时间:2023-11-04 09:19:39
导言:作为写作爱好者,不可错过为您精心挑选的10篇航天航空的意义,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
一、研究背景
技术溢出(Technology Spillover)是指先进技术拥有者在从事生产、贸易或其他经济行为时,有意识或无意识地输出技术而引起的技术水平的提高[1]。航空航天业的技术溢出则指航空航天业的先进技术通过一定渠道自愿或非自愿地传播到其他工业领域,进而带动这些工业领域技术水平的整体提升。航空航天业是我国战略性高技术产业,属于技术密集型行业,技术装备多、投资费用大,是国家经济实力与科技水平的综合体现。自20世纪50年代以来,我国航空航天业经历了从无到有、从小到大的发展历程,逐步建立起平台化、系统化、专业化的研发与应用体系。它技术内涵高、产业链长、辐射面宽、连带效应强,对众多高技术产业以及传统产业的发展起到了举足轻重的拉动作用。研究表明,内涵科技因素越高的行业部门对其他部门的贡献效应越大[2]。航空航天技术是高科技领域的前沿,航空航天业必然对其他部门具有较大的贡献效应,其技术溢出也应该是显著的,本文正是基于这一前提条件进行的研究。因此,探究影响航空航天工业技术溢出的显著性因素,充分利用其技术溢出作用,对于加快我国科技进步与经济发展有着重要的战略意义。然而,目前对此问题的研究并不深入,多数学者从理论层面分析技术溢出的问题,也有学者较为系统地对技术溢出是否存在、影响技术溢出的因素以及技术溢出的机理进行了实证分析,但这些研究都局限于外商直接投资(FDI)这一领域,没有从行业层面上分析该行业部门对其他行业部门的技术溢出,并且没有在理论上形成统一的认识。本文利用我国航空航天业的数据,采用因子分析的方法,提取影响技术溢出的关键因素,进而对促进我国航空航天业技术溢出及产业自身发展提供理论支持与政策建议。
影响技术溢出的因素有很多,根据现有文献的研究将其大致归纳为:(1)人力资本因素。Keller(1996)研究发现人力资本积累的差距导致技术吸收效果与经济增长率的不同[3];Borensztein等(1998)认为人力资本存量是影响技术溢出效应的关键因素[4];王成岐,张建华,安辉(2002)得出人力资本存量与技术溢出效应不相关的结论,但他们认为人力资本投入以及人才素质是技术溢出的影响因素[5]。(2)技术差距因素。Findlay(1978)和Wang and Blomstorm(1992)的研究表明技术差距越大示范模仿空间越大,吸收技术溢出的潜力也就越大[6];Kokko(1994)的研究发现低技术水平严重阻碍技术溢出效应的产生[7];Perez(1997)从吸收能力角度考虑,认为过高的技术差距会影响示范模仿机制发挥其应有作用。(3)经济开放程度。Blomstorm and Sjoholm(1999)、认为经济开放度高的企业由于竞争压力大而进行更多的研发投入以提高自身吸收能力[8];Kokko(1994)发现经济开放程度与技术溢出效应之间的关系是不确定的[7];包群,许和连,赖明勇(2003)用出口依存度等来衡量经济的开放程度,发现我国经济开放程度的提高、基础设施的建立与完善等都是促进技术溢出的有利因素[9]。(4)研发投入因素。Kathuria(2000)指出技术溢出效应并非自动产生,技术吸收方要想从中获利,须对学习活动进行投资;田慧芳(2004)的研究则表明工业部门研发投入水平与技术溢出效应呈负相关关系。此外,市场结构、工资水平、产业关联、基础设施、经济政策等都作为影响因素引入了技术溢出的相关研究中,本文在前人研究的基础之上对此进行探讨。
二、指标构建与分析方法
目前,对技术溢出进行实证研究时,学者们通常首先选择一个影响因素,然后确定与该影响因素内容相关的指标体系,最后采用一定的计量方法(如多元回归、分组回归等)来分析这些指标。本文在分析技术溢出时,也采用了这种研究思路:选取航空航天业为研究对象,根据技术差距等影响因素建立与之相关的量化指标体系,采用因子分析的方法对这些指标与技术溢出之间的关系进行研究,并用线性回归的方法对提取出的公因子进行显著性检验。
(一)技术溢出指标体系
航空航天业是一个以现代科学为基础的高新技术产业,包括机、光、电、液综合能力的精密机械加工工业,是我国国民经济和国防建设的重要组成部分[10]。其研发成本高、风险大、周期长,具有科技含量高、连带效应强的产业特点,能够带动诸多产业的发展。理论上讲,研究技术溢出影响因素需要建立一套完整的指标体系,但为了避免信息重叠,本文根据国内外现有文献的研究成果并综合考虑我国航空航天业技术溢出的实际情况,选取如下表所示指标体系:
(二)分析方法和数据来源
因子分析是一种研究从变量群中找出共性因子的统计技术,它通过分析众多变量之间的依赖关系,探寻观测样本的内部基本结构,提取并描述隐藏在一组显性变量中无法直接测量的隐性变量,很好地发挥了降维和简化数据的作用。因子分析中的共性因子是不可直接被观测却又客观存在的重要影响因素,每一个变量都可以表示为共性因子的线性函数与特殊因子之和,即,式中为的共性因子,为的特殊因子。若满足以下条件:(1);(2),即共性因子和特殊因子不相关;(3)各共性因子不相关且方差为1;(4)各特殊因子不相关且方差不要求相等。那么,每个变量可由个共性因子和自身对应的特殊因子线性表出,因子分析的数学模型可表示为:
本文采用因子分析和线性回归相结合的方法,研究我国航空航天业技术溢出问题。用于分析的数据主要来源于《中国高技术产业统计年鉴》(1999~ 2009)中航空航天业相关数据,以及《中国统计年鉴》(1999~2009)中工业企业相关数据,统计口径为我国国有及规模以上非国有工业企业。
三、技术溢出实证研究
(一)因子分析
从《中国高技术产业统计年鉴》(1999~2009)与《中国统计年鉴》(1999~2009)整理出构建量化指标体系所需数据,并按定义计算出各指标对应值,如下表所示:
利用SPSS17.0软件做出相关系数矩阵,通过指标之间的相关系数初步判断各指标相关性较高。从已建立的量化指标体系中提取公共因子,找出影响我国航空航天业技术溢出的主要因素。因子矩阵和旋转因子矩阵如表3、表4所示:
由表3、表4可知,旋转后公共因子F1、F2的方差贡献率分别为4.803和2.795,累积方差贡献率为84.424%,进一步判断公共因子F1、F2能够代表本文所设计的衡量我国航空航天业技术溢出的量化指标体系。由表4还可知公共因子F1在X1、X2、X3、X4、X5的载荷值均大于0.7,能够反映我国航空航天业科技活动经费投入能力、研发经费投入能力、新产品研发经费投入能力、科技活动人员投入能力以及科学家与工程师投入能力,因此可将F1视为影响航空航天业技术溢出的因素之一――技术投入能力;公共因子F2在X6、X7、X8、X9的载荷值均大于0.65,能够反映我国航空航天业的新产品销售收入、新产品出口能力、新产品劳动生产率以及新产品产值比重,因此可将F2视为影响航空航天业技术溢出的因素之二――技术产出能力。
(二)线性回归
本文根据该检验模型,以公共因子F1、F2的因子得分作为自变量,以其他工业企业的全员劳动生产率LP作为因变量(具体数据见表5),构建如下回归模型:
(1)
其中LP即除航空航天业之外的其他工业企业的全员劳动生产率,是全国国有及规模以上非国有工业企业增加值与我国航空航天企业增加值的差值同全国国有及规模以上非国有工业企业全部从业人员年平均人数与我国航空航天企业从业人员年均人数差值之比。其计算公式为:
全员劳动生产率=工业增加值/全部从业人员平均人数(2)
通过回归得到人均产出变量与公因子变量之间的关系方程为:
(3)
t值:(6.240)(2.886) ( 3.320)
P值: 0.001 0.028 0.016
R2=0.749AdjR2=0.666F=8.967
