减少碳排放方法模板(10篇)

时间:2023-12-16 16:22:15

导言:作为写作爱好者,不可错过为您精心挑选的10篇减少碳排放方法,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

减少碳排放方法

篇1

“碳排放是关于温室气体排放的一个总称或简称。温室气体中最主要的气体是二氧化碳,因此用碳(Carbon)一词作为代表。虽然并不准确,但作为让民众最快了解的方法就是简单地将“碳排放”理解为“二氧化碳排放”。人类的任何活动都有可能造成碳排放,比如普通百姓简单的烧火做饭都能造成碳排放,任何物体被火烧后的废气都会产生碳排放。多数科学家和政府承认温室气体已经并将继续为地球和人类带来灾难,所以“(控制)碳排放”、“碳中和”这样的术语就成为容易被大多数人所理解、接受、并采取行动的文化基础。”(百度百科)“要求30多个附件一国家(包括发达国家和经济转型国家)在2008至2012年间,把温室气体的排放量平均比1990年削减>5.2%。”

(《京都议定书》)如何减少排放,已经成为一个热门话题。其实,作为一个普通的公民,我们没有能力让大气层的二氧化碳一下子减少,我们能做的,就是在日常生活的点滴中减少CO2的排放,今天我给大家介绍一种减少CO2排放的新方式。

篇2

    将工业技术进步依据来源细分为自主创新与技术引进(包含技术消化吸收),并将二者纳入STIRPAT模型中的空间面板模型,分别研究两者对地区碳强度的直接影响与间接影响。结果发现:自主创新与技术引进均有利于减少全国的碳强度;相对于技术引进,自主创新更能减少区域碳强度;东部地区加强自主创新,中西部地区加强引进技术的吸收能力,才能更好地发挥技术进步的节能减排作用。 

      改革开放以来,中国在取得经济持续快速增长的同时也伴随着大量的能源消耗。1995~2011年中国年均能源消耗增长率达到747%,由此产生的碳排放也呈逐年增长趋势,2010年中国已经超过美国成为世界排名第一的碳排放国。另一方面,近30年来,中国的能源结构始终保持稳定,煤炭消费约占总能源消费的70%,以煤为主的能源结构与大量能源消耗的现状导致了近年来碳排放量的猛增,使得中国产生了一系列的环境问题,中国在国际上的节能减排达标压力也日益增长。因此,实行二氧化碳减排已经成为中国发展亟需解决的问题。能源结构难以在短期内改变,技术进步因而成为当前节能减排的重要举措。本文在以往研究基础上,考虑碳的空间溢出影响,研究工业技术进步对碳强度的影响,期望能为减少碳排放提供针对性的建议。 

1文献综述 

技术进步能够减少能源消费所带来的污染排放尤其是二氧化碳的排放。Asafu-Adjaye以澳大利亚为例,通过新能源结构、减污技术进步和能源税三种指标对碳排放影响的比较,最终得出只有减污技术进步可以减少碳排放。基于中国的实证研究结果也证明了技术进步对碳排放存在积极的影响。这种影响主要表现在三个方面:首先是技术进步促进产业结构的调整与升级,减少了能源消耗量与碳排放。Zhou利用DEA-Malmquist测算了基于中国碳排放的技术进步效率,并认为由技术进步所产生的产业结构调整与优化是碳减排的有效方法;第二是通过产生节能减排的专利减少了污染的排放,如Wang采用计量方法分析了中国能源技术专利与碳排放之间的关系,揭示国内专利技术并未能显著地减少中、西部的碳排放,但是对东部地区的减排产生了重要作用;第三是技术进步所带动的能源利用效率的提升,如王锋运用对数平均Divisia指数分解法,分析发现中国碳排放量下降的主要驱动因素是工业部门能源利用效率的提高,而深层原因是研发经费支出提高所推动的技术进步和工业企业所有制结构的变化。技术进步作为影响碳强度变化的重要因素,在研究中被广泛认可,但本文则旨在综合分析直接导致技术进步的两大来源,即技术创新与技术引进对碳排放产生的影响。 

与以往研究不同,本文将碳强度作为反映环境污染的综合指标,并将碳强度的空间溢出效应作为碳强度的影响因素。即考虑碳排放在各地区间的流动溢出对地区碳排放的影响。该溢出效应主要基于地区之间的社会经济差异,具体成因为:(1)由于地区产业结构不同,地区消费偏好有差异,产品生产和产品消费可能产生跨地区的交易或流动,从而促进碳的空间扩散。(2)随着社会的发展,中国区域间人口流动频繁,由于人的迁移,知识和技术会跨区域扩散,消费行为也会产生空间转移,从而影响碳排放。忽视碳排放空间效应可能会导致偏差或不一致的结果。不少学者开始将空间计量应用于环境问题的分析,如许和连基于省级空间面板计量的方法分析了外商直接投资与环境污染的关系,Yu利用空间面板方法测算了影响中国区域能源效率集聚溢出的影响因素。 

篇3

中图分类号:X323 文献标志码:A

随着京都议定书的签订,世界温室气体排放逐渐受到众多国家和环保组织重视,减排降耗成为当前学术界和政策制定者的重要议题[1]。2013年深圳、北京、天津、上海等七个省市,根据国家发改委《关于开展碳排放权交易试点工作的通知》(发改办气候z2011{2601号)的要求,以欧盟碳交易体系(EU ETS)为蓝本,陆续开展了碳排放交易工作。2015年初,各省市首年碳排放权交易陆续完成,但是企业违约,延迟履约等问题依旧凸显。且我国与欧盟等发达国家相比,产业技术标准化水平尚有差距,直接套用EU ETS碳排放权分配方式,是否合适值得商榷。因此,探索适合我国碳排放权交易的碳排放权分配模式,寻求科学、合理、公平的分配方式,避免出现EU ETS实施初期问题各产业和企业碳排放权总量偏高,尤为重要。本文运用改进的零和DEA模型,对我国试点省市碳排放权分配效率进行研究,并根据模型估计结果提出公平有效的碳排放权分配方式。这不仅可以丰富碳排放权分配的理论基础,避免碳减排中的“囚徒困境”,也有利于碳排放权交易市场的稳定发展和碳减排目标的实现。而且,随着低碳经济发展,我国统一碳交易市场的建立是大势所趋,在此背景下,研究我国七大试点省市碳排放权交易体系,提出适用于我国国情的碳排放权分配方法,对于全国范围内的碳排放权交易体系建立具有重要的借鉴意义。

1.文献综述

EU ETS生效后,碳减排量由软性约束逐渐成为影响约束,也制约着我国国际贸易快速发展,碳减排量与经济增长关系成为研究热点。在不考虑环境成本投入时,通常以C-D函数为基础,通过数据包络分析(Data Envelopment Analysis,DEA)进行经济效率分析。传统DEA模型,认为单位投入下产出越大,决策单位越有效,这一产出称为期望产出。但在环境约束下,环境经济产出包括二氧化碳、氮氧化合物、二氧化硫等非期望产出,单位投入下这一类产出物越少,决策单元才越有效率。传统DEA模型无法有效计算非期望产出效率。

因而,为使用DEA来评价二氧化碳等非期望产出的经济学效率,很多学者进行了尝试,并提出了环境效率概念。主要方法可以归纳为非期望产出作为投入法、倒数转换法、曲线参数效率度量、非期望产出线性变化、方向距离函数法以及基于松弛测度(Slacks-based measure)SBM模型六种。其中SBM方法属于非径向、非角度的效率度量方法,可以避免其他物种方法存在的各种缺陷,对环境效率的度量和生产过程的刻画都有所反映,对决策单元间环境效率的识别程度和区分度也较好[2]。

在EU ETS碳排放权的实际分配中,由于碳排放权总量一定,某一成员国碳排放权配额量的增加,会引发其他成员国碳排放权分配量的减少,这表明碳排放权分配中的各决策单元投入量之间是具有相互联系的,这一特性与传统DEA和考虑分期望产出的DEA模型对决策单元投入产出相互独立的假设相矛盾。考虑到此类问题,Lins等提出了零和DEA(Zero-Sum Measure DEA,ZSM-DEA)模型,探讨了在单输入产出情境下ZSG-DEA模型效率与传统DEA效率关系[1-4],并以GDP、能源消耗量、人口数为输出变量,以碳排放权为输入变量,采用非期望投入产出作为投入的方法,研究了欧盟64个国家碳排放权分配效率,并明确提出碳排放权分配效率的定义为单位碳排放权投入下,GDP、能源和人口等产出量值,即产出变量与投入碳排放权量的比值[5]。林坦对这一模型加以改进,提出碳排放重新分配的改进方案。Ke和Wei等人将ZSG-DEA模型应用于中国省区碳排放权效率评估,分解输入量为非能源和能源类,构建类似方向距离函数的DEA模型,探究非能源和能源输入量对非期望产出(碳排量)的影响[6]。Bi线性化ZSG-DA模型,探讨多投入产出ZSG-DEA模型效率和传统超效率DEA解的关系[7]。Chiu等人结合SBM处理非期望产出优势,建立了投入要素总量一定的super SBM ZSG-DEA模型[8],以碳排放权作为要素投入,分析了欧盟24个成员国碳排放分配效率与成员国经济发展之间的关系。孙作人、苗壮、周鹏等人[9-11]建立基于碳强度约束的ZSG-DEA模型,以二氧化碳作为投入量,提出我国30个省区碳排放权分配方案。

