何事件概率都可用百分比表示,全概率公式的概率分解思想非常重要,但好多学生不去领悟这个思想,却纠缠于为什么不用古典概率计算等等。需要纠正,进一步拓广,加深。
1.2 教学观念陈旧,教学方法落后我国许多教师均为数学专业毕业,他们习惯于数学的逻辑性、严密性、系统性,使一门很具特色的课程变成抽象的符号语言集成,一味追求计算的技巧或结果,例题习题多且难,教学直观与形象叙述很少,不少学生对数学符号、公式、数据采取回避策略,结果学生“怕数学”,“头疼数学”,怕繁难的数学计算和深奥的逻辑推理,海量的数据,往往忽略数学的应用性。陈旧的数学观念,导致培养出的人才规格的降低,高分低能低分低能现象严重。我们必须正视现实,破除陈旧,树立应用性数学教育观。教学方法是关系到教学效果的重要因素,对概率统计而言,教学方法的改进尤为重要。我们现在采取的“数学知识例题说明练习”的讲授形式,教学手段单一,实行“填鸭式”教学,只注重理论教学,缺少实践试验环节,缺乏主动性和创造性。强调数学结论而忽视思想方法的交待。概率统计的重点应放在概念的产生背景或使用方法的介绍,与实际脱钩,如分位数常用来表示分布两侧的尾部概率,很直观,它是构成置信区间和拒绝域必不可少的知识点,它是统计学的支撑点,很多没有提及或提的不够到位,例题与练习很少;西方国家的教学比较重视概率统计思想和方法的交待,具有启发性。运用启发式教学方法,启发学生主动学习,主动思考,主动实践,教给学生以猎枪而不是猎物。
1.3 教材编写过时现有的概率论教材较少考虑与中学教材的衔接及相邻课程的协同,几乎是从零开始,一直是大概率小统计,小而全,一是造成高职的工程数学内容与高中的数学内容在低层次重复;重概率轻统计,大多数教材重在介绍概率基础内容,数理统计内容一直处于辅助的位置,从应用的层面上讲,是本末倒置的,统计学中最实用的是相关分析与回归分析,我们教材在这方面笔墨很少,大大降低了统计的实用性,对概率统计的思想、方法教材所起的作用没有达到预期;概率统计在经济领域的最新应用成果,如二项分布在经济管理中的应用,损失分布在保险中的应用,期望、方差在风险决策或组合投资决策方面的应用,教材中没有任何反映,哪怕是提及一句也没有做到,补充上述成果,一定能开拓学生应用概率统计的视野,激发学生学习的动力。
综上所述,无论是从时展的要求,还是适应中学课程改革需要,我们的概率统计教育已经到了非改不可的程度。我们必须担负起历史赋予我们的责任,抓住历史机遇,实行概率统计教育改革。
2概率统计教育改革的内容与目标
2.1 增加统计的比重,少理论多应用近几年来,基于数据库计算网络广泛应用,加上使用先进数据自动生成及人工采集,人们所拥有数据量急剧增大,海量数据的数据背后隐藏着许多重要信息,这就迫切需要科技人员需要面对大量数据进行统计分析处理,挖掘海量数据中的关系与规则,根据现有的数据预测未来的发展趋势,数据急剧上升与数据分析方法滞后之间的矛盾愈来愈突出;统计学是一门数据分析的课程,是从数据中提取有用信息,实践证明是很有效地,以应用、数据、实际为背景,迫切需要在教学中加大数理统计的比重,熟悉不同的数据及各种不同特点的数据处理,即直观意义理解解释计算机输出的结果。为后面对实际打下坚实的基础。要介绍不同类型的数据,以及数据的采集、诊断及相关试验的设计,并重点介绍描述性的统计方法,即利用图像及数表对数据进行粗加工的简单易行的方法。它可以使学生在较短的时间内对数据所提供的信息有一纵观的了解。要由目前重概率轻统计逐步向概率与统计并举,最终实现重统计轻概率过度。重点介绍统计中最实用的回归分析及相关分析。
概率统计的特点是应用性强,对概率部分要适当压缩,统计部分要以淡化理论,掌握概念,了解原理,强化应用,深入浅出,注重概念,加强应用能力培养,采用直观和形象教学,对于一些抽象的数学概念、理论,采用有趣的例子直观、具体、形象的铺垫,引导学生理解消化。