由模型估计到的参数可知,我国航空航天业的技术投入能力以及技术产出能力与其他工业企业的全员劳动生产率均存在着显著的正相关关系,技术投入能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升17.541%,技术产出能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升15.9%。
四、结果分析与政策建议
航空航天业是我国国民经济的先导产业,在人才、资金、技术等方面都有着相当大的优势,产业结构具有一定的特殊性,技术溢出也不同于其他产业。因此,本文在参照前人研究成果与研究方法的基础上,构建了一个衡量技术溢出的量化指标体系,采用因子分析的方法从中提取出最为显著和最具代表性的两个因素,即航空航天业的技术投入能力及技术产出能力。科学分析这些影响因素,有效利用技术溢出效应,有利于提升传统产业的自主创新能力、推动国家整体技术进步。对此,提出如下建议:
中图分类号:TN915.4—34文献标识码:A文章编号:1004—373X(2012)18—0099—03
数据是航天测控系统处理和应用的核心[1]。随着我国航天测控事业的不断发展,整个航天测控系统将发展成为以中继卫星为中心的天基测控网,以陆地测站为中心的陆基测控网和以测量船站为中心的海基测控网三个相对独立的测控系统[2—3],而且各方用户对整个系统提供综合应用服务的需求也不断提高。现有传统的航天测控数据体制,采用约定字段数据包结构的数据处理和应用模式,使得的数据处理及应用都较受限制。为此,构建一个统一化、标准化的数据体制,实现整个测控系统数据的统一标准化处理和应用,将对我国航天测控事业的进一步发展具有重要意义。随着XML(eXtensibleMarkupLanguage)相关协议标准和应用技术的不断成熟,使XML逐渐成为一种处理应用系统间数据交换的标准[4—5]。
1现有传统航天测控数据体制分析
现有传统的航天测控系统采用约定字段数据包结构的数据体制,这种体制在数据处理和应用方面,都有其自身的局限性。
1.1数据处理方面
在以约定字段数据包为核心的数据处理中,数据的生产者需要按照约定的格式填写各个字段,建立完整的数据包并发送给数据的消费者。数据的消费者首先要按照约定的格式,从数据包中分解出各个数据字段,最终得到各个应用数据,然后才能对这些数据进行处理[6]。这种数据处理方式有几个明显的不足:一是数据处理的代码耦合度高,为针对不同任务而进行的软件维护设计将要求对软件代码的重新修改与测试,从而影响了软件的可重用性和模块化;二是不同数据处理单元之间的接口复杂,标准不统一。假设有n个模块要进行信息交互,则会存在Cn2个接口,这使得数据的交互和集成变得十分困难。
此外,传统数据体制对数据的处理不能有效区分实时与非实时数据,实际可用数据处理资源无法实现合理分配,传输带宽的弹性较小。
1.2数据应用方面
数据应用以数据处理为基础。一方面基于约定字段数据包结构的传统数据体制限制了系统对底层数据的处理方式和处理能力,从而影响了数据应用的可实现行和丰富性;另一方面,在传统的航天测控数据体制下,不同测控网之间的数据交互仅仅只解决了基本的数据链路和数据传输的问题,对数据网络层与应用层的设计与处理较少。同时,数据的传输与网络特性单一,使得系统对通信资源的分配和利用力不从心,系统可统一应用的数据范围和综合性较受限制,不利于系统的适应性和拓展性发展。
2基于XML的航天测控数据体制
2.1XML的特点
XML是由W3C(WorldWideWebConsortium)的一种标准,是标准通用标记语言(StandardGeneralizedMarkupLanguage,SGML)的一个简化子集。它具有以下几个传统约定数据包结构数据不具有的显著特点[7—8]:
(1)数据的自描述性,适用于特定领域的数据处理和应用。
(2)结构化的数据模型,为数据显示和处理提供标准的处理方式。
(3)丰富的网络传输特性,可作为性能良好的通信协议。
(4)成熟的XML应用标准与处理技术,如XSL,DOM,SAX,WML,XLink和XPointer等为XML的应用拓展提供了技术支持。
此外,航天测控网的IP化改造,也为XML的技术实现提供了硬件平台。
2.2基于XML的航天测控数据体制
航天测控数据处理按时间的要求不同可分为实时数据处理和非实时数据处理。实时数据处理要求处理速度快,时间短,方法简单,所使用的数据为流数据,大多不会重复使用。非实时数据处理流程多,方法精细、复杂,所使用的数据为积累数据,大多需要重复使用。
谁是国航的群众?对于这个问题,国航上下有着明晰的认识:作为航空企业,对内,依靠的群众是广大的员工;对外,依靠的群众是广大的旅客。为了时刻和群众站到一起,收集群众的意见,听到群众的声音,国航建立了一整套联系群众的机制。
公司领导班子成员的联系点直接设到了基层党支部,每人每年至少要与20名一线员工进行面对面的谈心。基层党支部每个月、党委每个季度都要召开员工思想情况分析会,专门收集研究员工关注的热点问题和工作生活中存在的困难,并形成了“收集问题—分析问题—制订方案—反馈意见—跟踪落实”的闭环管理机制。
国航是一个管理链条长、人员分散的企业,有人在天上,有人在地面,有人在国内,有人在海外,集中非常困难。为此,国航启动了“和谐温度计”调查项目,通过网络匿名参与的方式,使200多个境内外城市中30285名国航员工参与进来。
国航还积极收集服务对象的意见。国航在机舱、柜台等一线界面上提供各种形式的问卷、意见卡,通过呼叫中心进行电话回访,请旅客对各个细分的服务环节进行满意度逐项打分,对各环节自己希望改进的地方提出批评与建议,帮助企业寻找薄弱环节。
国航服务的改进,发展方向的调整,正是这样长期不懈地依靠群众,这样周而复始地不断完善。
行动的方向:一切为了群众
为人民服务、一切为了群众的目标,在国航被概括为“双服务、双满意”,也就是“只有员工满意,旅客才能满意”,“只有公司为员工服务好,员工才能为旅客服务好”。
中图分类号:TP399 文献标识码:A 文章编号:1671-2064(2017)01-0103-01
随着科学技术的不断发展,航空航天领域也呈现出前所未有的发展新态势。航空航天材料的设计也在向多样化、智能化及信息化方向发展。但是在材料的设计过程中仍然面临着设计成本高、设计精确度要求高等问题,这就要求设计者们必须严密地设计出需要的航空材料,并且尽可能地减小误差,这也给设计者带来了很大的技术难题。3D打印技术为此类问题的解决提供了新的方案[1]。
1 3D打印技术的概念及发展特点
1.1 3D打印技术的概念
3D打印技术即一种快速打印样品成型技术。其原理是将金属粉末或塑料粉末等当做打印“墨”,根据数字模型要求,再通过逐层打印的方式打印出成品,这种技术在国外也被称为“增材制造”。3D打印技术的发展得益于计算机技术的不断创新与突破,其打破了传统打印的意义。此外,随着3D打印技术的不断完善与成熟,其越来越多地应用于生活、社会活动以及高科技等各个方面,诸如航天航空领域,对于我国高科技的发展有着重要的意义。
1.2 3D打印技术的发展特点
3D打印技术发展历程大致如下:1984年的基于数字资源的三维立体模型打印技术、1993年发明的3D印刷技术(3DP)、1996年具有真正意义上的的“3D打印机”问世、2005年第一台彩色“3D打印机”――Spe问世、2010年可以打印整个身躯轿车的“3D打印机”出现、2011年能够打印飞机的“3D打印机”出现。3D打印技术在不断朝着复杂、多样化以及高科技等领域的方向发展。因为其不需要传统的机械加工或制造模具就能直接根据计算机图形数据生成任何形状的物体,极大地缩短了产品的生产周期,提高了产品的生产效率。这对航空航天材料的智能设计起着很大的作用[2]。
2 3D打印技术运用于航空航天材料设计上的优势
2.1 节省材料
一个飞机机身的模型需要许多零件和部分组成,而应用3D打印技术之后,不用剔除航空材料的边角料,提高了材料的利用率。此外,3D打印技术取代了传统的大规模、占用空间以及耗人力等的生产线,从而最大化地节省了材料,降低了成本。
2.2 制作材料精度高
材料的精确设计是确保航天航空领域安全发展以及快速发展的最基本要求。而传统的材料设计技术无法保证人为的错误以及将误差降到最低等,这就限制了航天航空的发展。因此,3D打印技术运用于航天航空领域时,给航空航天的智能化材料设计带来的将是质的飞跃与创新。