我国碳排放权交易试点省市同样遵循总量控制的原则,但为应对碳排放权交易市场风险,新建项目或企业进入交易体系等问题,在交易初始预留了部分碳排放权。因而,某一决策单元碳排放权分配量减少,并不一定会引起其他决策单元碳排放权实际投入量的增加,也可能归于碳排放权预留量之中。此时,各决策单元投入量之间具有关联性,但是与Gomes和Lins[1-3]所考虑的决策单元之间关联性情景相比,决策单元实际碳排放权投入量变化程度较弱,此时若按照Gomes和Lins等人提出的“平均调整”或者“按投入占比调整”分配由于某个决策单元投入量减少而产生的“可再分配配额”,会使得某些已经为新入项目预留了足够碳排放权的试点省市,获得更多的配额量,造成该试点省市配额量过多问题,从而有可能会产生如EU ETS第一阶段排放权发放超过实际排放量问题。这表明Gomes和Lins等人提出的传统ZSG-DEA模型对于评价我国试点省市碳排放权分配效率有失偏颇,需要探寻新的碳排放权分配方式。

从表3初始碳排放权分配的WDZSG-DEA模型分析,可以得出各个试点省市碳排放权交易意愿矩阵及调整后的碳排放权分配结果。第一次迭代中碳排放权数代表以初始效率结果为调整依据,以初始碳排放权实际投入量为基础的各试点省市碳排放权实际投入量修正结果。第一次迭代后北京、重庆、广东、深圳四个省市碳排放权量增加1439.717万吨,天津、上海、湖北三个试点省市碳排放权量减少1439.717万吨,减少量与增加量相同,七个试点省市总碳排放权实际投入量变化为零。但是经过调整平均效率上升至0.99,仅有天津市未达到完全效率。通过第二次迭代,各试点省市碳排放权分配效率均达到完全效率,与初始碳排放权实际投入量相比北京增加568.91万吨、天津减少2043.561万吨、上海减少46.757万吨、重庆增加255.966万吨,湖北减少1014.754万吨,广东和深圳分别增加2159.097万吨和121.099万吨碳排放权实际投入量。七大试点省市实际投入量总和依旧保持不变。

表5给出了七大试点省市碳排放权实际投入量调整方式矩阵,纵向为各试点省市意愿调整方式;横向为最终均衡调整方式。其中北京、重庆、广东、深圳的碳排放权分配效率始终为1,因而不需要与其他省市进行碳排放权调整,意愿调整量均为0.从表5调整方式可见,天津碳排放权实际投入量减少最多为1021.781万吨,重庆其次减少了507.377万吨,而广东的碳排放权增量高居第一1079.549万吨,北京屈居第二284.455万吨。

4.研究结论

本文以中国碳排放权交易试点省市为研究对象,考虑中国碳排放权分配的“弱关联性”,首先界定“弱关联性”含义,修正了Gomes和Lins提出的传统ZSG-DEA模型,建立了WDZSG-DEA模型。然后以试点省市碳排放权和GDP作为投入和产出量,估算并对比分析ZSG-DEA和WDZSG-DEA模型分配效率。最后,给出试点省市碳排放权调整路径。得出如下结论:

基于“弱有效性”的WDZSG-DEA模型与传统ZSG-DEA具有相同的效率调整结果,且迭代次数较少。2013年我国七大试点省市整体碳排放权分配效率较高,效率排序为北京、重庆、广东、深圳分配效率较高,上海、湖北次之,第一层级4个试点省市碳排放权分配效率均达到完全效率。均衡调整量变化最小的省市为上海和深圳,最大为天津,这与试点省市实际碳交易履约时间相符,据第一财经报道上海、深圳按时履约,而天津延迟2次履约。可见考虑“弱关联性”,中国碳排放权交易试点省市的均衡调整量的额度可以表现碳交易市场按时履约的困难程度。

本文仅考虑单投入产出情景,因而,多投入产出情景下碳排放权分配效率变化情况将是下一步研究的方向,受数据来源约束,无法对试点省市试点行业GDP产出数据统计分析,仅以省市GDP为产出指标,在结论有效性方面尚有改进之处,也将在今后的研究中进一步完善。

参考文献

[1]Lin T, Ning J. Study on allocation efficiency of carbon emission permit in EU ETS based on ZSG-DEA model[J].The Journal of Quantitative & Technical Economics.2011,3:36-50.

[2]刘勇,李志祥,李静.环境效率评价方法的比较研究[J].数学的实践与认识.2010(01):84-92.

[3]Lins MPE, Gomes EG, Soares de Mello JCCB, Soares de Mello AJR. Olympic ranking based on a zero sum gains DEA model[J].European Journal of Operational Research.2003,148(2):312-322.

[4]Gomes EG, Lins MPE. Modelling undesirable outputs with zero sum gains data envelopment analysis models[J].Journal of the Operational Research Society.2007,59(5):616-623.

[5]G GE, E SGDS. ALLOCATING FINANCIAL RESOURCES FOR COMPETITIVE PROJECTS USING A ZERO SUM GAINS DEA MODEL[J].Engevista.2010,12(1):4-9.

[6]Wang K, Zhang X, Wei Y-M, Yu S. Regional allocation of CO2 emissions allowance over provinces in China by 2020[J].Energy Policy.2013,54:214-229.

[7]Bi G, Feng C, Ding J, Liang L, Chu F. The linear formulation of the ZSG-DEA models with different production technologies[J].Journal of the Operational Research Society.2013,65(8):1202-1211.

[8]Chiu Y-h, Lin J-C, Hsu C-C, Lee JW. Carbon Emission Allowances of Efficiency Analysis:Application of Super SBM ZSG-DEA Model[J].Polish Journal of Environmental Studies.2013,22(3):653-666.

篇4

中图分类号 F206 文献标识码 A 文章编号 1002-2104(2010)12-0004-06 doi:10.3969/j.issn.1002-2104.2010.12.002

当前,我国正处于快速工业化推进进程中,二氧化碳排放仍保持快速增加态势,控制和削减 二氧化碳排放形势十分严峻。到底是什么原因促进了我国碳排放持续快速增长,值得探讨。 分解分析作为研究事物的变化特征及其作用机理的一种分析框架,在环境经济研究中得到越 来越多的应用。将排放分解为各因素的作用,定量分析因素变动对排放量变动的影响,成为 研究这类问题的有效技术手段。通行的分解方法主要有两种,一种是指数分解方法IDA(Ind ex Decomposition Analysis),一种是结构分解方法SDA(Structural Decomposition Ana lysis)。相对于SDA方法需要投入产出表数据作为支撑,IDA方法因只需使用部门加总数据 ,特别适合分解含有较少因素的、包含时间序列数据的模型,在环境经济研究中得到广泛使 用。本文采用IDA类中的LMDI(Log Mean Divisia Index,对数指标分解方法)对我国碳排 放因素进行分解分析。

1 碳排放因素分解:模型构建与分解技术

有关二氧化碳排放的恒等式很多,鉴于我们的关注重点在经济总量、经济结构、能源利用效 率和能源消费结构对碳排放的影响,本文采用下述恒等式对我国二氧化碳排放轨迹进行分析 :

C=ΣijCij=ΣijQQiEi EijCijQQiEiEij=ΣijQSiIiM ijUij

其中,i表示产业(或地区),j表示一次性能源消费种类(煤炭、石油、天然气);C表示 二氧化碳排放总量,Cij表示i产业(或地区)消耗j种能源的二氧化碳排放量;Q和Q i分别表示经济总量和i产业(或地区)增加值;E,Ei,Eij分别表示能源消耗总 量、i产业(或地区)的能源消费总量、i产业(或地区)j种能源的消费量;Si表示i产业 (或地区)增加值所占比重;Ii表示i产业(或地区)能源消费强度;Mij表示j种 能源在i产业中所占的比重,Uij表示i产业中消费j种能源的二氧化碳排放系数。

这样,在基期和报告期的碳排放量差异可表示为乘法模式和加法模式:

Dtot=Ct/C0=DactDstrDintD mixDemf

ΔCtot=Ct-C0=ΔCact+ΔCstr+ΔCint+Δ Cmix+ΔCemf

上述分项中分别代表经济活动(经济规模扩张)、经济结构、能源消耗强度、能源结构和碳 排放系数的变动对总的排放水平的影响。

对于上述公式的因素分解属于IDA分解分析范畴,主要包括Laspeyres IDA与Div isia IDA两 大类。其中,LMDI属于Divisia IDA的一个分支,由于具有全分解、无残差、易使用,以及 乘法分解与加法分解的一致性、结果的唯一性、易理解等优点而在众多分解技术中受到重视 ,目前在许多领域得到广泛应用。LMDI 的主要缺陷在于无法处理具有0值和负值的数据,但 B.W. Ang等人使用“分析极限”(analytical limit)的技巧成功地解决了这一问题。在实 际问题中,一般不会出现负值,而对于0值,则可以用一个任意小的数代替(比如10的-10~ -20次方)而不会影响计算结果。

根据LMDI分解方法(详细推导过程可参阅B.W. Ang, etc (2003)等),在乘法分解模式下, 则有:

Dact=exp(Σij(Ctij -C0ij)/ (lnCtij-lnC0ij(Ct-C0)/( lnCt-lnC0)ln(Q tQ0))

Dstr=exp(Σij(Ctij-C0ij)/(lnCt ij-lnC0ij(Ct-C0)/(lnCt- lnC0)ln(StiS0i))

Dint=exp(Σij(Ctij-C0 ij)/(lnCt ij-lnC0ij(Ct-C0)/(lnCt- lnC0)ln(ItiI0i))

Dmix=exp(Σij(Ctij-C0ij)/(lnCt ij-lnC0ij(Ct-C0)/(lnCt- lnC0)ln(MtitM0 ij))

Demf=exp(Σij(Ctij-C0ij)/(lnCt ij-lnC0ij(Ct-C0)/(lnCt- lnC0)ln(UtijU0 ij))

在加法分解模式下,则有:

ΔCact=Σij(Ctij-C0ij)(lnCtij-lnC0ij)ln(QtQ0)

ΔCstr=Σij(Ctij-C0ij)(lnCtij-lnC0ij)ln(StiS0i)

ΔCint=Σij(Ctij-C0 ij) (lnCtij-lnC0ij)ln(ItiI0i)

ΔCmix=Σij(Ctij-C0ij)(lnCt ij-lnC0ij)ln(Mt ijM0ij)

ΔCemf=Σij(Ctij-C0ij)(lnCt ij-lnC0ij)ln(Ut itU0ij)

2 数据来源及处理

郭朝先:中国碳排放因素分解:基于LMDI分解技术

中国人口•资源与环境 2010年 第12期

本文收集了1995,2000,2005和2007年分产业增加值和各地区GDP,并根据相应的GDP 平减指数统一折算成2000年不变价格。同时,收集上述4个年度的分产业和各地区煤炭、石 油、天然气消费量,并将它们统一折算成标准量(t标煤)。鉴于各种能源在不同年份碳排 放系数变化率较小以及测度碳排放系数的技术困难,这里假定它们是不变的,统一使用IPCC 提供的默认值测算二氧化碳排放数据。因此,在接下来的因素分解过程中,碳排放系数的变 化被假定为贡献率为0。另外,需要注意的是,这里所指的能源结构仅仅指煤炭、石油、天 然气三种化石能源的结构,不包括其他能源如水电、核电、太阳能、风能等新能源和可再生 能源。主要的数据来源包括:历年《中国统计年鉴》、《中国能源统计年鉴》,以及IPCC提 供的《2006年IPCC国家温室气体清单指南》。

3 中国碳排放的产业分解

根据计算,1995,2000,2005和2007年全国产业排放的二氧化碳分别为29.4亿t,31.4亿t, 51.1亿t和61.1亿t。1995-2007年分产业二氧化碳排放量及其增长情况见表1。 表1显 示,电力、热力的生产和供应业、石油加工、炼焦及核燃料加工业、化学原料及化学制品制 造业、非金属矿物制品业、黑色金属冶炼及压延加工业和煤炭开采和洗选业6个产业是最主 要的排放大户。数据显示,1995,2000,2005和2007年这6个产业分别占到当年总排放量 的79.1%,83.7%,89.5%和90.7%。从表1还可以看出,1995-2007年多数产业碳排放呈增长态 势 ,尤其是6个主要产业碳排放增长明显。从碳排放强度看,多数产业碳排放强度有所下降, 表现出一种向好的发展态势,但下降幅度还比较有限(见表1)。

首先,根据LMDI乘法分解方法,对中国产业碳排放进行分解,结果如表2所示。表2显示,19 95-2007年,中国碳排放增长2.080 9倍,其中,产业规模增长(经济总量)导致碳排 放增长 2.929 7倍,产业结构的变化导致碳排放增长1.046 6倍,能源利用效率的提高使碳排放保持 在原来的0.683 9倍的水平上,能源结构的变动也有助于减排,使碳排放保持在原来的0.992

4倍的水平上。在其中的不同时间段内,产业规模的增长始终是导致碳排放增长的主要因素 ;一般情况下,能源利用效率(能源强度)是促使碳排放减少的主要因素,但在2000-2005 年例外,这期间能源利用效率的下降导致碳排放增长1.014倍;从碳排放的角度看, 我国的 产业结构处于不断“劣化”的过程中,产业结构的“劣化”导致碳排放增长,而能源结构处 于不断“优化”的过程中,能源结构的“优化”导致碳排放相对减少,但是这两个因素的贡 献相对都比较小。

其次,根据LMDI加法分解方法,对中国产业碳排放进行分解,结果如表3所示。 表3显示,19 95-2007年,中国碳排放增加317 388万t,其中,产业规模增长(经济总量)导致碳排放增 加465 555万t,产业结构的变化导致碳排放 增加19 727万t,能源利用效率的提高和能源结 构的变动分别使碳排放减少164 579万t和3 316万t。从碳排放增长的贡献率来看,1995-200 7年产业规模增长的贡献率为146.7%,产业结构的贡献率为6.2%,能源强度的贡献率为-51.9 %,能源结构的贡献率为-1.0%。如同乘法分解一样,在其中的不同时间段内产业规模的增长 始终是导致碳排放增长的主要因素,能源利用效率(能源强度)一般促使碳排放减少(但20 00-2005年例外),产业结构的“劣化”导致碳排放增长,能源结构的“优化”导致碳排放 相对 减少,但后两个因素的贡献相对都比较小。

分产业看,大多数产业表现为:产业规模是导致碳排放增长最主要的因素,而能源利用 效率的提高是促使碳排放减少的主要因素(见表1)。在6个最主要的碳排放“大户”产业中 ,规模因素均导致了碳排放增长,电力热力的生产和供应业、黑色金属冶炼及压延业、化学 原料及化学制品制造业、煤炭开采和洗选业由于在经济结构中的份额增加而使其碳排放进一 步增长,石油加工、炼焦及核燃料加工业由于在经济结构中的份额减少而使其碳排放减少, 能源利用和能源结构因素一般使得产业碳排放减少,但是石油加工、炼焦及核燃料加工业属 于例外情况。

4 中国碳排放的地区分解

汇总各个地区碳排放量,得到1995、2000、2005和2007年全国产业排放的二氧化碳分别为33.5 亿t,36.2亿t,62.6亿t和75.4亿t,这些远比从产业层面汇总得出的数据高。由于统计数据缺 乏,分地区数据不包括数据。重庆在成为直辖市之前的1995年数据是根据四川省重庆市 相关数据估算而来。这种差异主要来源于两个途径:一是统计口径的差异,地区层面的统计 包括生活消费能源排放的二氧化碳,而产业层面不包括;二是统计部门不一致,全国产业层 面的数据统计由国家统计局负责,地区层面的数据统计由地方统计部门负责,由于这种不一 致,使得相同年度的能源消费全国数据和地方汇总数据出入很大,地方汇总数据往往大于全 国数据。这种差异并不妨碍接下来的分析,因为地区层面的因素分解主要用于说明地区排放 问题,不涉及产业排放问题。

从地区二氧化碳排放总量来看,2007年,山东、山西、河北排放超过5亿t,河南、辽宁、江 苏排放超过4亿t,内蒙古、广东、浙江超过3亿t,这些地区同时也是1995-2007年排放增幅 最大的地区。上述9个地区二氧化碳排放量占到全国排放总量的一半以上份额,就1995-2007 年排放增幅而言,上述9个地区增幅占到全国增幅的6成以上。从碳排放强度看,除宁夏和海 南外,碳排放强度均出现下降,表现出一种向好的发展态势,但下降幅度总体来说比较有限 ,存在进一步下降的巨大空间。