2.2 注重方法,凸现思想数学思想方法是数学的精髓,在教学中要深入浅出,强调概率统计思想的内涵与应用,不追求公式的推导与形式逻辑思维的推理,取而代之是应用中不断使用公式及运用形象思维和直观判断,引导学生挖掘隐含概率统计学知识中的数学思想及方法,例如:小概率事件在个别试验中不发生原理思想的渗透,此原理在工农业生产及日常生活中有着广泛的应用,国外教科书上说:“显著性水平?琢通常是一个经济决策,它建立在发生错误的代价有多大的基础上;正态分布的“3?滓-原则”,假设检验基本思想的提出,都是本原理的重要应用;替代原理思想的渗透,矩法估计的实质就是利用子样的经验分布和子样矩替换母体的分布和母体矩,我们称之为替换原理.无偏估计的思想,“等价交换是在平均中实现的”;假设检验的思想:在假设检验中一般只给你一个样本,要想肯定假设H0成立是不充分不可能的,但用一个样本否定H0成立是理由充分的;一般是把“不能轻易否定的命题”作为原假设,把“需要验证的命题”作为备择假设。什么是“不能轻易否定的命题”呢?一般来说原有的理论、原有的看法、原有的状态、或者说是那些保守的、历史的、经验的,在没有充分证据证明其错误前总是被假定为正确的,作为假设,处于被保护的位置,而那些猜测的、可能的、预期的取为备择假设,假设的目的就是用事实验证原来的理论、看法、状况等是否成立,或更明确的说用事实原假设。没有被拒绝的假设不一定就是正确假设;模型化方法――概率分布模型,检验模型等,一个分布,就是一模型,让学生多掌握一些个分布,对于应用是有好处的。它引导学生用类比思维、逆向思维、归纳思维的方法,从概率模型、统计模型的实际背景去分析,思考得出的结论,与教材中的结论比较,可有意外的收获。教学生以正确的思想和方法,无疑就是交给学生一把打开知识大门的钥匙。
2.3 增设数理统计试验著名的数学家欧拉说“数学这门课,需要观察,需要试验” ,概率与数理统计这门课中,有许多随机试验,很多统计规律大多是从试验中得来的,让同学亲自做试验,可以通过现代化的计算机技术,掌握独立使用各种先进的计算工具和信息的传播技术探索解决实际问题的新思路新途径,不仅能体验探索随机试验的许多规律,还能培养他们研究、观察、归纳、概括、总结的能力,加深对概率与数理统计知识的理解,这样能极大的发挥学生学习的主观能动性,激发学习的热情和再发现的欲望,便于自主学习,提高学习效率。我们使用EXCEL作数据分析与处理的平台,让学生采集一些数据,进行数据管理,并进行数据质量分析,在计算组合数、平均数、标准差、平方和分解、相关系数、回归系数等,这些计算使用EXCEL都可以完成;这样既增强了学生的动手能力又有一种成就感,收到了很好的效果。
2.4 进行教学内容的改革与实跋,编写富有特色的概率统计教材教材应从实际出发,以应用和易于接收为目的,在引入概念、定理、公式,应阐明概念、定理、公式提出的过程和背景,从问题出发,引人入胜,使学生用较容易的理解和掌握新的知识和规律,激发学生的兴趣;针对现有教材存在的问题,要注重直观性与形象化的教学,习题的配备大多要浅显易做,以应用为主;尽量缩减概率论部分,淡化繁琐的理论推导,加强数理统计部分,溶进现代数学的思想、观点、方法,主要使学生掌握数理统计的思想与方法,除了对参数估汁、假设检验、相关分析与回归分析等经典统计方法的介绍外,针对工科学生普遍感到该课程概念抽象难以理解,内容能听懂,习题比较难做的现象,我们总结了多年的教学经验,编写了《应用数学》(科学出版社出版),帮助学生学好概率与数理统计课程:对每一章部分给出了本章小结,使学生理清思路,掌握脉络,明确要求。教材是知识的载体,方法与思想的集合,数理统计教材,只有面向实际,面向应用,紧跟时代的步伐,为师生服务,才能真正得到广大师生的青睐。
总之随着高等教育规模的不断扩大,及社会需求的不断增加,概率统计教育教学面临着许多新的课题和挑战,我们要打破陈规,大胆创新,勇于实践,遵循规律,不断在教学实践中探索行之有效的教学方法,就会在概率统计教学方面取得更好的效果。
参考文献:
[1]茆诗松.概率论与数理统计的回顾与发展.大学数学论文集2007,(3).