2.3 无需传统模具
3D打印技术在智能化材料设计过程中不用使用传统的刀具、机床以及其他磨具,通过将产品的外形等通过计算机技术如AUTO CAD技术设计出来,然后直接打印生成实物产品。这在很大程度上简化了传统磨具下的制造工艺。
2.4 缩短材料制作周期
3D打印技术可以自动、快速、直接和精准地将计算机中的三维设计转化为实物模型,甚至能够直接制造零件和模具,绕过了传统的制造工序,从而有效地缩短了材料设计的研发与制作周期。
3 3D打印技术对航空航天材料智能化设计的促进作用
3.1 促进了航空航天材料设计技术的革新
3D打印技术的运用加快了其材料智能化的设计进程,打破了传统的设计思维和方法,使得航天领域设计技术的不断发展及完善,更是将高科技与制造业设计的结合推向了一个新的高度,加快了智能设计技术的发展与革新。
3.2 促进了航空航天材料设计成本的降低
在航空领域,不管是创新设计还是机械制造,都需要严密规整的模型。在造一架飞机时,要经过无数的模型模拟,而每一次模型的制造以及模拟都需要很大的财力支持。而应用3D打印技术,这种资金消耗将得到大幅度降低。3D打印技术依靠高精确度使得设计时模型能够精准使用物料,这使得设计材料时所使用的资金的到合理的运用。
3.3 促进了航空航天材料设计的创意性发展
在航空航天领域,其运用3D打印技术可以促进材料设计的智能创新,可以促进飞机机身的多形状化发展、零件的多颜色发展等。在使用3D打印技术之后,我们有理由期待一种更先进更具有创意性的航空航天产品。
3.4 促进航空航天材料设计的人性化发展
运用3D打印技术实现材料设计智能化之后,材料制作可以向着个性化、多样化方向发展,例如:我们可以根据每家航空公司理念等的不同设计出富有个性化、突出其理念的产品,而不是趋同的制作,比如航天飞机上的座椅可以根据员工的操作习惯以及身体结构量身“3D”打造。这体现出材料制作的个性化,而这得益于3D打印技术的运用。
4 结语
综上所述,笔者认为基于计算机技术的3D打印技术以其高精确度、高生产率等特点将快速融入航空航天领域材料的智能化设计。但是,目前该技术仍然存在着强度低、材料存在局限性等缺点,因而其应用范围还不是太广泛。不过我们相信,3D打印技术的进一步完善会深刻的影响我们生活。
各地教育部门和全国8万余所中学6000余万名师生共同组织了收看,天宫一号也因此成为中国“最高”讲台。此次太空授课活动安排的实验项目,展示了失重环境下物体运动特性、液体表面张力特性等物理现象,为全国青少年进行了一堂意义非凡的太空授课。各地教育部门和中学高度重视,妥善调课,组织收看神舟十号航天员太空授课活动,围绕太空授课活动开展丰富多彩的主题活动,积极响应教育部要求,推动“中国梦、我的梦”主题教育活动和中学科技教育的有效开展,促进中学生全面发展和健康成长。
2013年6月20日10时04分,跟随神舟十号遨游太空的航天员王亚平开启了我国载人航天史上的首次太空授课。330余名少数民族学生、进城务工人员随迁子女及港澳台地区中小学学生代表在中国人民大学附属中学综合楼四层地面课堂,兴趣盎然地聆听了“太空教师”王亚平在神舟十号上为大家所讲的一堂40分钟的实验课。
中国人民大学附属中学通过地面课堂具有的双向音视频沟通交流能力,与神十航天员进行同步互动交流。地面课堂内的学生不仅能够看到王亚平授课的清晰画面,身在太空的王亚平也能观看到和收听到课堂内学生们的实时反应,同学和老师可以像平常课堂一样进行互动。
在地面课堂上的两位教师,分别是人大附中的物理教师宓奇和101中学的物理教师史艺,在太空授课开始之前,两位老师先让大家猜想本次课程中可能会涉及的原理,及对航天员最关心的问题是什么?
课程伊始,两位地面教师先通过一个短片向大家介绍了航天员的衣食住行。当三位航天员出现在屏幕画面中的时候,学生们立即鼓掌,有人不禁感叹:画面好清楚啊!为了向孩子们说明“失重”现象,指令长聂海胜表演了“悬空打坐”,担任太空教师的王亚平说:“我还会大力神功呢。”她用一根手指轻轻一碰,就把聂海胜推到了船舱后面。看到此情景,孩子们哈哈笑了起来。随后,王亚平做了5个实验,分别为质量测量演示实验、单摆运动演示实验、陀螺演示实验、水膜演示和水球演示实验。
天津:做足功课 同步观看
6月20日,在南开中学航天体验馆,学生们通过弧形屏幕观看中国首次太空授课。天津大中小学校组织学生同步收看,各学校的“地面课堂”瞬间沸腾。
上午10时,南开中学打开了全部教室和实验室内的闭路电视,让2000余名中学生共同见证和观看这一期待已久的难得的历史时刻。与此同时,南开中学的航天航空体验中心也全部开放,该校30余名物理社的成员还在教师的指导下,在航天航空体验中心的仿真平台上迎来了这一次特殊的“太空课堂”。物理社社长、该校高一年级的女生孔令航兴奋地告诉记者,为了收看这次“太空课堂”,大家都做足了功课,在网上搜集了很多物理与航空航天的知识。她说:“虽然是学生,但我们都特别关心中国航天事业的发展,我们每一个人心中都有一个‘航天梦’。这次‘太空课堂’不仅给我们展示了很多新奇的难得一见的太空知识,同时也让我们的‘航天梦’更加清晰起来,也更加增强了我们实现未来梦想的信心!”
南开中学副校长吕宝桐表示,这次“太空课堂”对学生来讲也是一次难得的爱国主义教育,增强了实现中国梦的使命感。
上海:航空航天特色校闵行三中观摩中国首次太空授课
上海市闵行三中是航空航天特色学校,该校组织了初二年级全体同学观摩中国首次太空授课。校长在电话里告诉记者,由于闵行三中高中部仍在期末考试期间,因此安排已经期末考完的200余名初二学生收看了太空授课。学校还特别安排了30多名科学兴趣浓厚、品学兼优的学生到高中部的刘辉航天科技工作室集中观看,现场安排物理老师和同学们互动,解答同学们的疑问。
2011年,闵行三中高一学生提交的“搭载濒临灭绝植物种子的探究”搭载方案,从全国113所中小学校的近3000个方案中脱颖而出,成为我国空间试验室首个出自中学生的研究项目,跟随当年发射的“天宫一号”进入太空。
广东:遨游九天
圆梦中国
6月21日下午,广东佛山罗村二中初二级全体同学观看了此次太空授课。
本次太空授课的5个基础物理实验,展示了失重环境下物体运动特性、液体表面张力特性等物理现象,是一堂极其生动的实验课,激发了同学们的学习兴趣和热情,使青少年走近航天、了解航天、热爱航天。
湖南:长沙市37中第一时间收看神舟十号太空授课
6月20号上午10:00,长沙市37中学生在学校的统一安排下,在自己的教室里准时收看了神舟十号太空授课直播,学生们一个个目不转睛地盯着教室黑板正中间的班班通设备“电子白板”,一起分享着这一场来自太空的实验课。航天员王亚平给中学生们讲授的这一节实验课程,解开了同学们心中的很多谜底,比如:航天员在太空的衣、食、住、行是怎么样的?失重是怎么产生的?太空垃圾怎么处理?有没有见到UFO?太空中看到的星星是什么样的?太空中的水是怎么来的?……满足了学生很多的好奇心。他们在为祖国的航天事业举得巨大进步而骄傲和自豪的同时,也激发了心中的航天梦、科技梦、中国梦、强国梦,增强了要为中华民族的伟大复兴贡献自己力量的决心。
四川:绵阳博雅学校观看“神舟十号太空授课”直播
6月20日上午10点—10点50分,绵阳博雅学校师生怀着兴奋、期待的心情收看了“神舟十号”航天员在“天宫一号”进行的首次“太空授课”。女航天员王亚平给大家演示了小球在太空中的单摆运动和圆周运动、高速旋转的陀螺旋转、神奇的水膜实验、液体表面张力能使水膜变“魔法水球”等内容,激发了同学们对太空的向往,更让大家了解航天、热爱航天、支持航天,让同学们集体感受了天宫课堂的无穷奥妙。
课后,各班老师还组织同学们谈感受、说体会。有同学这样说:“我一直以为‘天宫一号’在太空上只是固定地待在某个地方,听王亚平老师说,他们每天会看到16次日出,因为他们每90分钟就绕地球一圈,我才明白原来‘天宫一号’是要绕着地球运动的。”有的学生说:“太空太神奇了,看到王亚平老师能把地球上的一滴水‘变’成彩色的水球,她就像一个魔法师一样,那太空中还有多少‘魔法’啊!”
