时间:2023-08-30 16:25:39
导言:作为写作爱好者,不可错过为您精心挑选的10篇自然灾害危险性分析,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
关键词:暴雨洪涝灾害;承灾体;危险性评价;时空格局
中图分类号 P531 文献标识码 A 文章编号 1007-7731(2017)06-0021-04
Spatial-temporal Distribution and Risk Assessment of Flood Disaster in Guangxi in 2015
Liao Chungui et al.
(Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Guangxi Teachers Education University),Ministry of Education,Nanning 530001,China;Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation(Guangxi Teachers Education University),Nanning 530001,China;Guangxi Teachers Education University,Nanning 530001,China)
Abstract:Records for rainstorm-floods in Guangxi in 2015 were analyzed for disaster temporal-spatial distribution and risk assessment of flood disaster. The results show that :disasters on international distribution,the summer is most concentrated;the risk assessment of flood disaster is the most in Nanning ,and the lowest in Chongzuo or Fangchenggang .
Key words:Flood disaster;Index CH;Risk assessment;Spatial and temporal characteristics
暴雨洪吃趾κ怯沙て诒昊蚪邓而造成大量积水和径流淹没低洼地区造成的人口、经济财产损失的自然灾害[1],在全球气候变暖环境下,我国自然灾害发生的频率和强度及影响范围不断上升[2]。我国的暴雨洪涝灾害大部分是由暴雨引发的,其发生频率高、影响范围大、造成经济损失高[3]。自然气象灾害引起的农作物受灾面积也出现不断增加的趋势[4]。我国每年因暴雨洪涝灾害造成的经济损失也在100亿元以上[5]。2015年中国有20多个地区发生暴雨洪涝灾害,受灾人口约有2 000万人;造成的紧急转移安置人口约有100万人和4.4万间房屋倒塌。暴雨洪涝灾害给我国的社会经济发展、人民生命健康带来严重的威胁。而处在我国南部沿海地区的广西降水丰富、暴雨量大,每年暴雨引发的泥石流等灾害也给人民生命财产造成巨大威胁。据统计,2015年广西洪涝灾害,造成约有300万人受灾,而因灾死亡有28人,有16.7万hm2农作物受灾,其中成灾有8.7万hm2;有7 000多间房屋倒塌,造成直接经济损失高达2.2亿元。因此需要对广西洪涝灾害的时空特征及危险性进行研究,切实为广西减灾防灾工作提供科学的参考依据。
目前,国内外对洪涝灾害时空格局特征和洪涝灾害的危险性开展了大量的研究。如陈香等人根据福建省气象灾害年鉴提供的数据资料,对福建省的暴雨洪涝灾害时空格局进行研究分析,提出了具有针对福建沿海地区的防灾减灾对策[6-7];杨佩国等人利用EM-DAT中的灾害记录数据资料,对亚太地区近20a洪涝灾害的时空特分析[8];廖永丰等人对我国21世纪初发生的的自然灾情,进行空间分析[9],景垠娜等人利用GIS对上海浦东新区暴雨内涝灾害的危险性分析[1];李香等人利用GIS技术对海南岛暴雨灾害的危险性进行评价[10];马国斌等人对中国短时洪涝灾害的危险性进行评估研究[11];樊高峰等人用GIS对浙江省暴雨灾害的危险性进行评价[12];张振国等人运用情景模拟对城市社区暴雨内涝灾害的危险性进行分析[13];范擎宇等人对松花江流域暴雨灾害的危险性进行评估[14]。还有学者对广西暴雨洪涝的时空分布特征及成因、风险评估与区划、防御对策等进行相关研究[15-21]。广西地貌类型复杂多样,地势西北高东南低,区内有红水河、南流江、西江等流域,河网密度大,受东南季风的影响,每年暴雨出现的次数较多,而且降水历时较短暴雨量大,区内的河流水位变幅大,喀斯特地区范围广排水不畅,遇到暴雨容易引发洪涝灾害。基于上述研究,本文采用灾情数据的数理统计方法,搜集了2015年广西壮族自治区暴雨洪涝灾害的灾情数据资料,从时间和空间角度对暴雨洪涝灾害的特征进行分析,并对其暴雨洪涝灾害的危险性进行评价,为广西防灾减灾的规划工作提供科学依据。
1 数据与方法
1.1 数据 根据暴雨洪涝灾害的时空特征与危险性评价的基本要素分析,文中所用统计数据来自2015年广西统计年鉴,包括各县的行政面积、人口、GDP及耕地面积。应用广西地情网、广西气象局网站的暴雨洪涝灾害统计资料,以及广西民政厅的《灾情快报》中各县的受灾人口、直接经济损失和农作物受灾面积等资料。
1.2 暴雨洪涝灾害的危险度指标及评价方法
1.2.1 暴雨洪涝灾害的危险度指标 暴雨洪涝致灾和成灾的程度由多种因素决定,暴雨洪涝灾害时空方面出现差异。暴雨洪涝灾害的形成与发展与暴雨灾害天气和影响区域的自然社会、经济状况等有关联,在暴雨洪涝灾害危险性评价指标的选取上,包括灾次ZC和承灾指数CH。
[灾次ZC=Ni(i=1,2,3…14)] (1)
当有暴雨洪涝灾害发生时,Ni=1;没有暴雨洪涝灾害时,Ni=0。
[CH=a+b+c3] (2)
式中的a、b、c分别代表人口密度等级数、耕地面积等级数和地均GDP等级数,a、b、c的取值范围在1~6,灾次ZC和承灾指数CH指标的分级标准见表1。
1.2.2 暴雨洪涝灾害的危险度评价方法 根据王静爱等人的研究[22],以ZC和CH的等级数构建广西暴雨洪涝灾害危险度指数W,
[W=ZC等级数+CH等级数2] (3)
式中的ZC和CH分别代表暴雨洪涝灾害的灾次和承灾指数。最后以地级市为单位制图单元编制出暴雨洪涝灾害危险度评价图。
2 暴雨洪涝灾害时空特征
2.1 时间分布特征 广西南临北部湾,常受到台风等天气系统的影响,容易形成致洪暴雨。2015年5―11月,广西共发生14场暴雨洪涝灾害,涉及14个地级市,80多个县,受灾人口达300多万;其中较大范围的有11场。暴雨洪涝灾害从4月下旬_始出现,主要集中在5月、6月和9月。由图1可知,2015年广西暴雨洪涝灾害事件中,5月18日这次暴雨洪涝灾害,造成的直接经济损失最高达9 500万元;受灾人口最多的是发生在7月31日这次暴雨洪涝灾害,其受灾人口高达101.87万人;6月15日这次暴雨洪涝灾害造成的农作物受灾面积最大高达4.9万hm2,占全年农作物受灾面积的29.4%。广西暴雨洪涝灾害年内分布不均,夏季最为集中。
农作物受灾面积和直接经济损失对比
2.2 空间分布特征 强降水是引发暴雨洪涝灾害的主要原因之一,广西降水的空间分布受到不同的地形地貌等条件的影响。从地势上看广西西北高东南低,受到地形的影响,全区降水分布差异明显,西北喀斯特石灰岩地区排水不畅,暴雨洪涝灾害频繁发生。利用广西气象局网站2015年各类暴雨洪涝灾害统计资料,以及广西壮族自治区民政厅的《灾情快报》中各县的受灾次数、受灾人口、直接经济损失和农作物受灾面积的数据资料,分析暴雨洪涝灾害灾次的空间分布。由图2可知广西各地级市发生暴雨洪涝灾害的灾次在空间分布上差异较大,河池、南宁以及百色的灾次位居前三,发生的暴雨洪涝灾次分别为16次、12次和12次;崇左的暴雨洪涝灾次最少,仅有1次。在空间分布上总体表现由东北部地区向西南部地区减小,其中发生灾害的次数中桂东>桂北>桂中>桂南>桂西。桂东地区在2015年共发生28次,发生的暴雨洪涝灾害最多,占总数的27.2%;桂西地区发生的暴雨洪涝灾害次数最少,仅有13次。
1
3 暴雨洪涝灾害的危险性评价
3.1 暴雨洪涝灾害承灾体特征 暴雨洪涝灾害承灾体指数CH表示暴雨洪涝灾害发生地区的承灾体强度,是地区单元人口密度、耕地面积和地均GDP的综合指标。地区承灾体指数值越高,表明地区承灾体潜在的危险性越大。2015年广西14个地级市的平均承灾体指数为3.24,属于第3等级,表明全区承灾体潜在的危险性在中度水平。由图3可知,暴雨洪涝灾害的承灾体在空间分布上总体表现由中南部地区向西北部地区减小的特点。南宁、玉林、北海的承灾体指数位居前三位分别为4.7、4.7和4.3,承灾体指数3~3.5的城市有钦州、柳州、桂林、来宾、崇左,梧州和百色的承灾体指数2.5~3。承灾体指数低于2.5的有河池、防城港、贺州。
3.2 暴雨洪涝灾害的危险度 暴雨洪涝灾害的危险度是灾次与承灾体综合评价的结果。由图4可知,2015年广西14个地级市的平均危险度指数为3.03。广西暴雨洪涝灾害的危险度指数桂东>桂中>桂北>桂南>桂西。暴雨洪涝灾害的危险度在空间分布上总体表现由桂东桂中地区向桂西南地区减小的趋势。由图4可知,南宁、玉林的危险度指数都超过5,南宁市的危险度指数甚至高达5.5万人;梧州市、北海市、河池市、百色市的危险度指数也在3.5以上,防城港市、崇左市的危险度指数最低在2以下。由此可知,南宁的暴雨洪涝灾害危险性最大,防城港市和崇左市的危险性最小,广西中东部地区暴雨洪涝灾害危险高,而西南地区的暴雨洪涝灾害危险性较低。
4 结论与讨论
采用2015年广西地情网、广西气象局网站的各类暴雨洪涝灾害统计资料,以及广西统计年鉴等资料对广西暴雨洪涝灾害的时空格局和危险性进行研究,主要结论如下:
(1)利用2015年的灾情数据,重建了广西暴雨洪涝的时空特征,客观地反映2015年广西暴雨洪涝灾害的分布规律,暴雨洪涝灾害月际分配不均,夏季最为集中,暴雨洪涝主要发生在5月―11月。暴雨洪涝灾害的灾次数空间差异大,总体表现由东北部地区向西南部地区减小,其中河池市的灾次最高。
(2)暴雨洪涝灾害承灾体在空间分布上表现为中南部地区向西北部地区减小。南宁的暴雨洪涝灾害危险性最大,防城港市和崇左市的危险性最小,广西中东部地区暴雨洪涝灾害危险性高,而西南地区的暴雨洪涝灾害危险性低。
参考文献
[1]马宗晋.中国重大自然灾害及减灾对策(总论)[M].北京:科学出版社,1994:11―21.