[2]刘群孙,钟波.将数学建模思想融入“概率统计”教学中[J].大学数学,2006.
[3]王艳梅.对财经类非统计专业教材编写的思考[J].产业与科技论坛,2006,(2).
二、结合实例强调统计方法的重要性
概率统计是数学的一个重要分支,它的方法别具一格,无论对自然科学还是社会科学,现代统计方法是必不可少的。在教学的过程中,结合实例强调统计方法的重要性,既能加深对于概率统计理论知识的理解,又能激发学生对这门课程的兴趣,具体可从以下几个方面进行考虑:(1)结合日常生活实例进行教学,比如统计学生中同生日的人数,随着统计人数的增加,至少有两人同生日这一事件的频率会接近于1,然后将这一结果与理论概率进行比较;统计吸烟与非吸烟人群中患肺癌的比例,检验吸烟与患肺癌是否存在某种依赖关系;观测一天中某人手机的呼唤次数,然后与泊松分布进行拟合优度检验;统计某年级的外语考试成绩,根据数据进行正态分布的拟合优度检验;等等。(2)结合实例突出统计中的基本方法,参数估计和假设检验是进行统计推断的两种最基本的方法,其涉及的范围十分广泛,在教学的过程中应首先理解方法的基本原理和理论依据,结合典型实例进行分析,比如通过估计湖中鱼的条数,使学生了解矩法和最大似然法的原理和步骤;通过检验自动包装机工作是否正常,使学生掌握假设检验的方法步骤。(3)结合实例系统介绍统计中的基本内容,使学生进一步认识到统计方法的实用性和广泛性,为学生在今后的学习和研究中提供广阔的应用空间。
1.2概率统计和信息科学整合的必要性
概率统计和信息科学整合是当前不可抗拒的一股潮流,这样的整合势在必行。信息技术与概率统计的结合更利于人们对概率统计的学习,对信息技术的掌握。在概率统计学科中加入信息科学,更有助于学生采取个性化的学习形式,从而最大限度的体现并满足学生们的学习愿望。将信息科学技术融入到概率统计中,是一种新型的学习方式,这既是一种教学改革,又发展了学生的创新精神,提高了学生的实践能力。
1.3概率统计与信息科学的注意事项
将概率统计与信息科学有机整合起来,学生们不单单要了解概率统计的相关知识,还要学会使用计算机,熟练的应用相关的计算机软件。只有这样,学生们才能真正的学以致用,将概率统计应用到实际的问题当中去。在实际教学中,应把重点放在概率统计方法的阐述和计算机的应用上,就是既要结合数据和实例讲解概率统计的概念、特点和应用场合;又要讲解计算机的使用方法。例如,可以利用软件演示方差分析、回归分析的计算过程。计算机软件SPSS在概率统计方面,被应用的频率是非常高的,因为它的统计功能较为强大。
1.4概率统计与信息科学整合的策略
首先要在思想与方法的层面上,将概率统计与信息科学整合。这种深层次的整合可以使教师的教学能力获得快速的进展,并且取得更好的教学效果。概率统计与信息科学的整合不单单局限于解决教学问题,整合的真正目地是使学生们掌握学习方法,让学生养成一种自主、探究的学习精神,让学生们在信息科学的支持下,用所学的知识与思想,去解决实际中的问题,也就是人们常说的学以致用。若想将概率统计与信息科学真正的有效结合起来,老师的想法是非常重要的。教师不单单要了解信息科学,还要从心底认同这种将概率统计与信息科学整合的教学模式。这样,教师才能了解概率统计与信息科学整合的真正意义所在,从而将信息科学技术掌握的更加熟练,将概率统计理解的更加透彻,将概率统计与信息科学的结合点看的更加清晰,使自己的教学方法和教学思想更加完善。其次,是根据不同的内容选择不同的信息科学媒体。