新疆:华山中学学生收看太空课堂 见证奇妙一刻
“在太空当中做这些实验的时候,真正能够把理论中的知识在实际应用中的一些状态呈现出来。我觉得学生的收获是非常大的。”6月20日,新疆生产建设兵团农业建设第二师华山中学高中物理老师倪颖在与学生一同收看了神舟十号航天员展现的太空课堂后说到。
华山中学的学生们在教室里收看了我国航天史上的首次太空授课,他们时而屏息凝神,时而发出惊叫;教室里时而鸦雀无声,时而掌声一片。神奇的课堂让学生们见证了太空的奇妙世界,也激发了他们内心的科学梦和太空梦。
有学生表示,这个天宫课堂非常有趣,也非常有意义,它带给我们一些平时在地球上不能见到的真实现象,这也是科学引人入胜的地方,更加激发了他们学习科学知识的兴趣。
:航天员太空授课激发雪域学子太空梦
“太空会不会像高海拔地区一样,水到七八十度就能烧开了?”“冬虫夏草在太空能生长吗?”“太空像一样缺氧吗?”“在高海拔的发射宇宙飞船会不会更快?”……的学生对太空的热情很高,显然,太空授课激发了他们追梦太空的浓厚兴趣。
拉萨中学团委书记薛军利认为,此次太空授课有助于培养学生在物理学习方面的兴趣,激发学生探索太空的科学精神。不少学生通过太空授课产生了探索太空的梦想,要把个人梦和国家梦结合起来,使梦想成真。
澳门组织中小学生观看
“神十”太空授课
6月20日上午,澳门特区政府教育暨青年局及多家学校组织中、小学生收看“神舟十号”航天员在“天宫一号”作太空授课的现场直播,一同领略奇妙的太空世界。
航天员王亚平在授课中,分别进行了质量测量、单摆运动、陀螺、水膜和水球等试验,展示了失重环境下物体运动特性、液体表面张力特性等物理现象,并回答了学生的提问,包括关于航天器用水、太空垃圾防护措施、航天员对抗失重方法和太空景色等。
在澳门教育暨青年局的骏菁活动中心,有250名学生在聆听航天员老师讲课;在劳工子弟学校,也有近百名学生在礼堂集体观看直播。教育暨青年局还安排了导师在场讲解,解答学生们的提问。
有参与听课的澳门学生称,对太空的一切都感到很好奇,不知道太空冷不冷?太空是否会有外星人?希望将来航天员来澳门时,有机会直接向他们发问。
教青局青年厅厅长袁凯清表示,澳门特区政府一直重视科普教育,通过课余活动、对外交流比赛等形式让学生接触科普知识。通过收看太空授课直播,见证了中国航天科学教育的历史时刻,加深了学生对航天科技的认识,将进一步激发澳门广大青少年崇尚科学、热爱航天的热情。
美国:2007年,芭芭拉·摩根的第一次太空授课
2007年,美国东部时间8月8日18时36分,美国“奋进”号航天飞机载着机组7名宇航员从佛罗里达州肯尼迪航天中心发射升空,飞往国际空间站。这是美国宇航局首位教师宇航员芭芭拉·摩根的第一次太空飞行。
航天飞机进入地球轨道后,地面发射控制中心指挥人员说:“对芭芭拉·摩根和机组伙伴来说,这堂课正式开始了。”摩根曾经教书的爱达荷州的科学教师联合会专门挑选了18名学生,与摩根进行天地间的师生对话。
摩根这次在空间站上的第一堂课,共进行了25分钟。在课堂上,一个孩子想知道如何在太空锻炼。摩根一手托起一个在她身边飘浮着的宇航员,给予演示。另一位年轻人想知道宇航员是怎样喝水的,摩根和她的同事从饮用水袋的吸管中挤出水泡,并将水滴吞下。4名宇航员还分别用乒乓球和垒球作讲课的道具。
实验一:质量测量演示——没有了重量,是否意味着失去质量?
3位航天员老师“站”稳后,先给同学们露了几手“功夫”——“悬空打坐”“大力神功”。在失重环境下,航天员们都成了“武林高手”,博得同学们阵阵喝彩。
航天员的表演给同学们带来了疑问:在地面上,人们一般用天平、台秤、托盘秤、杆秤、弹簧秤测量物体受到的重力,从而计算物体的质量,那么 ,失重环境下怎样测质量呢?
航天员老师用“天宫一号”上的质量测量仪现身说法。他们从“天宫一号”的舱壁上打开一个支架形状的装置,航天员聂海胜把自己固定在支架一端,王亚平轻轻拉开支架,一放手,支架便在弹簧的作用下回复原位。装置上的LED屏上显示出数字:74.0。这表示聂海胜的实测质量是74千克。
王亚平向同学们解释道,天宫中的质量测量仪,应用的物理学原理是牛顿第二运动定律:F(力)=m(质量)×a(加速度)。质量测量仪上的弹簧能够产生一个恒定的力F,同时用光栅测速装置测量出支架复位的速度v和时间t,计算出加速度(a=v/t),就能够计算出物体的质量(m=F/a)。
王亚平老师还给同学们布置了一道课后思考题:除了运用牛顿第二定律,还有什么办法可以在失重环境下测量物体的质量?
实验二:单摆运动演示——太空中的机械钟表走得更准还是静止不动?
演示完质量测量,航天员们又取出一个物理课上常见的实验装置——单摆。
T型支架上,用细绳拴着一颗明黄色的小钢球。王亚平把小球轻轻拉升到一定位置放手,小球并没有出现地面上常见的往复摆动,而是停在了半空中。王亚平用手指沿切线方向轻推小球,奇妙的现象出现了,小球开始绕着T型支架的轴心做圆周运动——而在地面对比实验中,需要施加足够的力,给小球一个较大的初速度,才能使它绕轴旋转。
太空实验趣味无穷,地面课堂的学生们也不失时机地向航天员提出他们关心的问题。人大附中早培班学生徐海博举手提问:“航天员老师,您在太空中有没有上下方位感?”
为了回答同学的提问,航天员王亚平在聂海胜的帮助下表演了一套“杂技”动作,分别进行了悬空横卧和倒立。看到航天员老师的精彩表演,同学们兴奋地鼓起掌来。
实际上,航天员在太空中无所谓上和下的方位区别。不过,为了便于工作生活,航天员们为“天宫一号”人为定义了上和下,把朝向地球的一侧定义为下,并专门在“下方”铺设了地板。
实验三:陀螺演示——高速旋转的陀螺为什么不会倒下?
物理学原理告诉我们,高速旋转的陀螺具有很好的定轴特性。在太空失重环境下,这一特性更加直观地呈现出来。
航天员王亚平取出一个红黄相间的陀螺,把它静止悬放在空中。用手轻推陀螺顶部,陀螺翻滚着飞向远处。紧接着,王亚平取出一个一模一样的陀螺,让它旋转起来,悬浮在半空中,再用手轻轻一推,旋转的陀螺不再翻滚,而是保持着固定的轴向,向前飞去。
王亚平介绍说,高速旋转陀螺的定轴特性在航天领域用途广泛。在“天宫一号”目标飞行器上,就装有各式各样的陀螺定向仪,正是有了它们,才能精准地测量航天器的飞行姿态。
实验四:水膜演示——天宫里有没有“飞流直下”的瀑布?