根据LMDI乘法分解方法,对中国地区碳排放进行分解,结果如表4所示。表4显示,1995-200 7年,中国碳排放增长2.247 8倍,其中,经济总量的扩张导致碳排放增长为 原来的3.660 3 倍,地区结构的变化、能源利用效率的提 高和能源结构的变动分别使碳排放减少到0.988 1 倍、

0.623 1倍和0.997 1倍的水平上。分时间段看,地区经济总量的扩张始终是导致碳 排放 增长的主要因素,能源利用效率的提高是促使碳排放减少的主要因素,地区结构和能 源结构 变动因素对碳排放增长影响都很小。

根据LMDI加法分解方法,对中国地区碳排放进行分解,结果如表5所示。表5显示,1995-200 7年,中国碳排放增加418 309万t,其中,地区经济总量扩张导致碳排放增加670 131万t, 产业结构的变化、能源利用效率的提高和能源结构的变动导致碳排放分别减少6 208万t、24 4 288万t和1 524万t。从碳排放增长的贡献率来看,1995-2007年产业规模增长的贡献率为1 60.2%,产业结构的贡献率为-1.5%,能源强度的贡献率为-58.4%,能源结构的贡献率为-0.4 %。如同乘法分解一样,在其中的不同时间段内地区经济规模的增长始终是导致碳排放增长 的主要因素,能源利用效率始终是促使碳排放减少的主要因素,地区结构因素和能源结构因 素倾向于减少碳排放(个别时间段例外),但这两个因素的贡献相对都很小。

分地区看,各地区经济规模的增长无一例外地导致碳排放增长;除宁夏、海南外 ,能源强度 因素均导致碳排放减少;东北地区和部分中西部地区的省份由于在全国经济总量中所占份额 下降,使得地区结构因素促使其二氧化碳排放减少,而大多数地区能源结构的变化导致二氧 化碳排放减少,但后两个因素所发挥的作用一般都较小(见图1)。

5 结 论

本文构建了一个包括经济总量、经济结构、能源利用效率、能源结构等变量 的碳排放恒等式 :C=ΣijQSiIiMijUij, 运用LMDI 方法对1995-2007年中国碳排放进行了产业层面和地区层面的因素分解,结果发现:

(1)经济规模总量的扩张是中国碳排放继续高速增长的最主要原因。

(2)能源利用效率的提高是抑制碳排放增长最主要的因素,但是某些时间段、部分产业和 个别地区做的并不好,存在能源利用效率下降导致碳排放增长的情况。

图1 1995-2007年各地区二氧化碳排放因素分解

Fig.1 1995-2007 Decomposition of regional carbon dioxide e mission

(3)经济结构(产业结构和地区结构)的变化对碳排放增长有影响作用,但总体而言,作用相对较小,潜力还没有发挥出来。

(4)能源结构(这里指煤炭、石油、天然气三种化石能源的结构)的变化对碳排放增长影 响十分有限。

考虑到未来一段时间内中国经济还将继续保持高速增长态势,当前各地区在促进 地方经济高 速增长方面均持十分积极的态度,因此,试图通过调整经济发展速度和地区 经济结构的方法 来控制中国二氧化碳排放是 不现实的。由于中国是一个发展中的大国, 当前各种产业都有其 存在发展的空间,因此,短时间内试图通过调整产业结构来显著降低二氧化碳排放也是不可 能的,但是,在产业内部大力推进产业内升级,特别是工艺创新、工艺升级达到节能减排的 目的则是可能的,这实际上是提高能源利用效率的途径。不过,从长远来看,产业结构调整 和产业结构升级来降低二氧化碳排放则是一个可行的选择。中国能源资源的禀赋决定了试图 调整化石能源内部结构来达到减排的目的也是不现实的,但是,通过大力发展可再生能源和 新能源来优化能源结构达到减排的目的则是可能的。由此可见,当前降低二氧化碳排放最主 要的途径是提高能源利用效率,从历史情况看,我国能源利用效率状况不容乐观,但这也为 未来提高能源利用效率提供了巨大空间。

参考文献(References)

[1]B W Ang.The LMDI Approach to Decomposition Analysisa Practical G uide[J]. Energy Policy, 2005, 33: 867-871.

[2]B W Ang, F LLiu, E P Chew.Perfect Decomposition Techniques in Energy and Environmental nalysis[J]. Energy Policy, 2003 , 31: 1561-1566.

[3]Ang B W , Liu F L. A New Energy Decomposition Method: Perfect in Decomposit ion and Consistent in Aggregation[J]. Energy, 2001, 26: 537-548.

[4]魏一鸣,等.中国能源报告(2008):碳排放研究[M]. 北京:科学出版社,2008:43 -1 11.[Wei Yiming, et al. China Energy Report(2008): CO2 Emissions Research[M] .B eijing: Science Press, 2008:43-111.]

[5]包森,田立新,王军帅. 中国能源生产与消费趋势预测和碳排放研究[J].自然资源学 报, 2010,(8). [Bao Sen,Tian Lixin,Wang Junshuai.

Trend Forecast of Energy Prod uction and Consumption in China and Research of Carbon Emissions[J]. Journal o f Natural Resources, 2010,(8).]

[6]贾俊松. 基于经典偏最小二乘模型的CO2排放量宏观驱动因素分析[J].中国能源,

2010,(7). [Jia Junsong.

Analysis of CO2 Emission’s Microdriving Factors b ased on Classical Partial Least Squares(PLS) Model[J]. Energy of China, 2010,( 7).]

[7]Yu Huichao, Wang Limao.Carbon Emission Transfer by International Trade:Taki ng the Case of SinoU.S.Merchandise Trade as an Example[J].Journal of Resourc es and Ecology, 2010,(2).

[8]Shi Minjun,Li Na, Zhou Shenglv,et al. Can China Realize CO2 Mitigation Ta rget toward 2020? [J]. Journal of Resources and Ecology, 2010,(2).

[9]朱勤,彭希哲,陆志明,等. 中国能源消费碳排放变化的因素分解及实证分析[J].资源 科学,2009,(12). [Zhu Qin,Peng Xizhe,Lu Zhiming,et al. Factors Decomposition and

Empirical Analysis of Variations in Energy Carbon Emission in China[J]. Resou rces Science, 2009,(12).]

[10]宋帮英,苏方林. 碳排放量和能源利用效率不公平及其原因探析:基于中国 37个规模以上工业行业数据研究[J].华东经济管理, 2010,(9). [Song Bangying,Su Fan glin.

Unfair Phenomenon of Carbon Emission and Energy Efficiency and Analysis a bout the Reasons:Based on Data of 37 Industrial Enterpriese above Designated Siz e by Industrial Sector of China[J]. East China Economic Management, 2010,(9). ]

[11]朱永彬,王铮,庞丽,等. 基于经济模拟的中国能源消费与碳排放高峰预测[J]. 地理 学报,2009,(8).

[Zhu Yongbin,Wang Zheng,Pang Li,et al.Simulation on China’s Ec onomy and Prediction on Energy Consumption and Carbon Emission under Optimal Gro wth Path[J]. Acta Geographica Sinica, 2009,(8).]

[12]胡初枝,黄贤金,钟太洋,等.中国碳排放特征及其动态演进分析[J].中国人口•资源与环境: 2008,(3).[Hu Chuzhi,Huang Xianjin,Zhong Taiyang,et al.Character of Carbon Emission in China

and Its Dynamic Development Analysis[J].China Population Resources and Environment,2008,(3).]

[13]邓晓.基于LMDI方法的碳排放的因素分解模型及实证研究[D].武汉:华中科技大学,2009. peng Xiao.Decomposition Model and Empirical Study of Carbon Emission Base on LMDI Technique[D]. Wuhan:Huazhong University of Science and Technology,2009.]

[14]梁巧梅,Norio Okada,魏一鸣.能源需求与二氧化碳排放分析决策支持系统[J].中国能源, 2005,(1).Liang Qiaomel,Norio Okada,Wei Yiming.Decision Support System for Energy Demands and Related CO2 Emissions Analysis[J]).Energy of China,2005,(1).]

Decomposition of Chinas Carbon Emissions: Based on LMDI Method

GUO Chaoxian

(Institute of Industrial Economics of Chinese Academy of Social Scien ces, Beijing 100836, China)

Abstract Carbon emission is a hot issue nowadays. How to evalua te various factors contribution to carbon emission is important in finding som e key factors to reduce carbon emission. The paper constructs a carbon emission

identity, based on economic gross, economic structure, energy efficiency, en ergy consumption structure, emissions parameters, and uses LMDI method to decomp o se Chinas carbon emissions in 1995-2007 at industrial and regional levels.