[2]景垠娜,尹占娥,殷杰,等.基于GIS的上海浦东新区暴雨内涝灾害危险性分析[J].灾害学,2010,02:58-63.
[3]丁一汇,张建云.暴雨洪涝[M].北京:气象出版社,2009.
[4]孟翠丽,匡昭敏,李莉,等圣.基于GIS的广西暴雨灾害风险实时评估技术研究[J].中国农学通报,2013,26:184-189.
[5]陈J,史培军.自然灾害[M].北京:北京师范大学出版社,2007.
[6]陈香. 福建暴雨洪涝灾害时空格局与减灾对策研究[J].山西师范大学学报(自然科学版),2008,01:104-108.
[7]陈香,王静爱,陈静. 福建暴雨洪灾时空变化与区域划分的初步研究[J].自然灾害学报,2007,06:1-7.
[8]杨佩国,胡俊锋,于伯华,等.亚太地区洪涝灾害的时空格局[J].陕西师范大学学报(自然科学版),2013,01:74-81.
[9]廖永丰,赵飞,王志强,等.2000-2011年中国自然灾害灾情空间分布格局分析[J].灾害学,2013,04:55-60.
[10]李香,赵志忠,张京红,等.GIS技术支持下的海南岛暴雨灾害危险性评价[J].海南师范大学学报(自然科学版),2010,02:193-197.
[11]马国斌,蒋卫国,李京,等.中国短时洪涝灾害危险性评估与验证[J].地理研究,2012,01:34-44.
[12]樊高峰,何月,顾骏强. 基于GIS的浙江省暴雨灾害及其危险性评价[J].中国农学通报,2012,32:293-299.
[13]张振国,温家洪.基于情景模拟的城市社区暴雨内涝灾害危险性评价[J].中国人口.资源与环境,2014,S2:478-482.
[14]范擎宇,何福红,马国斌,等.基于过程降雨的暴雨灾害危险性评估――以松花江流域为例[J].地理与地理信息科学,2016,02:100-104+110.
[15]覃卫坚,李栋梁,王慧,等.近50年广西大范围暴雨的大气环流异常分析[J].高原气象,2014,02:515-521.
[16]李翩迹汪明,史培军.湖南暴雨洪涝灾害损失时空特征及影响因素分析[J].北京师范大学学报(自然科学版),2014,04:429-434.
[17]张雅昕,王存真,白先达.广西漓江洪涝灾害及防御对策研究[J].灾害学,2015,01:82-86.
[18]黎琮炜,覃卫坚,高安宁.1961―2013年广西洪涝灾害时空分布特征及成因[J].气象研究与应用,2015,01:80-85.
[19]莫建飞,陆甲,李艳兰,等.基于GIS的广西农业暴雨洪涝灾害风险评估[J].灾害学,2012,01:38-43.
[20]黄明策.广西暴雨时空分布特征[J].广西气象,2006,03:9-13.
2自然灾害风险系统要素和风险形成机理
自然灾害风险系统主要由承灾体、孕灾环境、致灾因子等要素组成。承灾体系自然灾害系统的社会经济主体要素,是指人类及其活动所组成的社会经济系统。承灾体受致灾因子的破坏后会产生一定的损失,灾情即是其损失值的大小,而之所以会有损失,根本原因是承灾体有其核心属性———价值性。通常脆弱性是指承灾体对致灾因子的打击的反应和承受能力,但学术界目前对于脆弱性的认识并不统一。孕灾环境主要包括自然环境与人文环境,位于地球表层,是由大气圈、水圈、岩石圈等自然要素所构成的系统。孕灾环境时时刻刻都在进行着物质和能量的转化,当转化达到一定条件时会对人类社会环境造成一定影响,称之为灾变,这种灾变即为致灾因子,基于致灾因子的相关研究称之为风险的危险性分析,故危险性其实是表达了致灾因子的强度、频率等因素,比较有代表性的是地震安全性评价,在对孕灾环境和历史灾情的分析研究后以超越概率的形式给出地表加速度来表达某一地区或某一场地的致灾因子危险性。相比于孕灾环境和承灾体之间的复杂关系,影响致灾因子的危险性大小的来源相对单一,完全由孕灾环境决定。因此,由孕灾环境、承灾体、致灾因子等要素组成的自然灾害系统,是一个相互作用的有机整体,揭示的是人类社会与自然的相互关系,承灾体可以影响孕灾环境,孕灾环境通过致灾因子影响承灾体,三者不仅存在因果关联,在时间、空间上也相互关联,密不可分。而关于自然灾害风险机理的表达,20世纪90年代以来,1989年Maskrcy提出自然灾害风险是危险性与易损性之代数和;1991年联合国提出自然灾害风险是危险性与易损性之乘积,此观点的认同度较高,并有广泛的运用;Okada等认为自然灾害风险是由危险性、暴露性和脆弱性这三个因素相互作用形成的;张继权等则认为:自然灾害风险度=危险性×暴露性×脆弱性×防灾减灾能力,该观点亦被引入近年的多种灾害风险评估。
3数学方法在灾害风险评估中的应用
国内外学者对风险评估中使用的数学方法做过系统的总结。张继权等曾对国内外气象灾害风险评价的数学方法做了较系统的总结,葛全胜等亦对自然灾害致险程度、承灾体脆弱性及自然灾害风险损失度等方面的评估方法做过评述。尽管这些方法因针对的灾种不同而不尽相同(如用于地震灾害的超越强度评估法、构造成因评估法等,用于洪灾的水文水力学模型法、古洪水调查法等),但总体而言,数学方法应用及风险定量化表达已成趋势:
①概率统计:以历史数据为基础,考虑自然灾害的随机性,估计灾害发生的概率,应用多种统计方法(极大似然估计、经验贝叶斯估计、直方图估计等)拟合概率分布函数。由于小样本分析结果稳定不好,为避免与实际相差过大,故要求历史样本容量较大,常应用于台风、暴雨、洪灾、泥石流、地震等灾害的风险评估。
②模糊数学:以社会经济统计、历史灾情、自然地理等数据为数据源,从模糊关系原理出发,构造等级模糊子集(隶属度),将一些边界不清而不易定量的因素定量化并进行综合评价,利用模糊变换原理综合各指标,能较好地分析模糊不确定性问题。该方法在多指标综合评价实践中应用较为广泛,但在确定评定因子及隶属函数形式等方面具一定的主观性,现主要应用于综合气象灾害、洪灾、泥石流、地震、综合地质灾害等等风险评估。
③基于信息扩散理论:以历史灾情、自然地理、社会经济统计等数据为数据源,是一种基于样本信息优化利用并对样本集值化的模糊数学方法,遵循信息守恒原则,将单个样本信息扩散至整个样本空间。该方法简单易行,分析结果意义清楚,虽然近年来受到较多学者推崇和研究,但对扩散函数的形式及适用条件、扩散系数的确定等尚待进一步探讨。该方法已有运用于低温冷害、台风、暴雨、洪灾、旱灾、地震、火灾等灾害的风险评估。
④层次分析:该方法来源于决策学,是一种将定性分析与定量分析结合的系统分析方法,以历史灾情、社会经济统计、自然条件等数据为数据源。它利用相关领域多为专家的经验,通过对诸因子的两两比较、判断、赋值而得到一个判断矩阵,计算得到各因子的权值并进行一致性检验,为评估模型的确定提供依据。该方法系统性强、思路清晰且所需定量数据较少,对问题本质分析得较透彻,操作性强。该方法已经应用于综合地质灾害、洪灾、滑坡、草原火灾等灾害的风险评估中。
⑤灰色系统:以历史灾情、自然地理等数据为数据源,以灰色系统理论为基础,应用灰色聚类法划分灾害风险等级。算法思路清晰,过程简便快捷而易于程序化,但争议较大,故在国外研究中运用较少,在国内综合地质灾害、风暴潮、洪灾等灾害的风险评估中有所应用。
⑥人工神经网络:以历史灾情、自然地理、社会经济统计数据为数据源。选定典型评估单元(训练样本),将经过处理后的风险影响因子的数值作为输入,通过训练获得权值和阀值作为标杆;然后将其余单元的数据输入训练后的神经网络进行仿真,进而获得各个单元的风险度。其特点和优势是基于数据驱动,可较好地避免评估过程中主观性引起的误差,但因收敛速度对学习速率的影响会导致训练结果存在差异,且其“黑匣子”般的训练过程难以清楚解释系统内各参数的作用关系。该方法目前已经应用于洪灾、泥石流、雪灾、地震、综合地质灾害等灾害的风险评估工作中。