阳光下五彩缤纷的肥皂泡、能够让硬币漂浮的山泉水,总是带给人们很多遐想。这些都是液体表面张力在发挥着神奇作用。
只不过,在地面上,液体表面张力难以抗衡地球引力的影响,只有经过特殊处理的肥皂水、富含无机盐的矿泉水才能表现出比较强的张力特性。但是,在太空失重环境下,液体的表面张力特性便突显出来。
王亚平拿起一个航天员饮用水袋,打开止水夹,水并没有倾泻而出。轻挤水袋,在饮水管端口形成了一颗晶莹剔透的水珠,略微抖动水袋,水珠便悬浮在半空中,与“天宫一号”舱壁上鲜艳的五星红旗图案交相辉映,更显得美轮美奂。
接着,她把一个金属圈插入装满饮用水的自封袋中,慢慢抽出金属圈,便形成了一个漂亮的水膜。轻轻晃动金属圈,水膜也不会破裂,只是偶尔会甩出几颗小水滴。随后,王亚平又往水膜表面贴上了一片画有中国结图案的塑料片,水膜依然完好。这些在地面难得一见的奇特景象,引起了地面课堂同学们的连声惊叹。
实验五:水球演示——用神奇的液体表面张力变个“魔法”
液体表面张力的威力竟如此神奇!普通的饮用水还能变成更加神奇的“魔法水球”。
引言
随着民用航空运输业的不断发展,传统的航路设计已经不能满足其运输业的发展需求,因此,作为区域民航与所需导航性能系统的广泛运用于发展带来的基于性能导航(PBN)技术,将为我国民航的远程运输业的发展到来极大的,有效的增强民航的盈利以及轮动发展的能力,不断满足我国航空运输的可持续发展要求[1]。
1 现代民航发展现状
当前,我国的民航发展由于技术上的限制,导致其在不断发展的路上还是面临着诸多矛盾和挑战。首先,需求与能力之间的矛盾。随着时代、经济的不断发展,社会对现代民航运输的需求逐渐增强,但是实际上的民航技术却还停留在之前的技术之上,不能满足时代的发展需求;其次,民航的运输优势逐渐被淡化,且成本在逐渐加大。最后,空域资源、土地资源及环境保护等多方面因素在不断的制约我国民航的长期发展。因此,必须寻找一种新的导航技术以促进民航事业的可持续性发展。
2 PBN飞行程序系统的设计
对于PBN运行,其技术核心是依据其GPS导航性能,因此,在实际的设计规范中,不同的PBN导航系统采用了不同的导航设施,在设计中必须对民用航天航空的设计规范进行有效的设计。PBN导航规范包括了RNAV(区域导航)与RNP(所需导航性能)两种类型的导航规范,因此,相应导航设施的设计要不断的满足不同的PBN导航系统在导航精度、应用完好性、过程连续性等方面的规范。同时,区域导航与所需导航性能的导航运行规范均属于区域导航运行模式,具有运行安全性、效益、终端区容量高,航迹选择灵活,飞行员工作负荷小、陆空通话频率低等优点。
关于进近PBN程序的设计,它也有两种设计规范:RNP APCH的通用程序与RNP ARAPCH专用程序,其中后者主要是针对航空公司的特定机或特别授权机组的专用设计程序。该程序主要是根据其在进近阶段飞行的引导形的不同将其分为了非精度进近、精度进近和有垂直导航引导进近3中不同的形式,属于中一中通用程序。精度进近程序主要适用于基于地面的增强系统,而非精度进近程序则是指从最后进近定位到最后的进近航段的复飞点之间没有下滑的一种引导趋势。在PBN飞行程序系统的设计中,它有独立的数据库以提供真实的导航台、航线、机场、地形等相关的数据,从而保证飞行程序能够得到有效的规划、评估制图,并进行相应的编码工作。
3 PBN飞行系统优越性及其应用
第一,优越性。相对于传统的导航方式,该飞行程序系统的实施与应用有着很大的优势。首先,在航路运行上,它可以对航路点进行灵活的选择,以减少航路的拥挤,并提高空域的利用率和交通流量。同时,PBN航路上的导航精度基本是保持不变的,能够有精确的引导航空器,使航班延误达到了大大的降低,并提高飞行中的安全系数,减少了成本,提高运行中的整体经济效益;其次,在终端区运行中,可以有效根据进离场图上有关航路点的特殊限定飞行,就可以避免潜在的飞行冲突,提高其运行效率;最后,在进近飞行阶段,可以根据程序上的显示,选择合适的运行方式,提高进场的效率,以增加收敛进近的应用。
第二,实际应用。随着我国民用航空航天事业的不断发展,其在区域卫星GPS导航技术上的研究与推广的步伐也在不断的加快。如我国西部地区由于地形较复杂,且天气恶劣不易行,然而PBN技术的有效运用,有效的优化了我国西部地区的航线结构。2001年11月,我国按照国际上有关民航组织的标准,在三亚飞行情报区实施了RNP10的洋区区域导航航路,为航空公司的运行带来了极大的灵活性,并减少了航班延误的情况,有效的增加了航空公司的经济效益。2006年7月,国航西南分公司完成了林芝机场的特殊RNP飞行程序验证工作,并开通了成都-林芝的航线,有着很大的安全和经济效益。2010年11月,上海虹桥、浦东机场有效验证运行了RNAV飞行程序,并取得了很好的效果。
4 结束语
PBN技术在我国民航中的有效推广与运用,使我国民航局能够根据国内各民航的实际情况进行灵活的空域划分,使空间资源的利用率得到大大的提高,并且在增大航空空域总容量的基础上使我国空中存在的交通拥堵情况得到了有效的缓解或解决,提高了民航的经济效益,使我国航空航天导航系统有着先进的技术支持,这样,就可以满足航空运输在可持续快速发展进程中的要求了,有效的促进其长期发展[2]。
我们公司主要向客户提供各类非标准、特殊、专用计量检测工具,检测工程承接,专用检测设备设计和制造服务的内容。 所谓非标准、特殊、专用、计量检测工具,并不是天马行空的设计和制作,是需要依据相关国家计量检测工具规范来进行的,简单的来说,是符合国家或行业需求及设计规范,参考“标准”而又高于“标准的”定向型研发制造工作。此类工作甚至可理解为是一种跨越现有技术等级和标准的创造型科研设计和制造为一体的创意工作。
应用领域:
航空航天工业,军工,铁路建设和铁路装备制造,船舶制造,及一切装备制造和各类机械制造。
在实际工作中,根据客户实际需求,设计和制造专用和特殊计量检测工具和设备, 可以说每一单业务均是量身定做的科研设计,此类业务不像卖标准产品,很类似或其实就是一种科研项目和定向开发制造工程的承接。
搞计量检测工具的设计和开发、制造工作是一个严谨的工作,我上面说的还仅仅是一般接触式计量的工作流程,要是我们为高速铁路测绘或计量检测,或为航空航天工业设计和制造那些大型的检测设备和做工程的时候,复杂程度就不是一般的高(比如我们我们所说的大型非接触检测设备和检测工程,一般会以精密机械为底衬,复合现代光学技术,声学技术,成像技术,数据分析及通讯技术,自动化及控制工程,材料学,电子,专用计算机软硬件技术,测量测绘学及卫星遥感定位技术等等复杂技术的有机结合)。
大家知道的现在高速运行的武广高速铁路,业界外的人很难知道,这样的高速铁路工程对质量到达了一个什么样的苛刻质量鉴定和监督水品!我本人是参与了铁轨铺设以后对高铁钢轨水平度的检测工作。
中国高铁目前施工水品已经是世界最高水品了,仅仅一个数据就能说明问题:我们按中国高铁建设和铁道部科技最高指挥部门要求,对铺设好的高铁钢轨进行水平度的检测,给出的具体要求是:在高铁任意一段截取十公里,从测量远点到测量检测截止点,整个十公里的里程,铁道建设部门铺设的钢轨两条轨道整体水平误差不得与设计图纸有5mm的误差!(这就是我们国家现在的施工水平,世界顶尖级的水平)。
我们公司的工作内容之一就是要对这么高要求的中国高铁进行设计和制作专用的高级检测工具,大家可想其中的技术难度。
由此我在想,计量检测是一门高深无止尽的学问,同时也是每一时每一刻与我们日常的生产和生活精密相连的大行业,若是有心,举目望去就能发现“计量检测”的影子;当一个行业或一个产品或多种产品具备了一种工具均能很好计量的普世商业需求后,就会有科技工作者制定相应的国家标准同时设计和制造相对应的标准计量检测工具;当新设备和新产品研发或标准计量检测工具不能胜任计量检测工作的时候,就必须研发和制造相对应的高于国家标准的专用计量检测工具或设备,大型工程重点工程更加需要多种复合检测手段去检验和检测其本身质量及合理性,因为此种原因造就了科技众多的业务,我们时常为一些现代高科技企业做量身打造的时候,同时又会有国家重点工程眷顾我们的科研设计加高级技工人才!