Th e results show that expansion of economic scale is the most important factor for

the continuous carbon emissions growth and the improvement of energy efficiency

篇5

一、引言

近年来,全球气候变化日趋严重,世界各地的温室气体排放导致了全球温度逐步上升,这引起了全球海平面上升等一系列的严重后果。为了解决此气候变化问题,联合国多次召开了全球气候会议,制定并通过了《联合国气候变化框架公约》和《京都议定书》等条款。其中,采用政府强制性碳减排与市场激励相结合的碳交易是减少温室气体的一种有效方法。在总量控制与交易中,碳排放权的初始分配方式对碳交易的顺利进行起到了很大的促进作用,这也是有效控制温室气体的关键因素之一,从而使得环境效益与经济效益得到协调发展。中国在其迅速发展的过程中产生了大量的碳排放量,在哥本哈根会议上,中国政府明确承诺到2020年中国要在其2005年的碳排放水平上减少40%-50%。因而,我国已在积极试行碳排放权交易机制以达到低碳发展的战略目标。

二、碳排放权配额分配的理论依据

20世纪60年代,经济学家首次提出了碳排污权交易的概念。 碳排放权,是在碳排放总量确定的前提下,通过国家及相关环境部门的分配,碳排放的企业取得的向大气排放碳污染物的排污许可证。同时在行使该权利时不影响人们的正常生活,并且在排污的同时获得一定的经济收益。

产生碳排放权配额分配的理论基础包括产权理论和科斯定理等。从环境经济学的角度来讲,环境污染是一个典型的外部性问题。它不可能在完全自由的市场经济的条件下依靠价值规律来解决。庇古提出了征税的方法来促使外部成本内部化,在庇古理论的基础上,科斯提出了“只要财产权是明确的,并且交易成本为零或者很小,那么,无论在开始时将财产权赋予谁,市场均衡的最终结果都是有效率的,实现资源配置的帕雷托最优”。产权理论的一个主要作用是引导人们拥有将外部性内在化的激励,产权界定不清是产生“外部性”和“搭便车”的主要根源[1]。

三、碳排放权初始配额的分配基础

在碳排放权配额的分配当中,一个配额相当于一吨二氧化碳当量。配额分配的基础包括历史排放记录法(祖父式分配)、行业基准值法或两者相结合的方法。

历史排放记录法是基于历史水平的祖父式分配,是指划定行业或企业的历史排放基准。但祖父式分配使企业有维持现状的倾向,无形中奖励了污染严重的企业获得更多的免费许可。祖父式分配的优点有:第一,基于历史排放的分配不会让企业的持续性生产受到影响。第二,基于历史排放的分配可减少行业和企业的反对,增大了实行减排的可能性。第三,在基于历史排放的分配中政府会补偿受政府管制影响的企业。但是,政府存在着对企业过度补偿的可能。此外,在这种分配体制下,潜在的新进入企业可能面临不能获得排放许可证或排放权许可价格过高的门槛。

行业基准值法是基于行业标准排放率的分配方法,该方法的配额根据行业每单位产品的特定排放值(即基准值)进行计算分配,实际的配额数等于基准值乘以特定实施的过去或预测产品。使用行业基准值法有如下优点:第一,使用行业基准值法对于拥有老设施和新设施的企业都较为公平;第二,相对于历史排放记录法,相似设施使用行业基准值法的配额分配差异更小;第三,基准值法可以验证在市场结构等的改变下历史排放是否合适。

简单来说,历史排放记录法适合在碳排放权交易的第一阶段使用,因为它操作简单,但是这种方法存在着鼓励落后的弊端。行业基准值法被认为是鼓励先进,更有利于行业进步,但实际操作时,工作量大。

四、我国碳排放权初始配额分配方式

国家对所分配的碳排放总量在每个排放主体之间的分配称为碳排放权初始分配。美国在1990年颁布的《清洁大气法修改方案》中规定了几种可行的初始分配方案,分别是:无偿分配、配额拍卖以及两者混合分配的定价出售[2],而一般采用的方式为无偿分配和配额拍卖两种分配方式。

在碳排放权的初始分配方式的选择上面,我们可以借鉴欧盟的经验,即在国家履约期的首阶段采用无偿分配。无偿分配指的是政府管理者以一定的规则来分配碳排放权配额,而企业并不需要为这些配额支付一定的费用。由于无偿分配不但没有增加企业的运营成本,企业反而多了一笔可以在碳交易市场上进行交易的碳资产。因此无偿分配很容易被企业所接受,在实施过程中受到来自企业的阻力较少。欧盟的许多国家比如:意大利、英国和西班牙大多则采用第二类分配方式。

分配是指由政府设立碳交易市场,企业通过政府规定的交易机制和竞价方式取得所需要的碳配额。国内外研究普遍认为其在定价、增加财政收入,保持市场运行效率、促进交易机制和制度创新等方面具有无偿分配无法比拟的优势,因此也是当前大多数国家选择的碳配额初始分配机制。在实践方面,欧盟的ETS规定对不同阶段的分配比例做了详细的规定[2]。一般情况下,在第一阶段用于拍卖分配的碳配额一般为总量的5%,这一比例在第二阶段将提升为10%,进入第三阶段,所有欧盟合约国在电力行业将100%采用拍卖分配进行初始分配。在实际中,虽然理论经济学家从效率和公平的角度,大力支持拍卖分配制度,但是碳交易市场的实际参与者对大规模的拍卖分配方式仍持怀疑态度。很多的大型工业排放主体,认为拍卖分配会提高交易成本和购买成本,从而提高产品总成本,并进一步影响企业在市场中的核心竞争力。[3]

五、结论

目前我国处于经济高速发展时期,碳排放总量逐年递增。但是在碳排放权的引入上仍旧处于探索阶段,就目前全国范围内的几个试点地区的运作情况来看,碳交易引起的企业成本增加从而增加企业承受压力;政府由于缺乏相关现行经验从而造成的管理水平低下;碳交易市场中不同的交易主体之间、政府和企业之间、不同交易中介之间的信息不对称和政府在环境保护的投入费用过少,都限制了拍卖分配在我国碳排放权初始分配中的作用。免费分配方式由于在碳排放权引入的初级阶段可以很大程度上刺激企业积极参与到强制性碳减排下的总量控制过程中来,因此在我国引入碳排放权的初期不失为一种积极、有效和可行的方法。

参考文献

篇6

虽然低碳经济的术语早在20世纪90年代后期的有关文献中就出现了,但其首次出现在官方文件是2003年2月24日由英国时任首相布莱尔发表的《我们能源的未来:创建低碳经济》的白皮书中(付加锋等,2010)。低碳经济是指通过多种途径减少碳排放,发展以低能耗、低排放、低污染为特征的经济模式,其目标是将大气温度保持在合理水平,减少子孙后代的经济社会发展成本。进一步细化,该内涵包括以下内容:

1.低碳经济中的“碳”有广义与狭义之分。广义的“碳”是指《京都议定书》所限定的六种温室气体。《京都议定书》根据温室气体对全球变暖的贡献、来源、稳定性、易监测程度,并考虑到其他国际公约的约束等情况,从而将强制减排的温室气体种类限定为:二氧化碳(CO2),甲烷(CH4),氧化亚氮(N2O),氢氟碳化物(HFCs),全氟化碳(PFCs),六氟化硫(SF6)。在这六种气体中,二氧化碳、甲烷、氧化亚氮是自然界中本来就存在的成份,但氢氟碳化物、全氟化碳、六氟化硫则是人类活动的产物。狭义的“碳”仅指二氧化碳。在导致气候变暖的各种温室气体中,由于二氧化碳是最大“贡献者”,其贡献度高达60%(任仁,2005),因而美国能源信息管理局(EIA)、世界资源研究所(WRI)、美国橡树岭国家实验室CO2信息分析中心(CDIAC)、国际能源署(IEA)等绝大多数权威研究机构在测算温室气体排放时的测算对象都是二氧化碳的排放量。二氧化碳主要来自化石能源(煤、石油、天然气等)燃烧以及土地利用与土地覆盖变化(特别是森林被破坏)过程中有机碳的氧化引起,这一过程中,海洋和陆地生物圈并不能完全吸收由此引起的过多排放到大气中的二氧化碳,由此导致大气中的二氧化碳浓度不断增加。当前研究低碳经济时重点关注的是化石能源燃烧所产生的二氧化碳。

2“.减少碳排放”的两种途径。《京都议定书》提出了“技术减排”和“市场减排”两种减少碳排放的途径。“技术减排”就是通过清洁能源、可再生能源、新能源、碳埋存及生物碳汇等技术的创新,削减温室气体排放,该途径是长期降低碳排放的根本方法。“市场减排”则是依据“清洁发展机制”(CDM)原则,允许掌握技术优势的国家,通过对发展中国家提供技术支援,帮助降低有害物质排放,换取“二氧化碳排放权”,该途径是短期降低碳排放的变通做法。