⑦加权综合评价:同样以社会经济统计、历史灾情、自然环境等数据,对影响自然灾害风险的因子进行分析,从而确定它们权重,以加权的、量化指标的指标进行综合评估。该方法简单易行,在技术、决策或方案进行综合评价和优选工作中有广泛运用,但需指标赋权的主观性仍是难以回避的问题。该方法目前应用于台风、暴雨、洪灾、综合地质灾害、生态灾害、草原火灾等自然灾害风险评估工作中。(以上几种方法的综合比较参考叶金玉等总结)各种数学工具的引入不仅为自然灾害评估方法注入了新的活力,同时也让人看到各具特色的数学方法是对应着不同的自然灾害种类,这也是一种提示:针对不同的自然灾害可以且应当有不尽相同的评估方法和研究途径,但这并不影响自然灾害风险评估走向定量化的步伐。
4多灾种综合风险评估
简单的说,自然灾害具有群发链发的特点,单一一种自然灾害往往伴随或者引发其他伴生(或次生)的灾害,对灾害链的研究,马宗晋等组成的研究小组曾给予高度的关注,史培军将其定义为某一种致灾因子或正态环境变化引起的一系列灾害现象,并将其划分为群发灾害链与并发灾害链两种,而群发的灾害或灾害链所引发的灾情必然是几种不同灾害与承灾体脆弱性共同作用所产生的结果,同时,还需认识到,不同自然灾害之间相互也会产生一定的影响,因此,对于这样的情况做单一灾种自然灾害风险评估显然是不合适的,自然灾害综合风险的评估就显得更有现实意义。综合自然灾害评估是风险和灾害领域的研究热点和难点,直到21世纪,学术界的研究方向才逐渐转向多灾种的风险评估。高庆华等认为,自然灾害综合风险评估是在各单类灾害风险评估基础上进行的,它的内容与单类灾害风险分析基本一致,所以采用的调查、统计、评估方法与单类灾害风险评估中用的方法基本相同,与单类灾害风险评估的根本区别是把动力来源不同、特征各异的多种自然灾害放到一个系统中进行综合而系统的评价,以此来反映综合风险程度;Joseph和Donald基于田间损失分布,提出以年总损失的超越概率来表示综合风险;而薛晔等却认为,在复杂的灾害风险系统中各个风险并非简单相加,对目前基本是单一灾种的简单相加的研究成果提出质疑,认为其缺乏可靠性,并以模糊近似推理理论为基础,建立了多灾种风险评估层次模型,对云南丽江地区的地震-洪水灾害风险进行了综合评估。
国内自然灾害综合风险评估研究成果不多,且模型也相对较简单,更好的评估方法也还有待探索,有待更多数学方法的引入。此外,在建立评估模型的同时,也要考虑到自然灾害风险的时空特性,即时间和空间上的分辨率,赵思健认为,同任何事物一样,风险也存在着时空差异,不同的灾种在不同时间、空间尺度上评估的方法和内容应有所区别,这个问题直接影响到该评估的时间有效性和适用范围。因此,由于在某一确定的评估方法下各单一灾种在同一时间空间尺度上的时间有效性并不一定一致,如何考虑这种不一致对评估结果所造成的影响是多灾种综合风险评估中亟待解决的难题之一。尽管有诸多问题困扰着多灾种自然灾害风险评估的发展,但相比单一灾种的风险评估,多灾种风险评估更符合实际生活中灾害群发的特点,其发展是防灾减灾工作的现实需要,决定了多灾种风险评估是风险学科发展的必然趋势。
中图分类号:TV122+.1 文献标识码:A 文章编号:
引言
20世纪90年代以来,在以全球变暖为主要特征的气候变化背景下,极端天气气候事件明显增多,特别是强降雨引发的暴雨洪涝灾害。如2008年北海市6月份雨量高达900毫米;2011年10月1日,福成镇4小时雨量超过400毫米;2012年7月下旬,北海市铁山港区一次连续暴雨过程(4天)雨量超过600毫米;2012年10月29日,北海市区和银滩镇一小时雨量分别是140毫米和150毫米。这些极端强降雨天气对北海市社会经济和人民群众财产安全造成严重的影响。因此,为有效的规避风险,为给北海市经济可持续发展和防灾减灾决策提供理论支持和科学依据,开展北海市暴雨洪涝风险评估很有必要,而致灾因子危险性分析是暴雨洪涝风险评估的主要部分。
1.暴雨洪涝对北海市影响概况
北海市位于广西南部,低纬度沿海地区,南濒北部湾,属亚热带海洋性季风气候,主要受中低纬度天气系统影响,是气象灾害较为频繁的区域之一,而暴雨洪涝是北海市最主要的气象灾害之一。北海市平均每年每站发生暴雨(日雨量50毫米)以上降雨7-8天,大暴雨(日雨量100毫米)以上2-3天。暴雨天气给北海市造成了严重的洪涝灾害,据气象灾情数据统计,不包含台风暴雨所造成的损失,北海市平均每年因暴雨洪涝造成损失超过亿元。
2.数据和方法
2.1数据来源:
(1)气象观测数据
气象资料取自北海市24个自动气象站逐日降雨量资料,资料时间从2008年1月~2012年7月。
(2)基础地理信息资料利用ArcGIS9.2对广西1:25万地理数据中的F4905、F4906、F4909和F4910等四个图幅所包含的E00资料和dem ASCII资料进行格式转换和拼接、对矢量数据分层、筛选以及裁剪、经、纬度和坡度、坡向栅格数据提取等一系列处理后得到北海市的行政区划界数据、行政点数据、河流、水体数据、路网数据及网格距为100m×100m的广西DEM、经度、纬度、坡度、坡向栅格数据。
2.2暴雨洪涝灾害风险指数模型构建
自然灾害风险的形成过程中,是致灾因子危险性(VH)、孕灾环境稳定性(VE)、承灾体的脆弱性(VS)和防灾减灾能力(VR)等4个主要因子的综合作用的结果,其函数表达式为:。式四个因子当中,致灾因子危险性(VH)所占的权重最大。
2.3相关技术方法:
(1)因子规范化处理方法
气象灾害的孕灾环境敏感性、致灾因子危险性、承灾体脆弱性、防灾减灾能力四个评价因子包含若干个指标。由于评价指标体系的参评因子来自不同的方面,各参数间的量纲不统一。为了消除各指标的量纲和数量级的差异,需对每一个指标值进行规范化处理。
敏感性、危险性、易损性三个指标规范化计算采用公式:
式中Dij 是j 区第i个指标的规范化值, Aij是j 区第i个指标值, mini和maxi 分别是第i个指标值中的最小值和最大值。
(2)加权综合评价法
暴雨洪涝致灾因子危险性指数的计算采用加权综合评价法。加权综合评价法综合考虑各个具体指标对评价因子的影响程度,是把各个具体指标的作用大小综合起来,用一个数量化指标加以集中,计算公式为:
式中 V 是评价因子的值,n 是评价指标个数,Di 是指标 i的规范化值,Wi 是指标 i 的权重。权重 Wi 的确定可由各评价指标对所属评价因子的影响程度重要性,利用层次分析法确定,或根据专家意见,结合当地实际情况讨论确定。
3.致灾因子危险性区划
致灾因子危险性表示引起暴雨洪涝灾害的致灾因子强度和概率特征,是暴雨洪涝灾害产生的先决条件。
3.1临界致灾雨量的初步确定
暴雨过程降水定义:过程降水量以连续降水日数划分为一个过程,一旦出现无降水则认为该过程结束,并要求该过程中至少一天的降水量达到或超过50毫米,最后将整个过程降水量进行累加。
统计本市年各气象台站1天、2天、3天、……10天(含10天以上)暴雨过程降水量。将本市所有台站的过程降水量作为一个序列,建立不同时间长度的10个降水过程序列。分别计算不同序列的第98百分位数、第95百分位数、第90百分位数、第80百分位数、第60百分位数的降水量值,该值即为初步确定的临界致灾雨量。利用不同百分位数将暴雨强度分为5个等级,具体分级标准为: 60%~80%位数对应的降水量为1级,80%~90%位数为对应的降水量为2级,90%~95%位数对应的降水量为3级,95%~98%位数对应的降水量为4级,大于等于98位数对应的降水量为5级。
3.2降水致灾因子权重的确定
根据暴雨强度等级越高,对洪涝形成所起的作用越大的原则,确定降水致灾因子权重。暴雨强度5、4、3、2、1级权重分别为5/15、4/15、3/15、2/15、1/15。
3.3单站降水致灾因子危险性指数
加权综合评价法计算不同等级降水强度权重与将各站的不同等级降水强度发生的频次归一化后的乘积之和。