将概率统计与信息科学结合,是为了使教学过程更加优化,使教学效果更加理想。选择哪种信息科学媒体更加合理,利用哪种信息媒体能最大限度的激发学生们的学习兴趣,所有的这些,都要以概率统计的内容作为选择教学媒体的出发点,并根据学生的需要来确定最终使用的信息科学媒体。如果所选择的媒体,与教学内容不搭,不单不能够提升教学质量,还会使教学过程变得更加繁琐冗杂。当教学内容属于静态类的时候,可以选择视频来丰富教学内容;当教学内容拥有较强的连续性时,在教学的过程中可以穿插几段录像;当教学内容较为复杂、抽象、并且变化性很强的时候,可以选择多媒体课件来展示教学内容;当学生进行研究性的学习时,可以选择网络作为自己的学习助手
【关键词】
民办高校;概率论与数理统计;改革;案例教学法
民办高校是我国高等教育大众化进程中高等教育从单一性的办学形式向多样化的办学形式发展的产物,是高等教育领域中的一支生力军.由于起步晚、面对全新教育对象,民办高校从培养计划的制定到课程的设置都处于探索阶段.作为唯一研究随机现象统计规律性的一个数学分支,其理论和方法的应用几乎遍及各领域,又向各个基础学科、工程学科渗透,与其他学科相结合发展形成不少新学科,如生物统计、统计物理、医药数理统计等,它又是许多新的重要学科的基础,如信息论、控制论、可靠性理论和人工智能等.由于它的广泛应用性,概率论与数理统计课程是理工科及经管类专业教学体系中的重要部分,也是理学、工学、经济学硕士研究生入学考试的一门必考课.因陈旧的教学方法已经无法满足学科发展对该课程的要求,因此,对于本门课程的教学改革势在必行.结合我校校情本文对产生问题的原因进行了分析,并结合工作教学实践,提出了部分改革措施.
一、传统教学方法的缺陷
目前的教材及教师授课都存在重理论、轻应用的特点,缺少该课程本身的特色及特有的思想方法,使许多初学者产生了厌学情绪.产生这种现状的原因在很大程度上归咎传统教学方法的机械化.在传统的教学方法下,学生获取知识的主要途径就是老师灌输,学生被动接受.这种“填鸭式”的教学忽略了学生的主体地位,同样也没有发挥出概率论与数理统计这门学科的特点.
二、改革教学条件
(一)以专业为导向精选教材随着概率论与数理统计的教材改革开展得如火如荼,新的教材不断涌现,但真正适合的教材却屈指可数.在概率论与数理统计的教学中,应高度重视并加强统计的应用部分教学,突出其应用性.因此应以专业为导向精选教材,首先教材主要内容应包括概率论基础(概率空间、随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理)、数理统计基础(统计量及其分布、统计估值、统计检验、方差分析、相关与回归分析)和统计实验设计等三大部分.其次,教材的选取应注重以下三点:第一是注重渗透统计思想,加强实际应用.所选例子和习题都应直接来自生产和生活实际,这不仅能加深对基本概念和基本方法的理解,同时也能提高学生学习的兴趣.第二是在习题编排方面,应注重选择难易结合,深浅对练的习题教材.第三是要切实实现专业课相互渗透,相互融合,在教学中大量引入应用实例,将统计思想运用于专业,使学生学习目标明确,同时也促进了学生对后继专业课程的学习.
(二)教学手段的改变在教学过程中要充分注意该门课程“应用型”的特点,也要充分应用多媒体等辅助手段,开发多媒体教学课件,利用各种媒体增加课堂教学的信量,丰富教学内容、提高课时利用率,增加实例演示,使课堂教学图文并茂,声像具备,使抽象问题更加直观.