3.低碳经济中的“低能耗”有两个要求。第一个是基本要求,即在能源消费量一定的情况下,在能源消费结构中降低化石能源所占比重。第二个是理想要求,即在达到基本要求的基础上,进一步降低能源消费总量。

4.低碳经济中的“低排放”是指降低人类活动增加导致的碳排放。地球上的碳排放源包括自然排放和人类活动增加导致的碳排放两种形式,后者被认为是使温室气体浓度逐渐上升的主要因素,因而降低碳排放主要指降低人类活动增加导致碳排放增加的部分。在正常情况下,自然界的碳排放和碳循环是平衡的。工业革命之前,大气中的二氧化碳浓度平均值约为280ppmv(1ppmv=10-6,即百万分之一体积单位),这种碳平衡形成的自然界温室效应不仅无害,而且是有益的,即在地球自身的温室效应作用下,地球具备了温度调节的功能,基本上保持在适宜人类发展的平均15℃的水平。政府间气候变化专门委员会(IPCC)在其第四次评估报告中指出:人为导致的温室气体浓度增加很可能(90%以上的可信度)是气候变暖的主要原因;另据美国国家海洋和大气管理局测算,到2008年大气中二氧化碳的浓度已达387ppmv,比工业革命之前增长了约40%,这促使全球温度不断上升。最近100年,据IPCC测算,全球气温升高了(0.74±0.18)℃,打破了生物圈中碳循环平衡和热平衡。

5.低碳经济的两个发展目标。从自然科学的视角看“,低”的目标是低排放、低升温或不升温。按照全球的尺度,1992年《联合国气候变化框架公约》规定“,低”是指应保证“将大气中温室气体浓度稳定在一个水平上,使气候系统免受危险的人为干涉”。1997年《京都议定书》又进一步明确要求,39个工业化国家在2008—2012年之间,应将温室气体排放量在1990年的基础上减少5.2%,达到2007年IPCC和2008年斯特恩报告认为的把气候变暖控制在2℃以内的目标。在这一基本共识下,有些国家根据本国的实际情况提出了自己的目标。如英国的目标是到2010年二氧化碳排放量在1990年水平上减少20%,到2050年共减少60%,届时建立低碳经济社会。从经济社会的视角看,“低”的目标是低成本。《斯特恩报告》认为,按照当前的发展模式,气候变化将造成全球经济下挫5%~10%,而贫穷国家则会超过10%。如果把环境和健康等一些额外的因素综合考虑进来,气候变化总成本的增加量相当于每人的福利削减20%,碳的社会成本将是85美元/吨二氧化碳当量。如果我们立即采取行动,到2050年,减排的经济成本大概是世界生产总值的1%左右,碳的社会成本约为25~30美元/吨二氧化碳当量,仅是当前发展模式的1/3。

二、低碳经济的四象限评价法

评价低碳经济发展水平对引导低碳经济的健康发展有很大价值(娄伟、李萌,2011),蒋金荷、吴滨(2010),鲁静(2010)对目前评价低碳经济的方法进行了评述。现有的方法主要有层次分析法(AHP)、物质流分析法(MFA)、指标值综合合成法、投入—产出(I—O)模型、宏观经济模型、可计算一般均衡(CGE)模型、动态能源优化模型、综合能源系统仿真模型、部门预测模型等,这些方法从各自研究的需要对低碳经济进行了评价。本文从经济要素的角度设计了评价低碳经济的四象限法。哥本哈根会议后,发达国家将要执行的“碳关税”、“碳标签”将全球市场带入了“低碳”竞争时代,“碳排放”如同资源、劳动力等一样被计入了企业成本,从而成为影响企业利润增或减的经济要素,因而设计评价低碳经济发展水平的方法,我们可以采用评价经济要素的基本思路:在一定的约束条件下,测算经济要素数量的多少和分析经济要素效益的高低。具体到本文,就是测算碳排放物理水平的变化和评价碳排放经济效益的高低,前者主要是为长期“如何应对变化”提供依据,后者主要是为短期“如何促进经济复苏”提供依据。四象限法是本文提出的综合评价解决低碳经济长、短期问题结合效果的一种方法。

(一)评价碳排放物理水平的方法

当前世界经济正在从高碳经济向低碳经济转型,转型过程中不同国家(地区)的不同产业碳排放的基础和特点不同,这就要求我们在遵循“环境库兹涅茨曲线(EnvironmentalKuznetscurve,EKC)”变化规律的基础上设计合理的评价方法。EKC曲线是指自20世纪60年代以来,一些学者基于质量守恒原理研究经济增长与环境变化之间关系后得出的一种倒U曲线。该曲线表明,当一个国家经济发展水平较低的时候,二氧化碳排放较少,但是随着收入的增加,二氧化碳由低趋高,环境恶化程度随经济的增长而加剧;当经济发展到达某个临界点或“拐点”后,随着收入的进一步增加,环境污染又由高趋低,其环境污染的程度逐渐减缓,环境质量逐渐得到改善。根据碳排放量变化的这一规律,我们在评价产业碳排放物理水平变化时,按照“共同但有区别”的原则评价。“共同”是指各产业都应降低碳排放量“,有区别”是指不同产业由于在不同发展阶段不同耗能导致的碳排放量不同,这种不同应区别对待,区别对待的方法就是从产业自身碳排放量动态变化的角度进行评价。为此,我们设基期本行业碳排放量为Pi0,报告期碳排放量为Pit,如果Pit/Pi0<1,我们称之为物理低碳化行业;如果Pit/Pi0≥1,我们称之为物理高碳化行业。

(二)评价碳排放经济效益的方法

低碳经济作为一种经济发展模式,其经济效益对实现该模式的可持续发展具有决定性意义,对此,《联合国气候变化框架公约》(1994)倡议:应对气候变化的政策措施应当讲求成本效益,确保以尽可能最低的费用获得全球效益。在评价碳排放经济效益时,我们设某一行业碳排放占全部产业碳排放的比重为Si,用Si来反映该行业碳排放相对量的大小。设该行业增加值占全部产业增加值的比重为Ri,用Ri反映该行业增加值相对量的大小。设Ei=Ri/Si,如果Ei≤1,表明该行业碳排放相对较多而增加值相对较少;如果Ei>1,表明该行业碳排放相对较少而增加值相对较大。设基期经济效益为Ei0,报告期经济效益为Eit,如果Eit/Ei0>1,我们称之为经济低碳化行业;如果Eit/Ei0≤1,我们称之为经济高碳化行业。

(三)四象限评价法

我们以横轴表示各行业物理碳排放水平,以纵轴表示各行业碳排放经济效益水平,以大于或小于1将座标图划分为四个象限(表1)。第Ⅰ象限的行业由于其既具有经济优势又具有物理优势,因而属于有综合优势的行业;第Ⅱ象限的行业由于其碳排放经济效益在提高而碳排放物理水平也在提高,因而属于有经济优势的行业;第Ⅲ象限的行业由于其碳排放物理水平在增加而碳排放的经济效益在降低,因而属于综合落后的行业;第Ⅳ象限的行业由于其碳排放的物理水平在减少而碳排放经济效益也在降低,因而属于发展低碳经济中有物理优势的行业。

三、应用

笔者采用低碳经济四象限评价法,对河北省两次经济普查时的30个制造业低碳经济发展水平进行了综合分析,结果如下:

(一)碳排放物理水平的评价结果

第二次经济普查与第一次经济普查相比,河北省制造业排放的二氧化碳从第一次普查时的2.84亿吨增加到第二次普查时的3.03亿吨。期间物理高碳化行业有19个,这19个行业在第二次普查时碳排放量为2.47亿吨,第一次普查时为2.22亿吨,增加了11%。物理低碳化行业有11个,这11个行业第一次普查时碳排放量为0.61亿吨,第二次普查为0.56亿吨,降低了8%。

(二)碳排放经济效益的评价结果

篇7

碳税和排放权交易都属于使外部性成本内部化的重要手段,两者对企业成本都产生影响,但碳税直接导致企业成本的增加,而排放权交易则通过间接方式增加企业成本。两种政策对企业成本的影响程度也存在差异。

碳税是按照化石燃料燃烧后的排碳量而征收的一种税。碳税的开征将改变企业原材料和能源的消费结构。征收碳税将导致高碳原材料需求量和价格的下降,加大对低碳原材料的需求,在供给不变的情况下,低碳原材料的价格将攀升。因此,企业不会简单的用低碳原材料来替代高碳原材料,而是要综合考虑自身的技术条件、高碳原材料和低碳原材料的当前和预期的价格、两类原材料的生产效率、企业生产经营计划等因素。征收碳税也会将以同样的机理影响企业的能源消费结构。