3.4致灾因子危险性区划
将各站的危险性指数作为本市分县乡镇图的致灾因子影响度属性的属性值赋给该图,然后将该图栅格化,利用GIS中自然断点分级法将致灾因子危险性指数按5个等级分区划分(高危险区、次高危险区、中等危险区、次低危险区、低危险区),绘制致灾因子危险性指数区划图(图1)。由图可见,北海市暴雨洪涝危险性大致呈现东北高西南低的分布态势,说明北海市东北部发生暴雨的强度和频度要明显强于西南部。致灾因子高危险区主要位于合浦县东到东北部,从白沙镇、公馆镇到闸口镇、石康镇一带,低危险区位于北海市西南端。
图1 北海市暴雨洪涝灾害致灾因子危险性区划图
4.结论与讨论
4.1一直以来,由于乡镇一级的气象资料、灾情资料和社会经济数据十分匮乏,自然灾害风险评估工作只能以县为分析单元。本文采用中尺度自动气象站资料和各乡镇社会经济数据进行风险评估分析,基于地理信息化(GIS)技术,应用自然灾害风险指数法、加权综合平均法,大大提高了评估科学性和精细化程度。
4.2以乡镇为单元的区域自动站气象历史资料,存在资料长度较短的问题。如果能结合水文、海洋以及能源等部门的气象资料则评估效果更可靠。
4.3采用逐日降雨量做暴雨洪涝、台风等灾害风险评估,很多时候对暴雨强度的反映不够准确,假如使用逐小时降雨量做暴雨洪涝的危险性因子分析不但可以增加资料样本数,还能提高分析精度。
4.4应用专家打分法、灾情验证法及查找文献等方法选取评估因子、确定各因子权重系数,还是具有一定的主观性。
参考文献:
章国材.气象灾害风险评估与区划方法.气象出版社,2010.1
暴雨洪涝灾害风险区划技术规范(气减函〔2009〕24号文附件)
GIS,即地理信息系统,它是一门介于空间科学、信息科学与地球科学之间的新技术学科和交叉学科。它把地学中的空间数据处理同计算机技术结合起来,通过系统地建立、操作以及分析模型,产生一些对区域规划、资源环境、灾害防治、管理决策等方面有用的信息。近几年,GIS已经广泛应用于环境的保护、自然灾害的模拟与预测、自然资源的管理以及相关的灾害应急反应等防灾工程领域中。关于地震次生灾害研究,大致可以分为两个类别:第一类是采用回归统计的方法进行研究,通过回归统计分析,给出次生火灾发生率同房屋倒塌率的关系式;第二类则用非确定性的概率模型的方法,给出在一定超越概率的条件下次生火灾发生次数的预测值。从逻辑上来看,采用第二类方法研究不确定性的地震次生火灾是否发生要更为合理些。
1.城市地震次生火灾危险性分析系统简介
1.1基本构成
地震次生火灾危险性分析系统的构成框架如图1所示,它的基本构成包括:数据的输入、数据的管理与存储、图形的编辑、信息检索和查询、模型的分析以及结果输出等。从图中可以看出,它的构成属于一种平行式结构,每个环节之间看似独立,实际上相互之间联系紧密。
1.2数据分层
GIS在城市地震次生火灾危险性分析系统中使用时,最基本的环节是GIS信息系统数据的采集、组织和入库,同时这也是最费人力和物力的部分。数据的正确性、丰富性直接与系统的应用效果有关,因此做好这项工作要保证数据的完整性和可靠性。基于GIS的城市地震次生火灾危险性分析系统,它应该包括以下几个主要的数据层:
(1)城市路网图层:图形的数据应该有主次干道以及支路的路网、路网的节点等。属性数据应该包含名称、长度、宽度以及等级等。
(2)城市道路桥梁图层:要将各类路桥分布标注在上面,其中要有桥名、总长度、宽度、跨长、跨数、结构类型、支座形式以及场地条件等属性数据。
(3)行政区域图层:图形的数据应该含有行政区域的边界、区域的划分、各个消防中队管辖区域等。属性数据应该包括行政区域的名称、区域的面积、建筑的面积以及人口等。
(4)水系分布图层:图形数据包括内河、湖泊、水库以及城市的供水厂(水源)的分布图等。属性数据包含水源的水量与名称等。
(5)供水管网图层:图形数据包括加压站和供水管网等。属性数据应包含管径、管长、接口的形式、流量、压力、影响范围以及加压能力等。
(6)建筑物图层:图形数据主要包含建筑的分布、周边环境、道路情况等。属性数据包括建筑物的面积、类型与用途等。
(7)重点消防单位图层:图形数据包括消防单位建筑物楼层的分布、重要品或者危险品的分布以及消防设施的位置等。属性数据应包括建筑物的结构体系、薄弱环节的位置、重要品或者危险品的名称与特性、扑救的方式、消防器械的属性与数量等。
(8)消防力量的分布图层:图形数据包括消防指挥中心与消防中队的位置。属性数据包括消防力量、消防器械的名称及数量特点、消防中队的名称、电话等。
(9)消防栓分布图层:一般来说,采用点状分布。它的属性数据包括型号、编号、出水量以及压力等。
(10)电力系统图层:图形数据包括城市供电的主干网分布图、变电站的位置以及控制范围等。属性数据应该包括变电站的结构类型、场地条件、主干网的电压以及主要的电子设备属性与数量等。
(11)通信系统图层:图形数据包括电视与电台的分布、通信枢纽楼等。属性数据应该包含场地的位置、条件、结构的形式以及各种通信设备及相应的属性等。
(12)煤气管网图层:图形数据包括城市煤气主干管网的分布图等。属性数据则包括煤气管网的管径、流量以及工作的压力等。
不论是何种图层,都要有图形的数据与属性的数据,缺一不可。
2.地震次生火灾危险性的分析与模型预估
对于未知的地震次生火灾,我们往往很难估计它的危害性,但是我们可以根据以往的经验获取的相关数据进行分析,以及对建立的模型进行预估。
2.1发生率与发生概率模型
0 引言
LNG是英文液化天然气(liquefied natural gas)的缩写,其主要成分为甲烷。改革开放以来,随着我国经济持续高速发展,对能源,特别是天然气等优质能源需求迅速增长。天然气几乎不含硫、粉尘和其他有害物质,燃烧产生的二氧化硫排放量几乎为零,氮氧化物和二氧化碳的排放量仅分别为燃煤的19.2%和42.1%。以福建为例,扩大引进LNG后,年消费LNG500万吨,产生的CO2为1173万吨,而燃用同等热值褐煤将产生CO2量2112万吨,引进LNG将实现每年减排CO2量941万吨,减排SO2量91.0万吨,减排NOX量16.7万吨。通过扩大天然气覆盖范围、普及程度与市场占有率,改善城乡居民的生活品质,促进全面小康社会建设进程。但LNG火灾危险性类别为甲类,爆炸极限范围(V%)为5.35%~15%,属易燃、易爆物质,存在很大的危险性。
1 LNG长输管线危险性分析
1.1 LNG长输管道输送流程
LNG长输管道输送上下游关系流程图,见图1。
1.2 LNG长输管道输送危险性分析
造成长输管道泄漏的主要原因有:第三方破坏、自然灾害和管道缺陷。其中第三方破坏主要包括:野蛮施工挖破管道、沿线违章占压管道、运移土层造成管道暴露或悬空,或在管道附近打桩、挖掘、定向钻、大开挖等;自然灾害破坏主要是在台风、暴雨、洪水、地基坍塌、地震等情况下导致泥石流、土层移动、坍塌等,造成管道外露、悬空及(或)位移;管道缺陷主要有:管道腐蚀穿孔、管道材料缺陷或焊口缺陷隐患等。
天然气管线发生泄漏时,泄漏气体的喷射、扩散后浓度在其燃爆极限范围内的铁路上通行的内燃机车、电力机车,公路上通行的机动车辆、沿途穿越、邻近的输电线路,管线沿途附近的工业区内企业的生产活动、居住区内居民的活动等,均有可能成为引起火灾爆炸事故的点火源。
由于天然气管道压力较高,泄漏时高速气体通过孔洞产生的静电,也可能成为引发火灾爆炸事故的点火源。
天然气泄漏时遇雷暴,可能引发火灾爆炸事故。
同时采用加压输送工艺(设计压力约7.5MPa),又加剧了发生火灾、爆炸的危险。
2 LNG管道输送泄漏模拟分析
2.1 模型建立
为了便于计算和说明问题,本文采用蒸汽云爆炸事故后果模拟分析法对某公司天然气管网二期工程LNG长输管道输送泄漏引发的火灾爆炸事故影响进行模拟分析。即:某天然气管网二期工程,全长约80km,线路用管直径813mm,全线共设置2座站场、3座阀室,输气量2.07×1008m3/a,管内输送介质为天然气。