三、改进教学方法
教学内容的改革与教学方法的改革是相辅相成的,没有教学方法的改革,教学内容的改革就很难取得实际效果.在教学过程中,我们“以学生为主体,以教师为主导,知识、素质和能力协调发展”的现代教育思想为指导,教学中突出学生的中心地位,注重对大学生逻辑思维能力、分析问题和解决问题能力的培养.精心设计教学法,比如教师讲重点、讲难点、讲思路、讲方法,采用启发式、激励式的教学法,让学生积极参与到课堂中去.可以适当组织一些课堂讨论,比如案例教学法.案例教学的目的是希望学生从实际问题出发,掌握理论知识,进一步运用到实践.为了达到这个目的,首要问题就是选择案例.这实际上是案例教学中最重要也是最困难的地方,主要取决于老师的选择.为了发挥案例的最大作用,在每个教学的环节应该慎重选择案例.比如说,处在概念的引入阶段时,案例发挥的作用应该是启发学生提出概念,并且理解概念的必要性与合理性,而且不能占据太多的时间.此时选择的案例一定要简单,具有代表意义,让学生直观上就能明白下面的概念要表达的含义.可以看这样一个引入最大似然估计概念的案例:一名学生和一个猎人去打猎,看到一只兔子跑过,听到一声枪响,兔子应声倒下,问:这一枪最有可能是哪个人放的.这是一个非常直观的问题,设置在课堂上既简单又能够说明事情.通过这个问题,学生的积极性都调动起来了,绝大多数同学都会回答这一枪一定是猎人放的.进一步,老师要引导学生揭示其中的原因,同学们会有不同的答案,都处在现象上面说明问题,最后老师可以根据学生的答案做总结:这一枪最可能是猎人放的.这里面有一个“小概率原理”,就是一个小概率事件在一次试验中是不可能发生的,假如这一枪是学生放的,说明学生一枪就击中兔子的概率是很大的,这显然是不合逻辑的,因此这一枪最有可能是猎人放的.进一步老师可以根据这个例子,引入最大似然估计的思想:在一次抽样中,取到了某个样本,说明这个样本出现的可能性最大,那么使得这个样本出现的可能性达到最大的参数值就是最大似然估.通过案例这种直观工具,加入学生的讨论,会让抽象的理论更加具体,使枯燥的课堂生动起来.同时要加强对习题课、辅导及批改作业等教学辅助手段的重视,注重科学适当的作业习题训练,已达到熟练掌握基本知识和提高运用技能的目的.对于考核,应建设概率论与数理统计试题库,以保证试题的标准和质量.另外概率与统计应该分开来考核,概率论部分基础知识多应该采用闭卷考试,而数理统计部分应用性强、公式多应该采用开放式的考核.
四、趣味导向,培养学习兴趣
兴趣是最好的老师.如果能激发学生学习的兴趣,就可以唤起他们学习的动机,从而主动学习.俗话说“良好的开端是成功的一半”,上好第一次课,对于培养学生学习概率统计的兴趣非常重要.通过提出疑问、分析疑问、解决疑问而进行教学不仅有利于养成学生积极思考、敢于批判等良好的心理品质,也是激发学生兴趣的有效手段.不过在教学中我们要注意,不能只是机械地为了疑问而疑问,要明确自己的目的所在.具体来说,所设疑问要从实际出发,能够激发起学生的共鸣,使他们踊跃参与进来,这样才能真正提高学习兴趣和教学效率.在学习统计量的概念一节时,给学生介绍了这样一个案例:二战期间,盟军坦克作战能力超过了德国,但盟军仍担心德国的新型坦克,而且盟军不知道德国一年能制造多少坦克.缺乏这个信息,盟军对胜利没有一点把握.于是,情报部门开始观察德国坦克制造厂,甚至派人去战场数德国坦克,但收获甚微.后来统计学家发现可以利用坦克上的序列号来进行推断.假设德国坦克编号1,2,…N(其中N为总生产数量).如果缴获5台坦克,编号分别是10,21,33,68和92.此时样本总数S是5,最大序列号M是92.经过测试演算,得出制造总量=(M-1)(S-1)S.运用这个公式,统计学家认为在1940年6月到1942年9月,德国每个月制造出246台坦克,比情报部门的数据1400台要低得多.战争结束后,盟军拿到了制造厂的生产报表,数据显示这三年德国每月生产245台坦克.学生通过这个例子发现原来统计学这么好玩还非常有用,就会开始对概率统计课程产生浓厚的兴趣.在引入基本概念时尽可能解释其直观背景和实际意义,并多举生活中常见的例子,也可以在课堂上利用计算机软件和数学软件进行一些简单的模拟试验,让学生直接观察并参与到试验中,从而改变学生对数学课呆板枯燥的认识,提高学生对概率论与数理统计学习的兴趣.社会日新月异,社会对于人才素质的要求也逐渐提高,学校教育的培养目标逐渐开始向培养复合型人才,培养实际应用型人才转化.传统的教学开始不能适应社会发展的需求,这就需要我们探索、研究新的课程教学,从而为国家输入更加强有力的血液.