总之,和谐号火车头核心零部件,再到国家大飞机工程没有任何一样零件和部件不需要检测,同时众多轻工和民用工业产品只要他需要产品质量和质量的稳定,就一定需要对产品进行精准的计量和检测,所以我们幽默的说“从啤酒瓶盖子,到航天航空工业都有人要干的工作!”人豪迈的广告语:“因为中国制造,我们型影不离!”就是在此种豪情和成绩下自然孕育而生。
政策面的变化是决定全球经济走势的重要因素,对于政策面变化的客观估计是判断资本市场重要的逻辑支撑。目前,无论是美联储、欧洲央行还是日本央行和中国人民银行,货币政策基本上呈现宽松取向。美联储量化宽松只不过是扩张性货币政策的一部分,本身没有什么值得过度质疑之处;美联储增加流动性投放既是满足美国经济的需要,也是缓解欧债危机、稳定全球资本市场的需要;指责美联储滥开印钞机并据此认为美元一定会贬值的结论不仅狭隘而且缺乏内在逻辑;在在推出力度缓和的QE3追加QE4,政策面的叠加对于资本市场必然构成叠加型的强力支撑;美联储将低利率政策一直维持到2015年传递的信息是:在美联储看来,美国经济在2015年之前都不会出现严重的通货膨胀,没有必要因此加息,甚至连加息防患于未然的必要性都没有;QE4推出是一个明确的信号:从这一刻起,所有看空的逻辑都不再成立。
十二五战略规划的内涵
只有从战略高度理解了十二五战略规划的实质,才能把握资本市场行业基本面的相对变化。按照这一战略规划,维持巨额顺差和外汇储备是通货膨胀之根源。从供给无法充分满足需求的混合型通胀来看,必须增加供给(包括进口,来自国外的供给)、减少需求(包括出口,来自国外的需求);就输入型通胀而言,必须压缩外汇储备和外汇占款的规模,促使资本流动格局由单向流入转变为正常的双向流动,减少基础货币投放,缓解-物价上涨压力。按照这一战略规划,中国必须逐步减少对出口的依赖,转变经济增长方式,通过技术进步和产业结构升级实现可持续增长。
为此,人民币汇率将成为最有效的政策手段,人民币升值将成为最重要的战略手段;中国产业结构升级和调整的步伐不会因为沿海少数出口企业破产而放慢或停止;从因素分析来看,人民币汇率仍然被远远低估;人民币升值只是合理的价值回归,这一进程刚刚开始,远未结束。
上述判断对于资本市场投资的意义在于:受惠于产业结构调整和升级的行业基本面将会好转,受制于产业结构调整的行业基本面将会恶化;与人民币升值题材有关的股票将会出现明显的两极分化。
货币政策取向及其变化
中国资本市场是一个典型的政策市,货币政策的大收大放导致了中国资本市场的大起大落;从2007年下半年开始,中国货币政策目标经历了一保一控、一保一稳、双保、一保一控、一稳一控的演变,资本市场也经历了周期性演变;2012年6月8日降息开始,三大货币政策工具同时动用意味着货币政策取向转向实质性宽松,之前基本上属于预调、微调的范畴;尽管目前货币政策的空间比较狭小,但是QE4的推出使我国货币政策转向宽松的通道彻底打开;这一政策信号为资本市场上升提供了有力的政策面支撑。
中国经济金融形势判断
首先,从全年7.8%的增速来看,超额完成了7.5%的增长目标,中国经济仍然稳健运行;经济增速下滑并不意味着硬着陆;宏观经济的拐点已经出现,复苏趋势基本确立;值得强调的是,中国经济放慢速度调结构、上台阶是好事;总体增速下滑是执行十二五战略规划的需要;这一判断对于投资的意义在于:周期性股票是比较好的选择之一,比如银行与地产。
其次,从CPI来看, 2012年全年2.6%,2012年10月份的1.7%应是全年最低点;如今所有因素都不支持CPI进一步下跌;对于2012年的中国经济,我们可以用通胀平稳回落、增长平稳放慢、结构有序调整、良性增长可期;展望2013年,良性增长对股市上扬构成有效支撑,通胀与结构调整压力表明支撑力度较弱,从而中国股票市场尽管趋势上扬,但表现势必相对较弱。这一判断是我们应该乐观进取而不能盲目乐观的理由,未来中国资本市场的趋势虽然向上,但是股市三年会上8000点的判断未免过于乐观。
再次,就政策面而言,中国政府为了保经济增长,仍然实施积极的财政政策,结构性减税政策有望推出;随着降准和降息的双管齐下,货币政策取向已经转为实质性宽松,只是力度仍然小于预期,即使如此,至少相当于利空出尽。
此外,从房地产市场来看,调控限购措施暂时不会取消,但是没有理由进一步从严,这是经济上保增长、政治上维稳大局以及解决民生问题的客观要求;以前政府一方面对房地产调控限购,一方面推出保障房建设;新一届政府一方面强调调控限购不动摇,一方面推出城镇化这一题材,实际上仍然是变相的房地产;这两个互相矛盾的措施清清楚楚告诉我们政府的政策取向和房地产调控限购的实质;城镇化的初衷是借助房地产向城镇的延伸进一步带动中国经济增长,但是这一题材并不现实;短期内这一题材对于资本市场有一定意义,长期内不会构成强有力的实质性支撑;城镇化对于已经富起来的地区是机遇,对于没有富起来的地区是个虚幻的题材;结合十二五产业结构调整的大方向,城镇化题材对于钢铁、水泥无法构成有效支撑,对于新型建材有实质性利好。
资本市场判断的要点与行业选择
依据前面的分析,对于资本市场的未来走势,我们大致可以归纳出以下几个要点:
外部市场:美国复苏、欧债见底、政策企稳、信号清楚、恐慌消失、慢牛反转;
局部事件:叙伊危机、无碍大局;
内部经济:速度放慢、结构升级、通胀抬头、谨慎为宜;
政策面:稳长抑涨、财货双松;
市场面:预期企稳、机遇来临;
未来趋势:短期企稳、长期慢牛、趋势向上、谨慎乐观;
投资策略:顺势而为、持股为宜、积极进取、选股建仓;
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2016)45-0268-03
一、引言
《单片机原理及应用》是自动化、电气工程及其自动化、测控技术与仪器、等专业的核心课程。随着电子技术的飞速发展,单片机系列、型号、功能等也不断地更新换代,涌现出了许多《单片机原理及应用》方面的优秀教材和著作[1-3],由于单片机的快速发展和广泛应用,促使许多教师在教学内容、方法及实验方面进行了大量的探讨和研究,如“微课程教学”、“MOOC教学”等应用已取得了较好的教学效果[4-8]。然而,人工智能技术应用于教育领域目前仍处于初始研究和探索阶段,其应用前景广阔,具有重要的理论研究意义和实际应用价值。
基于“人工智能”中的“专家系统技术”,研究设计《单片机原理及应用》课程新型教学平台的总体构架,研究课程知识的表述模型和知识获取的推理算法,建立知识表述规则集和构建专家系统知识库,以实现:
(1)学生可以自主学习,基于知识树规则方便地获取该课程的全部知识点,学生随时提出的问题,均可及时获取答案;学生可及时获取单片机发展的新知识以及新的应用领域成果;
(2)教师高效处理、分析和制作课程知识点信息,并将其进行规则表述,同时可对知识库进行不断的更新;随时可对课程的知识点进行增添、删除和修改,基于互联网技术获取新型单片机原理及相应的应用知识,不断更换新课程的教学内容;
(3)基于互联网技术实现教师与学生之间的互动教学和学生与学生之间的协同学习;基于教堂教学、电子课件、动画、视频等多媒体手段,以创造大规模、大数据、跨时空的学习模式。
目前,在教育领域,基于人工智能研究的知识模块化表述和推理机制构成的专家系统是人工智能的代表之一,基于人工智能-专家系统在高密度、大规模的知识数据库上模拟人类的信息处理和决策过程,因此智能化的专家系统具备了教育功能、自学习功能、咨询功能及自适应功能等,将其应用于教育领域潜力巨大、用途广泛、快速高效。
本文研究了《单片机原理及应用》CAI软件的研制方法,采用MS Visual Studio 2012作为开发环境,结合人工智能技术,实现了智能搜索算法,达到了自主学习与自动答疑的目的。
二、《单片机原理及应用》CAI系统设计
为了提高本科生的教学质量,基于人工智能-专家系统技术研究《单片机原理及应用》课程的教学内容和教学方法改革措施,并可将其研究成果推广应用于自动化类专业相关课程建设;培养学生掌握本课程的基本原理和应用知识,引导其自主学习以提高分析问题能力、解决问题的能力及创新能力,实现学生与老师之间的互动,实现教学内容的不断更新和教学方法的不断完善。
(一)《单片机原理及应用》课程总体设计
分析目前本课程的教学内容和方法的局限性,提出《单片机原理及应用》课程教学内容和教学方法改革的总体方案。目前,普通高校《单片机原理及应用》课程所用教材的目录大致如图1中的实线部分所示。虚线表示可即时修改其中的相关内容。
(二)课程知识本体的表达模型
知识的表示对专家系统来说至关重要。知识本体的表述包括事物、个体和对象等,研究其规则、过程和函数,构成应用程序所表述的知识内容,可以作用于表述各种对象类,具有普遍性和通用性。其表达方式如图2所示。
(三)基于人工智能技术的课程教学内容和教学方法结构设计
专家系统结构一般有六部分:知识库(Knowledge Base)、数据库(Data Base)、推理机(Inference Engine)、解释子系统(Explanatory System)、人机接口(Man-machine Interface)和知识获取子系统(Knowledge Acquisition)。教学专家系统的基本结构如图3中的实线部分所示。
①知识厍:用于存储专家系统知识。主要用于收集和存储某领域教师、专家的经验,知识及书本知识、基本常识等。包括事物的表达方式,可行操作、事实和规则等;
②综合数据库:综合数据库又称总体数据库或全局数据库,主要用于存放有关问题求解的假设、初始数据、目标、求解状态、中间结果以及最终结果;
③推理机:推理机是专家系统的核心部分,用于模拟专家的思维过程、控制、协调整个专家系统的工作,它根据用户所提供的初始数据和问题求解要求,运用知识库中的事实和规则,按照一定的推理方法和控制策略对问题进行推理求解,并将产生的结果输出给学生;
④知识获取子系统:在构建和维护知识库时作为专家系统和教师、领域专家、工程师等的接口;
⑤解释子系统:解释机构由一组计算机程序组成,它对推理给出必要的解释,并根据学生问题的要求做出相应的回应,最后把结果通过人机接口输出给学生;
⑥人机接口:学生、专家系统和教师、领域专家、工程师之间沟通的媒介,它把相互之间的交互信息转换成彼此都能够理解的形式,由一组程序及相应的硬件组成,用于完成I/O工作。
三、CAI软件实现过程举例
《单片机原理及应用》课程CAI系统主界面如图4所示。点击“进入系统”之后,将出现“课程内容学习”和“知识点概述游览”两部分。
(1)“课程内容学习”部分包括“教材知识学习”、“课堂PPT内容讲解”以及“实验教学内容”等,例如目前常用的单片机的类型如图5所示。本课程的主要设计和创新实验如图6所示。
(2)“知识点概述游览”部分包括:
①知识点获取方式:即通过引导操作可得到关联性强的知识点解释、关联性中等的知识点解释以及关联性弱的知识点解释;
②问题解答方式:学生可根据自己的学习情况查询问题的基本答案(即对问题的解释),若基于专家知识库无法解释所提的问题,则可将该问题提交给任课教师,任课教师会尽快对该问题给出解答;
③专家库知识更新方式:随着单片机类型、结构、接口技术以及开发方式等的不断发展,本课程的知识结构和内容的更新也要求同步进行。因此,专家知识库信息的更新工作可由任课教师来完成,但是更新信息可来源于文献资料查阅、企业行业应用领域调研以及实践实验教学过程总结等。
课程教材与上课PPT和实验内容具有相关性,在实际教学中也要求其具有一致性,如图1中虚线部分表示可即时修改相关的内容。
四、结论
本文将人工智能-专家系统技术应用于《单片机原理及应用》课程的教学内容和教学方法的改革方案,构建新型教学平台。采用《单片机原理及应用》课程知识的综合表达方式,并研究课程知识的推理机制。基于文献资料查阅、企业行业应用领域调研以及实践实验教学过程总结,实现《单片机原理及应用》课程教学内容快速更新,实现该课程的智能化和网络化教学。
在教学过程中,实现学生与老师之间的互动,实现学生和老师之间知识的共享,达到学生能够自主学习和老师能够及时了解学生学习情况修改补充教学内容的目的。针对“知识库”、“综合数据库”以及“推理机制”实现在线综合更新方法。《单片机原理及应用》是自动化、电气工程及其自动化、测控技术与仪器、等专业的核心课程,目前,将人工智能-专家系统技术应用于高等学校该课程的教学,对于提高教学质量,激发学生的学习积极性和增强学生自主学习的能力具有重要的理论研究意义和很好实际应用价值。
参考文献:
[1]何立民.MCS-51系列单片机应用系统设计[M].北京:北京航天航空大学出版社,1995.
[2]李华,孙晓民,李红青.MCS-51系列单片机实用接口技术[M].北京航天航空大学出版社,1995.
[3]张毅刚,彭喜元,彭宇.单片机原理及应用(第2版)[M].北京:高等教育出版社,2010.
[4]周冠玲,冯占英,李战.“单片机原理及应用”课程教学改革的探讨[J].中国电化教学,2012,(6):105-107.
[5]赵月静,陈继荣,张永弟.单片机原理及应用课程创新实践教学改革[J].实验技术与管理,2013,30(1):176-179.