2.2 LNG管道输送泄漏模拟分析
LNG管道输送过程中,泄漏最为危险,遇点火源进而发生火灾、爆炸事故。
LNG管道泄漏后延迟点火的概率比较高,取延迟点火时间为1min、5min,对孔泄漏方式进行蒸气云爆炸事故后果模拟;取延迟点火时间为1min,对管道完全断裂方式进行蒸气云爆炸事故后果模拟。
根据《基于风险检验的基础方法》(SY/T6714-2008)和《化工企业定量风险评价导则》(征求意见稿),泄漏情景可根据泄漏孔径大小分为完全破裂以及孔泄漏两大类,有代表性的泄漏场景见表1。
依据整个管道的直径将确定的有关数据输入安全评价与风险分析系统软件,得到的模拟结果见表2、表3、表4和表5。
1.1人为活动
包括侵占林地,道路,采矿,水坝,环境污染,放牧,滥砍滥伐,种质低劣,经营管理不当等,这些因素造成定位空间或地段内生物物种多样化减少,土壤侵蚀程度加重,加重了森林的碎裂程度,加速了生物多样性锐减,导致形成三大效能低下的干扰型或经营型低效松林。
1.2立地条件
在自然状态下因立地条件较差或生长环境恶劣,导致自然形成三大效能低下的原生型低效林。
1.3自然灾害
自然灾害包括火灾,松毛虫、松材线虫病等病虫害,干旱,洪涝,霜冻等,致使多数珍惜的、受威胁的、濒危的或森林物种(主要是动植物)数量、分布等消失或锐减。导致形成三大效能低下的干扰型低效松林。
2松林生态健康和活力的维护方法
2.1增强生物多样性
按照长防林和退耕还林工程建设标准,同时规划,同时施工、同时验收,全面进行“封、改、补、造、抚”的规划和稳步实施。加速森林“效应岛”的形成,同时,采用林隙、林缘适当补植虫媒花植物(花粉和花蜜资源)和拒避植物,以丰富生物多样性。为了丰富马尾松毛虫虫源地的生物多样性,增强松林对生物灾害自我调控功能,赣州曾充分运用“封、改、补、造、抚”等措施,稳步实施了虫源地治理,达到了丰富生物多样性效果。共实施虫源地封山育林72.366万亩,占虫源地面积的100%;成功改造虫源地4789个,占虫源地总数的73.3%;改造虫源地面积50.2319万亩,占虫源地总面积的69.4%。通过治理的虫源地,平均灌木多样性指数从1995年的0.42上升到2003年的0.78,平均针阔混交比例由9:1上升到7:3,平均植被盖度由32%上升到81%,为实现马尾松毛虫的可持续控制奠定了良好基础。
2.2从严管理“三害”
在林政管理上,应健全基层护林组织,全面封山育林,制止乱砍滥伐和乱猎滥捕的行为;在森林火灾管理上,各级政府要签订防火责任状,严格控制火灾的发生;在危险性病虫防范上,重点加强外来林业危险性有害生物的管理和控制。对危险性森林病虫等应列入各级政府目标责任制,同时加强复检,控制疫情传播,限期拔除疫点,以防松林抗逆性下降。
2.3清理不健康林木
对近期内由于干旱、病虫害和森林火灾而出现大量死树的松林,要及时采用对死树进行全面清理,选择乡土阔叶树当年更新造林;对将要出现大量死树的林分,结合生态疏伐或景观疏伐,对可疑木进行全面清理,选择乡土阔叶树当年更新造林,以恢复到可持续生长的条件。
2.4强化生态阈值管理
全面封山育林,对少量或零星的经森防机构确认的非危险性有害生物致死木,可依据森林健康有关原理方法,鼓励林业主管部门采取禁止采伐的措施,以实现丰富生物多样性和制止乱砍滥伐行为双重目标。在疏伐过程中适当保留少数倒木和枯立木,以保持林间野生动物和鸟类食物链的持续2;对近期内林业生产或生态保护效益不构成大的危害的病虫,其测报和防治不作硬性要求,便于利用“天然防治”调节病虫种群,以丰富松林生态系统的生物链。
2.5依法保护林地
侵占林地,道路,采矿,水坝,环境污染等,致使松林的碎裂程度和林地土壤侵蚀程度加剧。关键要依据《森林法》等有关法规和生态学原理,进行总体规划和科学管理。
2.6适时评估效果
依照“近天然林”模式经营松林,影响松林生态健康和活力的主导因子发生明显变化时,适时评估经营效果。主要内容是对这些主导因子作危险性分析,如对现有或可能发生的林业有害生物每3—5年定期调查1—2次,参照国际上有害生物危险性分析(PestRiskAnalysis)方法,对有害生物进行危险性分析和制定防范策略。对生态系统多样性变化情况如蚯蚓、甲虫、蚂蚁、蜂类、寄生植物等森林健康关键种的多样性指数和威胁的、濒危的或森林物种(主要是动植物)数量、分布等应进行总结评估,作出决策,制定方案,付诸实施。
2.7开展科学研究
开展科技攻关,开发应用有效的、经济的和环境可接受的森林保护核心技术。主要包括自然界不同时空尺度生物多样性的类型与格局,决定生物多样性进化的生态学因子以及进化与生态学过程;景观破碎对种群散布、持久性及种群灭绝的影响及其恢复;制约群落和生态系统聚集的因子,以及群落和生态系统胁迫反应的途径;将遗传、物种、生境和生态系统多样性编目,确定生物多样性变化的速度及其对群落结构和生态系统过程的影响,以及决定各层次生物多样性的因子;有害生物及病原生物的入侵、扩散和爆发基本规律的研究。
3结语
一个理想的健康森林应该是在这样的森林中,生物因素和非生物因素(如病虫害、空气污染、营林措施、木材采伐等)共存对森林的影响不会威胁到现在或将来森林经营的目标[2]。为此,松林生态系统的健康,除经营管理要素外,森林病虫害的可持续控制、火灾的控制等应当是维护松林健康和活力的重要措施。
中图分类号:S969.1 文献标识码:A 文章编号:
在当今社会,灾害的频发是阻碍人类经济建设和发展的主要原因之一,是各国都必须重视的重要课题。随着我国经济的高速发展,土木基础设施也得到快速的兴建,但还是难以避免灾害的侵袭。灾害对土木工程的破坏主要有工程灾变和自然灾害两个方面。工程灾变包括由大规模工程活动所诱发的地表塌陷,边坡失稳和地基失效等情况,工程系统自我损伤的积累也有可能导致突发事故。自然灾害包括洪水,台风,地震,火灾,泥石流,滑坡等。我国向来重视土木基础设施减灾的研究,在多个重点项目上资助了土木基础设施减灾的研究,取得了较为满意的进展与成果,逐渐走向了土木基础设施减灾的科学前沿。下面就让我们来具体分析一下土木基础设施减灾基础研究的进组和趋势。
一:灾害危险性分析和损失评估理论
对灾害危险的了解和损失评估是土木基础设施建设的依据,在研究洪水,台风,洪涝,滑坡,地震等自然灾害或人为造成的灾害后,根据灾害模式和负荷的分布规律及特点,建立了一套有效的的灾害危险评估方法和理论,分析了灾害的传播规律和形成机制,主要内容有
(1)提出了基于AI(人工智能)和GIS(地理信息系统)的灾害危险分析理论,建造了STLS(地震构造信息)系统,使得地震的划分等级和危险评估方法都有了新的突破,提高了精确度和分析效率。
(2)建立了一组城市极值风速的危险评估概率法,两种危险评估方式与风场函数法。
(3)通过相应的理论研究和实践,对建筑物烟气和火灾形成原因和燃气爆炸的规律进行分析和研究,制定了建筑物燃爆灾害的预测模型和烟气控制系统。
二:工程结构优化设计和防灾示范研究进展
研究不同灾害负荷下的工程结构,可以得出不同优化设计方案。主要有
(1)研究比较高层建筑物在风和地震的作用下可靠分析数据与结果。
(2)提出结构灾害负荷近似无限负荷的假设,并给出相应负荷下结构体系的可靠性计算方法。
(3)研究抗灾结构的优化特点和抗灾结构最优设防水平,对比分析最优化设防的可靠性和抗灾结构最优设防负载。四,对铁路工程给出泥石流,滑坡等灾害的预报方法,建立相应路段的可靠分析办法。根据水利结构的特性,分析研究坝址随机地震模型,在强度非平稳和平稳的随机地震动场假定下确定建立抗震可靠办法和相应结构反应。