【参考文献】
[1]齐名友著.世纪之交话数学[M].武汉:湖北教育出版社,2000.
[2]K.J.德夫林著,李文林等译.数学:新的黄金时代[M].上海:上海教育出版社,1997.
2研究性学习方法
本文将以工科《概率统计》课程为例,从以下四方面着手来引导学生学习的主动性以及学习热情,第一个方面是引导学生运用逆向思维思考问题;第二个方面是启迪学生运用发散思维思考问题,这样可以让学习跳出思维的定势,培养学生的多角度的思考问题的习惯;第三个方面是进行基于Matlab的验证学习.概率统计实际上是源于生活的一门课程,从定理到习题处处可以在实际生活中找到原型,很多习题也是源于实际问题,学生自己通过将课本中的一些较为容易实现的理论环节进行实验编程验证,可以让学生理论联系实际从而对课程有更加深刻的认识与理解;第四方面是基于实际问题的教学,将实际问题引入课堂教学以及课外实践活动能让学生理论联系实际,对学习知识点有更加深刻的理解,同时也易于学生运用所学知识解决实际问题.
2.1逆向思维
训练逻辑思维的一个有效的方法是进行逆向思维,逆向思维有利于学生更加深刻认识事物或现象本质,避免对问题或概念仅停留在表面上,通过正反两方面思考,达到融会贯通,举一反三,真正掌握所学知识点.下面例1将通过正反两方面来对问题进行求解.由例1可以看到通过逆向思维的求解得到和正向思维求解同样的结果,而通过逆向思维求解可以使学生加深对知识点的理解,这样可以让学生对全概率公式运用的更加熟悉,理解的更加透彻,也能更加激发学生主动学习的热情与兴趣,从而有利于学生更加灵活的运用知识点解决问题.
2.2发散思维
对于概率统计学习中的很多问题其求解方法可以有多种,这些方法往往蕴含着不同的思考问题的角度,发散性思维就是要从与常规不同的角度来解决问题.新颖的思考问题角度往往能给问题的求解带来意想不到的效果,从而能达到锻炼学生思维的广度,启迪思维的目的.通过例2可以看到,解法一通过微观的角度细致分析所求事件发生的每一种可能性,解法二从另外一个较为宏观的角度整体考虑两个事件发生的概率的关系从而进行求解,对问题的理解和把握要求更高.从另外一个角度来看,两种解法相互关联,思考问题角度互为补充,从而有利于锻炼学生思维的弹性与延展性,更加灵活的对问题进行求解.
2.3基于Matlab的验证学习
Matlab语言是国际科学领域应用和影响最广泛的三大计算机数学语言之一,在很多领域Matlab语言是科学研究者首先选用的计算机数学语言.它是一种集数值计算、符号运算、可视化建模、仿真和图形处理等多种功能于一体的图形化语言,问题的提出和解答只需以数学方式表达,不需大量原始的编程过程,易学、适用范围广、功能强、开放性强、网络资源丰富[2].另外Matlab程序限制不严格,程序设计自由度大.例如,在Matlab里,用户无需对矩阵预定义就可使用,程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行.使用它可以很容易实现和验证高等数学、概率统计等大学课程所讲述的内容.唯物主义的哲学观告诉我们学习要理论联系实际,理论要在实践中得到检验才算是真理,在实践中得到检验的真理才更加有生命力,才能更加被人所铭记.《概率统计》课程作为理工科课程需要学习很多的定理证明,然而概率统计是源自于生活的一门学问,最早源于赌博问题[3],概率中的很多例题以及命题都可以在实际问题中找到对应的原型,并加以证明,下面以“抓阄问题”[4]的实验证明来说明:由频率与概率之间的关系,随着实验次数的增加频率应该越来越接近概率,从实验结果可以看到三个人抓到“有”字阄的频率十分接近,随着实验的次数增加均越来越接近1/3,这样正好可以让学生更好的理解频率和概率之间的关系.