0引言
在我国经济和科技高速发展的情况下,传统应急通信系统已不能满足新形势下公安部门对突发事件实时性、精控性的应急指挥要求。公安应急通信作为公安应急指挥工作的重要内容,不仅是当前通信领域关注的问题,而且越来越受到政府、公安部门的高度重视。目前国内公安应急通信的建设和利用已有了长足的发展,卫星、微波、短波、计算机通信、移动通信等系统和设施均在此领域使用,但面对实战需求还存在一些问题,特别是如何避免突发事件情况下应急通信中断和瘫痪问题。因此,迫切需要采取一定的技术,有效地解决公安部门在全面应对突发事件活动中所遇到的通信问题。随着航天航空技术的发展,以及空间网络在应急通信和军事通信中的发展优势,具有强大信息支持能力的天地一体化网络逐渐成为公安部门解决应急通信问题的一个重要手段,也是我国公安体系应急指挥发展的一个重要方向。
1公安应急通信系统
公安应急通信系统是指公安部门在应对突发事件时用于应急指挥的通信系统。由于突发事件具有时间、地点和环境等的不确定性,通信要求容量也不确定,因而,应急通信网络要有高度的机动性和灵活性,能适合恶劣环境并具有很强的抗水抗干扰能力。与日常通信系统的主要区别体现在四个方面:(1)在组网能力上,应急系统采用自组网,具有自动路由选择、系统参数无线下载等,并能与其他部门的应急通信系统实现互联互通;日常系统采用固定网络拓扑。(2)在频率使用上,应急通信很难确定,公安应急通信系统应具有频率感知能力;日常系统只需提前规划,不经常更换。(3)在基站链路方面,应急通信以无线通信为主,有线通信为辅;日常系统则相反,以有线通信为主,无线通信为辅。(4)在供电方式方面,应急通信以大容量移动电源为主;日常系统以市电为主、电池为辅。公安应急通信网的主要业务包括:现场受灾情况图象和数据采集、GPS定位、保密通讯、语音调度、多媒体数据转播,并具备应有的特殊功能,如在一些突发事件现场,特别是与反恐有关的突发事件现场,要屏蔽外界通信干扰并确保警员之间的安全可靠通信。目前,公安部门在应急通信指挥保障工作时,现有的公安应急通信系统还存在一些问题[1]。多种应急通信系统之间因缺少协调性,导致跨行业间及公安系统部门之间缺乏互联互通能力,不利于部门联动和统一协调指挥;重大公共安全事发场所,可能由于基站受损造成通信能力大幅下降,甚至会导致通信的中断和瘫痪;重大突发事件发生现场由于通信资源受限,信息传输的实时性很难得到保证。因此,发展基于天地一体化的公安应急通信系统很有必要。公安领域的应急通信系统主要以应急平,台为核心,利用不同的接口协议将卫星通信系统、导航定位系统、GIS系统和遥感监测系统等融合为一个完善合理的应急体系。
2天地一体化通信网络
天地一体化通信网络利用互联网技术,以地面通信网络为基础、以空间通信网络为延伸,实现互联网、移动通信网络、空间通信网络的互联互通,覆盖海、陆、空自然空间,为海基、陆基、空基和天基各类用户的活动提供信息保障。天地一体化通信网络从物理形态上可分为空间通信网络和地面通信网络[2],空间通信网络包括天基和空基通信网络及其所有的航天器,天基通信网络由高空通信卫星、信息获取卫星及导航卫星组成;空基通信网络主要包含利用临近空间飞行器和各种无人侦察机等。地面通信网络主要是指陆基通信网络,有地面互联网、移动通信网络组成的主干网络和用户接入网[3]天基通信网络、空基通信网络和陆基通信网络可以独立工作也可以相互联通,构成分层网络结构,确保通信畅通;在陆基通信网络中,节点可采用典型的网状型网络结构互联,也可通过天基网络节点实现远程中继,使区域覆盖网络接入骨干交换网[4]。天地一体化通信网络结构如图1所示图1天地一体化通信网络结构(参见右栏)高空通信卫星有高中低轨道,面对不同任务的卫星。随着地面移动通信的发展,GEO高轨通信卫星逐步成为空间通信网络天基骨干网,提供覆盖全球的高速数据传输服务。天基骨干网采用空间激光通信辅助传统微波通信实现空间组网,提供100Gb/s量级的通信容量,具备空间网络拓扑抗毁重构能力[5]。同时,地面关口站形成空间通信网络地基骨干网。空间通信网络通过这种双骨干方式,为空中各种物理网络提供灵活有效的互联。同时,通过设立多个国际级天地一体化网络互连节点,采用具备星第、星间通信能力的空间移动通信系统作为高数据率传输的主干网,各类卫星、地面固定、车载等应用子网接入的方式,以避免地面庞大的路由信息对空间网络的冲击,以及屏蔽空间通信网络动态性所可能带来的地面网络路由震荡,实现空间网络、地面互联网、移动通信网的互联互通。天地一体化通信网络建设的最终目标也就是实现多种功能平台之间的数据融合与信息共享,并通过将用户、应用控制资源整合成一个有机整体,实现信息共享和统筹建设,以提高通信的容量和时效性,增强通信网络的可靠性和抗衰断性。
3天地一体化公安应急通信系统的构建
本文提出的天地一体化公安应急通信系统是利用卫星传输系统不受地理条件限制的特点,在突发事件场所地面传输线路一时难以恢复的情况下,使用“动中通”车载便携卫星系统,快速建立临时卫星传输通道,连接应急通信车载基站系统或当地传输阻断的移动基站系统,架起公安应急指挥通信网。系统结构如图2所示,分为地面部分、空中部分和卫星部分。图2天地一体化公安应急通信系统结构(参加下页)地面部分在应急通信时主要使用“动中通”车载便携卫星系统,由地面卫星站、“动中通”卫星通信车及卫星便携站组成。“动中通”卫星通信车在快速行进中,车载卫星天线始终对准地球同步通信卫星,在地球同步通信卫星与地面卫星站之间构建双向链路的卫星通信,以达到实时、不间断与其他地面站进行图像、语音、数据的卫星通信双向传输,实现对卫星实时跟踪。同时通过静止通信卫星,将多媒体数据连接到省厅或公安部,并通过双向专线传播网络,实现双向实时远程监控并具有召开电视电话会议功能。地面卫星站通过北斗导航卫星通信系统与“动中通”车载卫星系统及卫星便携站实现双向通信。卫星便携站是可移动的地面卫星站,由通信分系统、音视频分系统、计算机控制分系统、供电分系统、站控分系统、辅助分系统组成。高精度的手动卫星天线拆装简单,对星快速,可在短时间内实现通信功能和承载业务与“动中通”车载卫星系统相同[6]。空中部分由临近空间飞行器和各种无人侦察机携带通信载荷作为一个空中基站完成突发事件区域的通信小区覆盖。突发事件区域的通信终端除了使用D2D通信之外,更多的是完成传统的通信功能。在地面基站被摧毁的情况下,临近空间飞行器或无人机飞上天空成为一个空中基站为突发事件区域提供通信服务。天基部分通过若干同步轨道通信与中继卫星组成天基骨干网,完成临近空间飞行器和各种无人侦察机与北斗卫星之间的通信,可以不依赖地面网络独立运行。由于短时间内无法确定突发事件区域周边地面基站是否受损或者受损程度如何,为了避免二次灾害破坏系统中的地面基站导致的应急通信系统瘫痪,临近空间飞行器或无人机作为通信中继站与卫星进行通信,不与灾区周围地面基站进行中继。中继通信分为空中中继通信和卫星中继通信。
空中中继的优势在于,多架无人机编队飞行时,作为簇首的侦察无人机或中继无人机通过空地信道接入地面基站网络,或通过空天信道接入通信卫星,提供无人机业务及飞行管理。不同无人机之间可以根据通信状况轮流作为簇首,通信中继平台在编队内部选取,节约能源,提高通信质量,延长飞行时间。空中平台中继通信是解决恶劣地形下无线通信的一种比较理想的通信手段,可以满足公安系统的高移动性和高数据速率。通常高空中继平台以卫星作为中继站转发微波信号,上与太空卫星,下与地面卫星接口设备、卫星控制设备以及多种无线终端构成应急通信网络,在多个地面站和空间站之间通信,实现对地面和空间的“无缝”覆盖[7]。高空平台基站将无线基站安放在能长时间停留在高空的无人机上,可以实现高移动性和高数据速率。基站之间彼此通过光互连链路形成网络,在其覆盖的范围内,采用蜂窝网结构进行通信,然后通过GSM网络进行数据(文本、语音和多媒体等)传输,从而实现布有蜂窝网络的灾区与后方公安指挥中心的信息互联互通。高空基站实现了将蜂窝基站从地面移到升空高度在几千米之外,覆盖范围广泛,响应迅速,能在应急通信车不能到达区域迅速抢通网络[8],能解决因道路阻塞通信车辆无法快速抵达受灾区域的问题。因而,在突发公共事件后,为保证灾区通信畅通,可以通过这种高空布放蜂窝基站来实现应急的通信。将天地一体化应用到公安应急通信系统中可以解决由于大规模网络覆盖失败带来的通信瘫痪问题,能提供广泛的、稳定的通信服务。
4结束语
突发公共事件发生后可靠的应急通信系统能够使公安指挥人员及时、准确和不间断地了解现场情况,并快速展开应急救援。因此,公安应急通信系统对于大幅度地提高公安工作的业务水平和办事效率、减少事件造成的人员伤亡及经济损失具有重要意义。随着国内遥感、北斗导航、通信卫星等天基基础设施的高速增长,天地一体化通信网将在政策引导和新技术推动下,得以实现。本文以先进成熟的卫星通信技术作为应急的天基通信技术,以地面的“动中通”车载便携卫星系统作为地面应急通信网络,构建天地一体化应急通信体系,从而保证突发公共事件中的公安人员、受灾人员的互联互通,为制定应急预案提供通信保障。
参考文献
[1]刘玉藏.公共安全应急通信系统探析[J].武警学院学报,2015(2):21-24.
[2]张杰,郁小松.天地一体化网络中卫星通信港控制架构与路由技术研究[J].无线电通信技术,2017,43(2):1-5.
[3]胡源,姜会林,丁莹,等.天地一体化信息网络国外发展现状与趋势[C]//全国通信与信息技术学术年会.2013.
[4]李文峰,成丹.电梯无线应急通信系统主机的设计与实现[J].电子技术,2013(6):55-58.
[5]李贺武,吴茜,徐恪,等.天地一体化网络研究进展与趋势[J].科技导报,2016,34(14):95-106.