我们将镇江,鞍山,唐山等有着不同特色的城市作为灾害的典型区域,选择昆线—普雄段作为防治多种灾害的重大典型区域,选择广州作为我国大城市防洪典型,在这些区域运用仿真系统,地理信息系统,损失评估,危险性分析,人工智能,决策和应急反应系统等先进的土木工程防灾系统,充分展现了高新减灾技术在土木基础设施减灾领域中的优势,为我国重大土木工程减灾做出了巨大贡献。
三:土木基础建设减灾研究的发展趋势
(一)生命线和大型结构工程控制
根据灾害的动力作用特性和灾害作用空间的分布,研究生命线和结构工程以及周边介质作用产生的非线性灾害响应,提供相应优化的控制方法与理论。为了确定大型非线性结构灾害的响应,要对桥梁,建筑,海工,水工等大型构件,材料和体系进行灾害模拟试验,分析其在极端情况下动力破坏,失效与坍塌的可能,还要研究周边介质互相作用的材料。为了确定结构灾害性设计和控制,需要研究多级防灾的性态水准,性态目标和防设水准,建立起性态追准和结构灾害的关系,确定结构灾害的性态设计与控制设计的方法和理论。研究减震装置和大出力,低耗能,高性能的智能驱动装置,研究大型结构灾害控制的技术和措施,配备智能控制系统。
(二)岩土工程灾害的防治
岩土灾害的防治需要对土体的非均质及各种复杂的自然环境特点进行研究,分析地下空间使用后的环境损伤和诱变灾害可能,重点关注灾害和工程的作用力,灾变行为与减灾的新技术。高应力深部地下工程防治要研究深采条件下岩体特征和围岩顶板灾害,变形破坏,岩爆和瓦斯突出的关系,使用地下承运和岩体结构的运移关系,开采突水的机理来确定优化方案。大型地下工程环境控制主要研究城市地下空间使用和开挖工程导致的地表塌陷,做好控制工作,保护地表水和含水层。重大土木工程地基失效防止需要根据岩土的材料特点,研究岩体与原位土的动,静力学性能,土体液化及液化后的变形,建立起岩体构造面—非连续介质模型。探索地基在泥石流,地震等自然灾害下残余变形,失稳和结构作用的机理。确定地基加固的办法和定量评估技术。
四:数字减灾工程系统
数字减灾是针对重大工程和城市灾害的分布不均和复杂性等特点,运用现代数字模拟技术,再现灾害破坏特征,过程,灾害分布,模拟减灾策略和减灾效果。重大工程数字减灾模型是重点研究地震灾害试验和风灾试验的系统,主要再现了灾害的分布的范围和过程,找出控制的办法并模拟。城市数字减灾系统主要依据城市灾害的评价模型,主要针对城市典型灾害历史,建立城市数字减灾工程。
结语
土木基础设施减灾是一项前沿的科学技术,涉及工程,信息,土木,地学,材料学等多个学科,综合性较强。高新技术的发展为土木基础设施减灾技术的发展提供了新的手段和方法,开拓出许多新的研究领域和课题。今后的土木基础设施减灾研究应该更加重视学科间的融合与交叉,促进国与国之间的技术交流,增强减灾基础的研究水平。
参考文献:
[1]茹继平;土木基础设施减灾基础研究进展与趋势[J]土木工程学报 2000(6)
[2]瞿伟廉;智能材料结构系统在土木工程中的应用[J]地震工程与工程振动 1999(3)
中图分类号:U41 文献标识码:A
我国社会经济的发展及国民经济水平的提高,为我国交通运输业提出更高的要求,交通规划规模不断扩大,而我国山地地形较广,山区公路是公路网络规划的重要部分,而山区公路的挖方工程量较大,这直接导致公路路堑边坡的大量形成,而具有较高高度及大规模的公路边坡坡体,在常年的风化及雨水冲击等自然力作用下,总是容易发生边坡坍塌、滑坡及坡面泥石流等病害,严重影响到山区公路安全,为国家及个人造成极大损失。因此,对公路安全性,尤其是山区公路边坡安全性的评价分析是相当必要的,这为公路交通事故灾害的防治提供可靠基础依据,是保障公路交通安全的重要手段。对山区公路边坡安全性的评价分析,可以选用综合边坡形态、地质、水文及人为等影响因子的多因子评价方法,通过边坡安全性多因子评价系统的建立,对山区公路边坡安全性进行有效评价。
1山区公路边坡现状
山区公路边坡由于成因、岩性、坡度、坡高以及安全性等的不同可分为不同种类,如按其成因可分为人工边坡与自然斜坡、按岩性不同可分为土质边坡与岩质边坡、而按安全性可分为稳定坡、不稳定坡以及已失稳坡等,不同种类的边坡,其所反映的主要特征也不同,因此,对边坡安全性的分析与评价方法的探索难度也较大,近些年来出现的神经元网络法、可靠度分析法以及专家系统法等,都为边坡安全性分析与边坡防护作出很大贡献。
目前我国对公路边坡设计主要采用工程类比法及自然坡角法,但对于边坡安全性的影响因素考虑不够周全,为公路边坡安全埋下诸多隐患。并且边坡设计都考虑坡面稳定安全,或采用支挡、锚固剂土工加筋等防治加固措施,缺乏对生态防护的认识与重视,没有基于生态保护进行设计,使得公路边坡受环境气候等自然影响限制极大,尤其是滑坡、边坡坍塌积坡面泥石流等自然灾害相当严重。这就需要对公路边坡安全性更加重视,从影响边坡安全性的诸多因素出发,对其安全性进行综合整体的评价。
2建立边坡安全性多因子评价系统
2.1边坡安全性评价因子
边坡防护系统较为复杂,受很多环境气候因素的影响,但根据实际情况的不同,影响边坡安全性的因子也不尽相同,这是影响山区公路边坡的安全性因子由于受环境条件的制约而呈可变性、随机性及模糊性,也就说,山区公路边坡安全性影响因子并不是一个可清楚确定的概念,这些有复杂非线性关系的边坡安全性因子对边坡防护影响权重也是不确定的、变化的,所以要结合山区公路边坡的具体实际情况,选择边坡防护需要的评价因子,而所选用的评价方法,要有可以处理可确定信息的能力,还要能同时具有处理不确定性信息的非线性动态的能力。
本文边坡安全性多因子评价系统的建立所选用的评价因子,主要有边坡形态因子、地质因子、水文因子以及人为因子这四个一级因子,以及组成这四个因子的九个二级因子,其中边坡形态因子是对边坡形象的反映,地质因子包括边坡主体与边坡主体的反映特征,水文因子尤其提高了边坡危险性,而人为因子则主要指边坡受人类活动的影响。另外,九个二级因子分别为:组成边坡形态因子的坡高与坡度,组成地质因子的边坡岩体结构、坡体风化程度以及坡向与结构面的关系,组成水文因子的有坡面湿润程度以及地面覆盖,而组成人为因子的有边坡维护以及坡顶荷重。
2.2确定评价因子权重
将边坡安全性设定为目标层,一级因子为决策层,而二级因子为要素层,则需要对评价因子的危险性贡献度大小及因子权重进行确定:
(1)确定评价因子的危险性贡献度大小。通过统计分析法对边坡安全性的评价因子贡献程度作出合理的综合性分析,再结合过去的大量实验经验可确定各评价因子的贡献度大小如下:边坡形态因子对边坡安全性的贡献度为3,地质因子贡献度为4,水文因子贡献度为1,而人为因子的贡献度为0.5。也就是说,对山区公路边坡安全性的影响从大到小的顺序依次为地质因子>边坡形态因子>水文因子>人为因子。
(2)确定评价因子权重。权重是对各项指标相对的重要程度的集中体现,综合评估在确定评分标准及指标体系的基础上,主要取决于指标权重,即是说,综合评估的可信程度直接受到指标权重合理性的影响。本文确定评价因子权重的方法主要采取的是层次分析法以及德尔菲法,再结合向量归一化进行计算,可求取各评价因子的向量,其中边坡形态因子的特征向量为0.353,地质因子的向量为0.47,水文因子向量为0.118,而人为因子的向量为0.059,也就是它们所对应的因子权重。
对于评价合理性问题,作为重要指标的评价因子取值范围还没有较全面系统的研究,本文以宁波市山区公路边坡为例,结合其边坡特点对其边坡安全性评价因子权重进行确定,具体见表1:
表1
3对多因子评价的结果分析
通过边坡安全性多因子评价系统的评估体系,可以结合工程类比经验来对评估基准值进行确定。所谓工程类比法,其实就是根据其他工程中危险性已经确定的情况,再结合实际工程特征找出具有相同特征的危险性进行基准值评估,通常可借鉴的其他工程以确定危险性分为三类,即为评估基准值小于9的较小危险性、评估基准值为9至12.5的中等危险性以及评估基准值大于12.5的较大危险性,然后基于工程实际情况并通过工程类比法对边坡危险性进行确定。