2.4基于实际问题的教学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)45-0109-03
《概率论与数理统计》课程是大学数学公共基础课程之一,是一门应用性很强的学科,它从数量上研究随机现象的统计规律性,在先进材料设计、计算机模拟计算、天气预报、人口统计等众多科学技术与人类实践活动中运用概率统计的知识去解决问题。它对培养学生处理“随机”的数学基础知识、基本能力和综合素质具有其他课程不能替代的作用,然而,怎样才能使学生从传统的确定性思维模式进入随机性思维模式,进而学好这门重要课程是相关教师面临的挑战。笔者结合自身的教学经历,从以下几个方面进行了教学改革,取得了一定的教学效果。
一、引入数学史,增强趣味性
在教学中引入一些教材中没有出现的相关数学史,特别是介绍数学家的生平轶事及其对本学科的贡献,往往能吸引学生的注意力,激发学生的学习兴趣,并且也会提高他们的问题意识与思维能力。例如上第一次课时,可以首先从著名的“德・梅耳问题”与“分赌注问题”出发,向学生介绍概率论与数理统计的起源和发展,在此过程中穿插讲解数学家帕斯卡、费马、惠更斯、拉普拉斯、马尔科夫、辛钦等的贡献;在讲解概率的公理化定义时,可讲解前苏联数学家柯尔莫哥洛夫的生平及其提出的“概率的公理化定义”的重要意义;在讲解几何概率时可以穿插介绍几何概率开创者蒲丰的生平,以及由蒲丰投针试验所产生的蒙特卡洛方法的影响;在讲解中心极限定理时,可以穿插讲解伯努利、切比雪夫、李雅普诺夫等数学家的生平;在讲解“t-分布”时,告诉学生“t-分布”还有一个名称――学生氏分布,然后介绍“开创了小样本理论的先河”的英国数学家戈塞特提出该分布的艰辛过程。这些数学家的故事不仅可以让学生慢慢对这门课程产生兴趣,还在无形中了解了丰富的数学文化,而且提高了学生的数学素养。
二、案例教学法,突出趣味性
目前数学课堂教学中,教师普遍采用给出概念、公式、定理,然后再去解释概念、推导公式、证明定理的教学方式,学生感觉枯燥无味,学习兴趣会大大降低。案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。通过案例教学把所学的理论知识和实际生活结合起来,把抽象的数学与生动有趣的案例结合起来,培养学生分析和解决问题的能力。例如在讲授全概率公式和贝叶斯公式时首先可提出这样一个有趣的问题:假如你有机会参加电视台的一档娱乐节日,主持人指着三个商标对你说,其中一个商标后面的奖金是2000元,另两个商标后面的奖金分别是20元和50元,你可以随意选择一个商标,所对应的奖金就归你了。你当然想得到2000元,你可选定一个商标,如1号商标(但未打开),主持人知道哪个商标后面是2000元,哪两个商标后是20元和50元,他打开了50元的一个商标,比方他打开3号商标,主持人对你说,现在再给你一次机会,允许你改变原来的选择,为了得到2000元,你是坚持选择1号商标还是改选2号商标呢?教师可引导学生开展讨论,在讨论的基础上引入全概率公式和贝叶斯公式帮助大家做出选择。这无疑使学生对学习的新知识产生了强烈的欲望,唤起了学生的注意,激发了学生学习的积极性和主动性,并取得了很好的教学效果。
三、注重科学思维和科学方法的培养
趣味与科学的严谨性是相辅相成的。在教学过程中,不但要用趣味性提高学生的学习兴趣,还要体现数学思维在教学中的渗透与学生创新思维能力的培养。通过有意识地营造使学生不断在取得思维成就的环境中,让学生不断在思维成功的喜悦中良性循环,越学越想学,越思考越灵活。对同一问题不同的求解方法,锻炼不同的思维方式,从而潜移默化地培养了学生的科学思维方法。例如,有2张甲等票和n-2张乙等票共n张票,n人通过抽签决定所得的是甲等票还是乙等票,问抽签的结果与抽签的顺序是否有关?该问题的解决可以有两种方法。