碳排放权交易制度下,政府机构依据一定的标准评估出一定区域内允许的最大排放量,并将其分成若干排放份额。排放权一级市场上,政府采用免费发放、招标、拍卖等方式进行排放权分配,并允许多余的排放权在二级市场上进行交易。实施排放权交易制度后,企业不仅面临较大的交易成本,包括游说监管当局以争取较多排放配额的成本、对自身碳排放量进行盘查需要的各项投入、接受独立第三方对企业碳排放信息的鉴证而发生的支出,等等;而且需要购买超额排放配额,并可能受到监管当局对超额排放的处罚。当然,企业也会因减排力度较大而获得监管当局的奖励和排放权处置收益。

二、碳税和排放权交易对高排放企业成本影响的测度模型构建与政策情景模拟

(一)碳税和排放权交易对高排放企业成本影响的测度模型。为了体现企业生产要素投入使用对环境质量的影响,本文沿用经济学中柯布―道格拉斯生产函数的基本模型和分析方法。假设高排放企业除生产技术以外,只需要高碳生产要素和低碳生产要素的投入,这两种生产要素投入数量可变,并具有不完全的替代性。

高排放企业的生产函数可表示为:y=f(x1,x2)=Ax。式中x1、x2分别表示高碳生产要素和低碳生产要素投入品的需求数量;A为技术进步率,A>0;α、β分别为两类生产要素的产出弹性,α,β∈(0,1),α+β=1。如果p1、p2分别表示两类生产要素的市场价格(p1,p2>0),则企业的生产成本C可表示为:C=p1x1+p2x2。

当被征收碳税时,企业对两种生产要素投入品的需求量将发生变化。设x1′和x2′为被征收碳税时企业对两种生产要素投入品的需求量;s1为政府对企业使用高碳原材料x1所征收的碳税(0≤s1≤p1),s2为政府对企业使用低碳原材料x2所给予的补贴(0≤s2≤p2);政府对企业征收碳税或提供补贴措施时企业新的生产总成本C1可表示为C1=(p1+s1)x1′+(p2-s2)x2′。

假设e为被征收碳税政策前企业的碳排放量,则有e=e1x1+e2x2,其中,e1、e2为两类生产要素x1、x2的二氧化碳(CO2)排放系数,且0≤e2

碳排放权交易制度下,假设企业可以免费获得排放限额E0。当企业的碳排放量超过E0时,需要从市场购买排放配额,单位配额的价格用p表示,则企业的生产成本函数转换为:C2= x1′p1+x2′p2+(e1x1′+e2x2′-E0)p。

为了测度、比较碳税和碳排放权交易对高排放企业成本的影响,本文构建了成本―减排敏感系数CER= -(c/c)/(e/e)。CER表示在一定时期内高排放企业成本的变动对于该企业二氧化碳排放量变动的敏感程度,CER的值越小,说明企业减排对于企业成本的影响越小,减排效果越好。

(二)碳税和排放权交易对高排放企业成本影响的政策情景模拟。为了比较碳税和排放权交易政策对高能耗企业生产要素投入品需求的影响及减排效果,本文分别设置基准情景、碳税情景和排放权交易情景。通过对其他国家减排政策的分析不难发现,无论是采用碳税还是排放权交易政策,为了保证减排效果和减少碳减排政策对国民经济的冲击,都会出台相应的补贴政策,补贴方式包括补贴低碳能源和可再生能源、税收返还、税收减免等。参照上述做法,本文也设置补贴情景,为了便于研究,补贴方式确定为对低碳原材料进行补贴。将补贴政策分别与碳税和排放权交易相结合,本文中的减排政策情景分为以下几种:不实施任何碳减排政策、征收碳税、征收碳税同时提供补贴、单独实行排放权交易制度、实行排放权交易制度同时提供补贴。

基准情景下,当政府不实施任何碳税政策措施时(即s1、s2=0,E0=0),则高排放企业在既定产量Q下的成本最小化的目标函数及其约束条件为:

MinC=p1x1+p2x2,

[A>0,α、β∈(0,1),α+β=1,x1、x2>0]

通过构建拉格朗日函数,消除影子价格,分别对x1、x2求偏导,按照拉格朗日极值的计算方法,可求出高、低碳原材料的投入量x1、x2分别为:

x1=Q/A(α/β)β(p2/p1)β

x2=Q/A(β/α)α(p1/p2)α

不实施任何减排政策时,高排放企业的生产成本函数为C0=p1x1+p2x2,二氧化碳排放量函数为E0= e1x1+e2x2。其他四种情形下,高、低碳原材料的投入量函数如下页表1所示。

将不同情境下的x1′、x2′代入成本函数和二氧化碳排放量函数中,可计算出相应的成本函数和排放量函数,并计算得出各自对应的成本――减排敏感系数。

三、样本构成与测度模型中涉及的参数估计

(一)样本选取与数据来源。依据《中国能源报告(2008)》,火电、钢铁、水泥、电解铝等行业的CO2排放分别约占全国碳排放总量的38%、18%、18%、13%,因此,本文将上述行业的企业界定为高排放企业,以这四个行业在深沪上市公司总数为基数,采用分层抽样,分别从火电、钢铁、水泥、电解铝等行业各抽取12家、9家、4家、5家,共30家企业构成研究样本。从样本公司2011年的年报提取各企业的产量信息,在中国煤炭信息网、易钢在线网获取样本企业生产所需原材料在2011年的价格信息。

(二)测度模型中涉及参数的设定。关于电力行业的技术进步率,黄仁辉(2006)的估算值为1.08,徐瑛(2006)的估算值为1.02,本文取两者的平均数,即A=1.05。由于缺乏相关资料,本文选用我国国民经济技术进步率1.025作为钢铁、水泥和电解铝等行业技术进步率的近似值。生产要素的的排放系数来自IPCC的碳排放系数表。当原材料的消耗不止一种时,以原材料的投入比例为权数,加权计算原材料的价格和排放系数。高碳原材料和低碳原材料的产出弹性系数,采用两种材料的热能之比来计算。

(三)关于碳税税率的设定。本文根据王金南等学者的研究,采用“渐进征收”的原则,针对高碳原材料征税,并对低碳原材料进行补贴。本文假设政府对高碳原材料征收碳税的额度分别为20、25、30、35、40、45元/tC。对于低碳原材料采用从量补贴方式,假定政府对于低碳原材料的补贴额度分别为10、15、20、25、30、35元/tC。

(四)关于碳排放权交易制度的设置。采用基准――信用交易机制,参照英国排放权交易机制的规则,碳排放权初始配额的分配则采用免费分配模式,运用祖父原则。关于各高排放企业的碳排放基准线,本文参照2009年我国政府宣布的控制碳减排行动目标,到2020年单位GDP的碳排放比2005年下降40%-45%,每年平均减排率为3.91%。以此为标准,本文中样本企业的碳排放基准线设定为基准情景中各企业碳排放量的97%、96.5%、96%、95.5%、95%、94.5%,按顺序与前文中的碳税情景相对应。超出或者少于基准配额的碳排放权,企业可以购买或者出售,每吨碳排放权的交易价格设定为50元、55元、60元、65元、70元、75元,分别对应于前面的各情景。表2显示了碳税和排放权交易政策的具体方案的设定。

四、描述性统计分析与配对样本T检验

(一)不同政策水平下各模拟情景的CER与减排效果分析。表3说明了不同政策水平下,各情景的CER的均值和减排效果。从表3可以看出,无论何种政策水平,排放权交易政策对企业成本增加带来的影响程度都相对较小。如果采用排放权交易与补贴相配合的政策,企业的碳排放量每减少1%,原材料成本将分别减少0.428%、0.436%、0.464%、0.467%、0.491%、0.471%,因此,在排放权交易体制下,对低碳原材料进行补贴后,减排不会增加企业的材料成本,相反材料成本会随减排而减少。从减排效果看,仅征收碳税的政策最不理想;当排放权交易和补贴结合采用时,减排效果非常理想,与基期碳排放水平相比较,不同政策水平下总体分别减排了6.02%、6.61%、7.19%、7.75%、8.30%、8.73%。