4边坡安全性多因子评价的验证
本文对边坡安全性多因子评价的验证,主要以宁波市山区公路为例,选取10个公路边坡,结合折线形滑面法并通过安全性公式计算或工程类比法与多因子评价法进行比较,对所选公路边坡安全性多因子评价进行验证,具体结果见下表所示(其中方法一为安全性计算或工程类比法,而方法二为多因子评价法见表2)。
结语
综上所述,山区公路边坡安全性的影响因子,主要有坡高与坡度等边坡形态、地质结构构造、水文水质以及人为因素等,而根据边坡安全性多因子评价系统的有效评估可知,有四分之一的现状边坡危险性较大,而余下四分之三的危险性为小到中等级危险,而该评价系统不仅操作简便,还有较好的符合性,可用于对山区公路边坡安全性的评价分析。总之,山区公路边坡的不安全因素,为公路网络规划的实现及公路交通条件的改善埋下诸多隐患,必须对其安全性进行合理评价分析,并采取有效防治措施,才能有效改善山区公路交通状况,确保交通安全。
参考文献
中图分类号:B503文献标识码: A
中国是世界上自然灾害最严重的国家之一。自然灾害的多发性与严重性是由其特有的自然地理环境决定的,中国大陆东濒太平洋,陆海大气系统相互作用,关系复杂,天气形势异常多变,各种气象与海洋灾害时有发生。中国地势西高东低,降雨时空分布不均,易形成大范围的洪、涝、旱灾害;因位于环太平洋与亚欧两大地震带之间,地壳活动剧烈,是世界上大陆地震最多和地质灾害最严重的地区;中国有约70%以上的城市分布在气象灾害、海洋灾害、洪水灾害和地震灾害都十分严重地区。而工程建设项目多是暴露于这些自然灾害之下的,灾害的多发必然会对建设项目产生很大的影响和损失,因此有必要对工程建设项目中的自然风险进行合理的评估和管理。
自然灾害风险概述
自然风险是涵盖于风险范畴内的,它是由某一种自然灾害发生所造成的损失的不确定性。在灾害学研究理论中,认为风险是在一定时间和区域内某一致灾因子可能导致的损失(死
亡、受伤、财产损失、对经济的影响),其中致灾因子是一定时间和区域内的一个危险事件,或者一个潜在破坏性现象出现的概率。
自然灾害的分类,一是气象灾害:台风、暴雨、雷击、寒潮、高温及干旱等;二是地质灾害:地震、泥石流、滑坡、崩塌、地裂、火山等;
自然灾害一旦发生,往往不是孤立的,而是形成复杂的自然灾害系统。它们常常在某一地区或某一时段集中产生一系列灾害群或灾害链。许多自然灾害、特别是强度大的自然灾害,常常诱发或引起一连串的次生灾害与衍生灾害,形成灾害链;灾害群与灾害链交织在一起往往放大了自然灾害的效应,从而制约着自然灾害风险系统影响结果。
2. 自然灾害对工程项目建设的影响
工程建设项目管理包含了在建筑施工全过程当中的一切有关质量与安全施工的组织和管理活动,其主要是通过严加控制施工过程中的各个要素,从而使得这些要素当中的危险状态或危险行为能够得到有效的降低甚至达到完全消除,以此来降低一般事故的发生概率乃至杜绝重大事故发生的目标。随着全球气候的变暖和城市化的发展,自然灾害发生的频率和损失与年俱增,随之而来的便是自然灾害因素对建筑施工的影响也越来越大,通过一系列科学合理、行之有效的施工质量与安全管理措施的实施,尽量避免或降低建筑施工因自然灾害而受到损失是当务之急。
自然灾害风险对建设施工的影响主要体现在对工程项目进度控制的影响(工期),工程项目质量管理的影响和施工成本的影响。
2.1 自然灾害对工程进度的影响
建筑施工大多为室外露天作业,施工进度经常会受到自然环境因素的影响。尤其是发生不良气候条件和极端天气时,如高温、台风、暴雨、地震等条件下工人的工作效率会收到很大的影响。发生自然灾害导致的停工,各地方都有规定,当温度、风力达到一定级别时,工地必须停止施工。自然灾害发生时,或由于建筑或设备发生损害进行修复而必须增加的时间。再者,当自然灾害导致建筑材料的运输路线破坏、受堵,而建筑材料又不充足时则在很大程度上也会导致施工工期的拖延,如大雨、泥石流、山体滑坡导致交通路线中断等。
2.2 自然灾害对工程质量的影响
自然灾害的发生必然会对工程项目质量产生影响,这主要体现在发生极端天气现象时会对建筑材料的性能产生影响。如气温、湿度、风力等自然环境发生变化都会对钢筋砼的浇筑及养护产生影响。如:在高温下拌合和浇筑混凝土,水分蒸发快,引起坍落度损失,难以保证所设计的坍落度,易降低混凝土的强度、抗渗和耐久性。且高温时,水泥水化反应加快,混凝土凝结较快,施工操作时间变短,容易因捣固不良造成蜂窝、麻面以及“冷缝”等质量问题;如果脱模后不能及时浇水养护,混凝土脱水将影响水化反应的正常进行,不仅降低强度,而且加大混凝土收缩,易出现干缩裂缝。
2.3 自然灾害对施工成本的影响
自然灾害对施工成本的影响主要体现在灾害造成的直接破坏损失。其次,一些重大灾害会导致城市、农业、工业等大范围的破坏及损失,由此会使建筑材料价格产生变动。
3.工程建设项目中自然风险评估
自然灾害风险评估将灾害发生破坏与损失的大小直接与暴露于灾害风险中的承灾体相关,灾害研究开始关注人类及其活动所在的社会和资源等背景条件形成承灾体论。此时自然灾害风险评估基于对承灾体分类的基础上,进行承灾体暴露与脆弱性(易损性)分析评价。
3.1自然灾害的风险分析
灾害风险分析包括灾害危险性分析、承灾体脆弱性分析和灾害损失分析三部分。通过对历史灾害事件的频率、强度分析得出灾害风险分析的结果为:特定灾种在一定区域未来时间段内遭受某种强度灾害的概率。衡量灾害风险水平大小的基本指标包括:(1)空间范围(2)时间(段)(3)灾害强度(频率)(4)发生概率。即灾害风险可理解为空间、时间、灾害事件、灾害强度和概率的函数即:
3-1
其中,R为灾害风险,R为区域,T为时间间隔,H为灾害事件,I为灾害发生的强度(可以理解为灾害可能造成的损失),P为发生概率。灾害风险即为表征一定区域未来一定时间段内遭受某种强度灾害事件带来的损失的发生概率。
基于数学概率统计基本原理,可以获得任何事件的频率和概率函数关系。Tobin和Montz提出概率数学模型中关于概率和年超越概率(Annual Exeeeden probability,简称AEP)的函数关系式3-2。
3-2
3-3
其中P为概率,AEP为年超越概率,F为频率,Ri为周期,t为时间段。在精度要求不高的情况下,年超越概率在数值上等于频率,等于回归周期的倒数(式3-3),这样损失的概率可以由灾害强度频率推算求得。
3. 2自然灾害的风险评价
在灾害风险分析完成后,灾害风险值的时间、空间分布业已完成;灾害风险评价首要任务就是将上述定量分析的结果合理分级。最终提出灾害风险水平等级及相应的应对策略。通过编制区域灾害风险图,以反映区域自然灾害风险等级。
灾害风险由极大损失和发生概率表征,风险分级取决于灾害损失和发生概率分分级状况。如果将灾害损失和发生概率分别划分为5个级别,那么灾害风险级别则由二者的判别矩阵加以确定。灾害风险分为4级,低风险、中风险、高风险和极高风险。
灾害风险等级判别矩阵
低风险包括3种损失和概率组合类型,中风险包括10种损失和概率组合类型,高风险包括9种损失和概率组合类型,极高风险包括3种损失和概率组合类型
4. 结论
建设项目作为一个自然灾害巨承灾体,具有暴露要素集中和发生灾害损失巨大等特点,受到国内外学者广泛的关注。随着全球气候变暖和城市化进程加速,建设区承受各种自然灾害频率和强度日益加剧,因而工程项目建设区也就成为自然灾害风险研究的重要区域。开展建设项目自然灾害风险研究,构建自然灾害脆弱性评价指标体系与评价方法,建立自然灾害风险评估程序与动态评估模型,实现区域自然灾害风险区划,集成开发自然灾害风险评估工具集,从而为工程项目制定综合自然灾害风险管理制度、应急控制预案和可持续发展战略提供坚实的理论基础与科学依据。
参考文献:
[1] 刘博,唐微木.巨灾风险评估模型的发展与研究[J].自然灾害学报,第20卷第6期,2011年12月:47-52.