四、提炼知识,把握脉络
五、统计软件的辅助实践
《概率论与数理统计》这门课程公式多、计算烦琐,给应用带来困难。对具有概率统计功能软件的了解和掌握显然对理解和应用有极大的帮助。除Excel外,通用Mathem atica、SPSS等都是很好的工具,概率统计是最需要使用计算机的领域,我介绍SPSS软件自带的统计程序包,其中有实现常用统计计算的各种外部函数,我在教学中针对一个具体工程问题教授学生使用国内外广泛流行的SPSS统计软件进行分析,要求学生:(1)会用SPSS软件求概率、均值与方差;(2)能进行常用分布的计算;(3)会用上述软件进行期望和方差的区间估计;(4)会用上述软件进行回归分析。
例题:电容器铝箔电解扩面腐蚀工艺的影响因素主要包括电解液温度(A)、HCl浓度(B)、H2SO4浓度(C)、电解时间(D)、电解电流密度(E),以A、B、C、D、E为实验影响因素,比电容为影响指标,通过L16(45)正交实验,考察五个实验因素对指标的影响程度并做出显著性分析。对用SPSS软件对实验结果进行方差统计分析可知,五个实验因素电蚀扩面效果和阳极箔比电容都有显著影响,这和文献报道的结论相一致。五个实验因素影响程度大小顺序为硫酸浓度>盐酸浓度>电流密度>时间>温度,硫酸浓度是最重要的影响因素,因此可以对硫酸浓度进一步进行单因素实验,以确定出最佳的电解腐蚀扩面工艺,为相关行业高比容阳极铝箔的研制提供参考。
六、考核形式的转变
考核是对学生学习情况、教师教学效果的评估,采取何种形式进行考核,对于学生学习方法、教师教学方法都有导向作用。受应试教育的影响,国内大多课程的考核方法都是闭卷,但对于《概率论与统计学》这门实用性很强的课程来说,我认为授课的重点是要让学生掌握统计学的核心思想,学会利用统计的思维处理问题,而不是教会学生像学习“纯数学”那样机械地做题。该课程公式和计算众多,不能让公式和计算成为学生学习的障碍,应当重视对概率统计重要概念的理解、总结归纳问题和研究问题能力的培养。因此,我认为本课程考核中可以尝试开卷考核、半开半闭考核以及分组考核、实验考核及撰写小论文等多种形式,使学生不至于为死记一些定理公式浪费过多的时间。
七、教学效果
课堂教学无非有三种境界:一是传授知识,二是培养思想方法和能力,三是激发兴趣和应用意识。教师的教学任务之一就是要提升课堂教学境界,从上述几个方面改进传统教学模式,与时俱进引入新的思想和方法,使原本抽象、枯燥的数学理论变得形象生动,减轻了学生的学习负担,激发了学生的学习兴趣,进而提高了教学质量。可以说本文提出的教学改革方式真正实现了第二种、第三种境界。调查问卷和学生的反馈表明,新措施是有效的,提高了学生的学习兴趣和教学效果。教学工作是一项复杂而艰巨的任务,还需要在长期的教学工作中不断探索,积累经验,逐步提高。
参考文献:
[1]盛骤.概率论与数理统计[M].北京:高等教育出版社,2001.
[2]魏宗舒.概率论与数理统计教程[M].北京:高等教育出版社,2001.
[3]李晓莉.概率统计的多元化教学探讨[J].大学数学,2005,21(04).
[4]冯凤萍,崔继贤.概率统计的探索与改进[J].高师理科学刊,2004,24(02).
[5]张瑞亭.对概率统计教学中若干问题的探讨[J].教育教学论坛,2014,(02).