引言
历年来,公路的建设一直是我国经济发展的重要途径,然而受到各个地域环境影响,滑坡等地质灾害对其构成很大威胁。造成这种灾害的原因有很多种,其中主要是降雨。受到不同程度、不同阶段的影响,危害性也不一样。
一、滑坡的形成过程
在滑坡的形成和发育当中,由滑体受到不同因素的影响,在重力作用下,滑体沿着抗剪力较小的岩石土体呈整体性或局部性向坡下滑移。其过程可以分为三个阶段。蠕动变形、滑动破坏以及稳定状态几个阶段。
1、蠕动变形阶段;产生这一阶段的主要原因是斜坡受到某中力的作用,斜坡内部岩石土体所受剪应力不断加大,使其变形,至坡面出现不连贯的裂缝。而内部遭受剪切破裂。导致整个斜体的稳定性遭受破坏。在变化过程中,斜体内部岩石土体间隙不断增大,最终导致整个斜体开始滑动。
2、滑动破坏阶段;在斜体完成蠕动变形之后,开始向下滑动,岩石土体经过拉扯、剪切、撞击等过程后发生分裂变动。各种建筑物或自然植被均受到破坏。该阶段中,其滑动速度受限于滑动过程中岩石土体的动能转化的加速度和抗剪强度标准值降低的自然数值。并且和滑动面、摩擦面、形状、大小、厚度等因素息息相关。最大速度可以达到每秒几十米,将对其覆盖区域造成毁灭性打击。
3、压密稳定状态;在受到滑动过程中动能的转换后,滑体将在平衡位置后继续滑行,以求稳定。完成后,各个形体都会发生系列变化,岩石土体,物质构造,地质环境等都受到影响。与未滑动之前相比较,滑体在土质孔隙率、渗水性等方面都会提高。滑体覆盖范围受到滑体自重等荷载作用将会被压实、固结。
二、滑坡形成的诱因和特点
在公路上的建设当中,出现的大多数岩石土体的滑坡都是与公路路线方向处于类似垂直或相交的状态。在建公路的规模对滑坡的规模有着很大影响。公路的滑坡有很多,如强降雨、开挖等。其中开挖是由在建公路开凿,使山体或斜坡边坡失稳造成,以及填方工程中原地面处理不当、边坡设计不良、压实技术不过关等原因诱发岩石土体滑坡。
自然灾害相比较,滑坡有着独立的特性,这些特性主要表现在:
1、不同地域换环境的复杂性和不可控性;由于斜体内部所受各个力的方法和途径不同,各个岩体构造平衡一旦受到破坏将会产生滑坡。受到地质环境影响,如法对各个生态区域进行监控和普查,微观方式上无法采取保护措施。
2、各个斜体的分散性;斜体组成方式不同,所受影响因子不同分散地点不同,致使滑坡发生规模大小、强度高低、覆盖范围等都不具体。无法适时完成防灾、抗灾、救灾。该属性对区域危险性的评价和管理尤为重要。
3、滑坡的瞬发性;受到外力作用后,斜体发生滑坡的前兆并不明显无法完成预报警示。在爆发过程中往往是在几秒钟或者是在几分钟之内完成整个斜体的势能转换和释放。
在受到地质的复杂性和多变性的影响,对灾害的界定和防御上很难找到突破口。致使人们对此类灾害的认知和意识没有得到真正的理解,存着侥幸心理不能正确的预防灾害发生。
三、滑坡的危害
在认识滑坡的形成过程后、其爆发后所带来的影响也有很多。在对公路的建设当中主要由以下几点:
1、在公路的上边坡范围内爆发将致使交通道路阻塞、无法交通、严重危害道路的给排水系统,路面受到破坏。
2、在公路上整体上爆发后,公路路基将随之滑动和变形、严重时将被冲毁、断开,交通中断、道路整体受到破坏。
3、在深坑回填路段,滑坡将导致路基塌陷、整体滑移、变形等情况的发生。交通中断、路基路面被毁。
4、公路的涵洞、桥梁、山道等等构筑物被毁,失去效力。
5、引起河道堵塞、改道、或山体形状、致使公路的排水系统发生改变,无法完成公路的正常工作状态,在受到一定外力作用后,道路将出现问题。无法完成交通任务。或存在安全隐患。
四、公路滑坡危险性分区
(一)分区原则
受到不同地理因素的影响。对滑坡的危险性的分区的原则也不尽相同。其原则的分区的指标的选取、等级部门的建立、分区的基本原则受到影响。其原则表现为以下几点:
1、综合性原则。其具体表现为综合考虑的各要素和应用方法和模型,对前者的综合性的物质、能量、形体、要素等结果的考虑,对评价起到重大作用。作为后者,乃是对前者的查漏补缺,通过模型分析完成客观准备的结果评价。
2、主导因素原则。这种原则可以将滑坡灾害的危险性进行简化处理,直接抓住主要因素,忽略次要因素。
3、发生学原则。此法乃是将公路发生滑坡的区域单位视为复杂整体,通过分析原因,避免所受损失。
4、限制性原则。研究灾害构成的引发因子,通过对该因子的发生情况的研究来判定灾害的属性、以及满足此因子的同时其他各个影响因素的环境性能和安全等级。
5、层次性原则。其中包括灾害类型的层次研究、评价范围的层次研究、条件因素组合的层次研究。各个层次的研究方法均不相同。如组合层次研究中可以对其进行现状评价和预测评价。
6、定量和定性组合研究。采用定量分析的过程作为定性分析研究的数学表达。以定性研究结果当做定量评价框架。
(二)分区方法
分区方法按照一致性原则和共轭性原则还可以分为“自上而下”和“自下而上”两种情况。前者是从宏观到微观首先掌握最高级别的区域单位、逐步到最低级单位研究分析。而后者是从微观都宏观。掌握最小区域单位后到最高区域单位。这两种方法都是研究灾害的重要方法。
(三)分区指标体系
评价某一地域滑坡造成危险性能,不仅要从致灾因子、规模和形式上判断,还要从环境的活动状态以及人文环境进行研究。通过对各个因素的影响研究和形成原因研究,采用如图1指标体系。
五、公路危险性评价分析
在我国由于受到评价方法以及研究形式不同,得到的分析结果也不一样。本文参照《建筑用地地质灾害危险性评估技术要求》将其危险等级划分为极危险、危险、较危险、不危险几个步骤,其具体性质见表1。
通过以上对建筑灾害的危险性进行研究分析,为减少安全隐患和经济损失,还需加强对滑坡灾害的预防和治理。在此过程中,可以建立滑坡与预警体系和危险性评估体系以及危险性评估制度。将评估结果作为易受灾害地区的建设用地预审和审批的重要条件。降低建设经济成本。从根源上解决滑坡等灾害诱发的原因。在国家控制上面可以建立相关灾害的法律法规条文和相关制度。
在研究过程中可以和国外的先进技术相结合。采用先进高分辨率航片进行识别滑坡分布数据,结合滑坡分布图实施调查研究,提高研究精度和准确性。
六、结语
近年来公路受到滑坡灾害的频频影响,所造成的经济损失不计其数。通过对滑坡灾害的发生过程和诱因分析,危害程度分析和分区研究,人们对滑坡的灾害的认知有了较大程度的理解,在保护公路建设上、和植被保护上都将有了系统的了解。在设计和施工当中希望引起注意。此外,在今后的公路建设当中,希望可以采用新兴技术进行模拟和预测,及时预防和抗灾,减少滑坡灾害带来的物质损失和经济损失。
参考文献:
[1]刘玉杰.基于GIS技术的陕南地区高速公路滑坡灾害危险性评价研究(D).西安.长安大学,2009.05
[2]张潘,王搜钢.基于ArcGIS的公路降雨型滑坡灾害危险性评价(J).中国西部科技.2011.05.10(13):30-32
[3] 张强勇,向文.各向异性损伤锚固模型在大型公路滑坡治理工程中的应用[J].山东大学学报(工学版),2009,36(5):82-85.