篇8

中图分类号:F23 文献标识码:A 文章编号:1002-5812(2016)03-0067-02

碳会计是低碳背景下发展起来的一门会计学分支学科,包括碳财务会计和碳管理会计。碳财务会计主要对企业碳排放的财务影响进行确认、计量与报告,而碳管理会计则是通过分析碳排放产生的原因,加强碳管理,提高减排效益。然而,国际会计准则理事会(IASB)以及美国财务会计准则理事会(FASB)关于碳会计的研究滞缓表明,碳会计已经成为会计研究者在探索会计前沿问题时面临的重大挑战和世界性的难题。制约碳会计研究的因素有很多,如碳排放权交易市场的发育不成熟、碳排放权的本质认识不清等。其中一个最基础问题是碳排放量的准确核算,以确保碳排放权的合理分配。关于碳排放量的计量方法,碳足迹是目前国内外普遍认可的,用于核算碳排放量的研究方法。由于碳足迹不仅核算企业的碳排放量,对企业的财务活动也会产生全面的影响。因此,本文试图从碳足迹的视角,通过分析碳足迹的本质、核算方法及其应用,探索其与碳会计之间的内在关系,从而对我国碳会计的研究提供有益的启示,促进我国碳会计的发展。

一、碳足迹对碳会计研究内容的拓展

什么是碳足迹?众多学者和机构从不同角度提出了不同的观点。Guinéeet al.(2011)认为,碳足迹是指产品在生产和消费整个生命周期中的碳排放量。G.R.Cranston(2011)则提出碳足迹是某一特定行为的碳排放量。国际标准组织(ISO)的观点是,碳足迹指的是由企业机构、活动、产品或个人引起的温室气体排放的集合。综合以上观点,本文将企业碳足迹定义为“产品或活动在一定的时空范围内,整个生命周期过程中排放的温室气体总量”。

根据碳足迹的定义可知,碳足迹包括组织在整个生命周期内的碳排放,即核算边界不仅仅包括企业自身,还应该拓展至供应链上的上下游企业。碳足迹的这一特征要求碳会计的研究边界应拓展至企业外部,即从碳资源的投入、碳循环到碳增加值、碳排放的整个过程中。根据能源守恒定理,碳投入价值+碳循环价值=碳增加值+碳排放价值。

碳会计的内容也相应扩展,即碳财务会计应包括碳能源会计、碳排放权交易会计、碳循环会计等;碳管理会计应包括碳排放量预测会计、碳经营决策会计、碳排放量控制会计、碳绩效评价会计与碳战略管理会计等内容。

二、碳足迹核算方法的采用要求碳会计计量与报告的多样化

(一)碳足迹核算方法概述

对不同的核算对象、从不同角度,碳足迹可以采用不同的计算方法。产品层次一般采用全生命周期评估法(LCA);家庭则通过分析收入与支出之间的弹性,明确家庭的消费结构从而确定其碳足迹情况;企业则依据世界资源研究所(WRI)编制的《温室气体核算方法》,通过分析企业的直接排放、间接排放以及供应链排放情况来确认碳足迹,旨在确保清楚地反映企业的温室气体排放量。此外,英国碳信托和英国环境食品农业部门委托英国标准协会(British Standards Institution,BSI)于2008年10月了《公共可用规范(Publicly Available Specification,PAS)2050――产品和服务生命周期温室气体排放评估规范》。这是英国第一部强制性的、统一的产品和服务碳足迹测量标准。PAS 2050标准的宗旨是帮助企业真正了解它们的产品对气候变化的影响,寻找在产品设计、生产和供应等过程中降低温室气体排放的机会,最终开发出碳足迹较小的新产品,能在应对气候变化方面发挥更大的作用。国际标准组织(ISO)借鉴PAS 2050,制定了ISO 14067,旨在计算和报告企业的碳足迹。日本在2009年公告其碳足迹评价标准 TSQ 0010,是关于产品碳足迹评估和标识的一般性原则规范。此规范详细介绍了适用范围、引用标准以及产品碳足迹的量化方法等。

(二)碳足迹的核算方法对碳会计计量与报告的影响

1.碳足迹的核算要求碳会计采用多种计量单位。碳足迹的核算主要是计量生命周期过程中的碳排放量,计量单位是克、公斤或吨等重量单位。因此,碳会计既要坚持传统的货币计量,又要采用碳会计领域特有的重量或体积等单位。

2.碳足迹的核算促进碳会计信息披露的多样化。碳足迹的准确核算对提高我国碳会计信息披露的质量具有积极的促进作用,主要表现在以下两个方面:(1)碳足迹的准确核算将为我国碳排放权的准确分配提供数据基础,从而保障了报表内碳交易成本与效益核算的可靠性;(2)碳足迹的验证和审计加强了表外披露的碳信息的相关可靠性。

三、碳足迹的应用为碳管理会计的发展提供了实践基础

(一)碳足迹的应用现状

近年来,碳足迹标准已在不少企业、行业中得到应用,其影响正在不断扩大。已有20家英国企业约75种商品应用PAS 2050标准,行业涵盖食品、家用电器、纺织、建筑材料等,甚至不乏电子银行这种新兴的产业(如苏格兰哈里法克斯银行HBOS公司)。德国于 2008 年 2 月针对私人消费品开展了产品的碳足迹评价试点项目,试点的产品包括食品、生活用品(洗涤剂、纸质品、床上用品)、电信和网络服务等。尽管我国目前还没有制定碳足迹核算标准,但已有少数企业借鉴国外的标准来进行碳足迹的测算。2010年3月,金东纸业(江苏)股份有限公司顺利完成英国碳信托有限公司在中国推行的碳先锋试点项目,成为首家遵循国际领先的PAS 2050标准完成产品碳足迹测算的中国企业。

(二)碳足迹的应用为碳管理会计提供了实践基础

加强碳足迹管理,已成为低碳经济时代每个企业必须面对的挑战。碳足迹核算对企业加强内部的碳预测、决策与控制都提供了有效的数据支撑,具体分析如下:(1)通过科学的碳足迹核算,企业首先可以清楚了解生产、经营、销售过程中的具体排放量。然后分析每一环节碳排放产生的原因,确定相应的减排量;最后制定出企业节能减排的碳资源管理规划;(2)以碳管理规划为基础,企业:一是从源头上进行生态设计,减少生产和销售过程中的碳排放;二是制定绿色供应商选择标准,采购低碳原材料;三是采用低碳生产技术,减少生产过程中的碳排放。(3)在控制环节,企业应重点监控大排放量环节,确保减排目标的实现。

四、启示

与传统会计不同的是,碳会计是以企业碳排放的财务影响为核算对象。企业的碳排放对财务活动的影响方式以及产生的具体财务影响金额都依赖于碳排放量的准确核算。没有量化,也就无法进行核算与管理。显然,碳足迹核算是碳会计研究和发展的基础,两者之间有着密切的内在关联性。碳足迹核算越准确,碳会计的核算和管理越科学。因此,推进碳足迹理论和方法的发展,对碳会计的研究将有着重要而深远的影响。

参考文献:

[1]Cook,A. Emission rights:From costless activity to market operations. Accounting[J]. Organizations and Society,2009,34(4).

[2]Guinée,J.B.,Heijungs,R.,Huppes,G.,Zamagni,A.,Masoni,P.,Buonamici,R.,Ekvall,T.,Rydberg,T.,Life cycle assessment:past,present,and future.Environ[J]. Sci. Technical. 2011,45(2).

[3]G.R.Cranston,G.P.Hammond.Carbon footprints in a bipolar,climate-constrained world[J].Ecological Indicators,2012,16(3).

[4]WRI and WBCSD.The Greenhouse Gas Protocol-A Corporate Accounting and Reporting Standard[M]. World Resources Institute (WRI) and World Business Council on Sustainable Development,2004.

[5]BSI,PAS 2050-Assessing the life cycle greenhouse gas emissions of goods and services[M]. The British Standard Institute,2008.

[6]冯相昭,赖晓涛,田春秀.关注低碳标准发展新动向――英国PAS 2050碳足迹标准[J].环境保护, 2011,(3).

[7]王莹莹,徐先鹏等.国内外碳足迹评价研究概述[J].石油和化工节能,2012,(2).

篇9

对于外部取得的碳排放权,其来自于政府初始配置或外购交易。政府初始配置分配的配额是免费的,虽然企业没有付出直接成本,但政府会将企业所缴税费用于治理环境,等于企业间接付出了成本,因此企业要对免费分配的排放权进行初始计量。对于存在活跃市场的,按照同类市场公允价值入账;不存在活跃市场的,按照无形资产评估的方法进行价值评估,可采用收益法(根据未来现金流量现值确定)或成本法(企业受到排放量限制后增加的成本)。若为外购交易取得的碳排放权,其计量相应简单,按照实际取得的成本(买价、交易手续费、税费、其他有关费用)入账即可,记入“无形资产———碳排放权”科目。对于内部开发的碳排放权成本计量,将一切为取得碳排放权而发生的实际可确认的成本入账,将开发过程中的各项原材料成本、设备支出、应予以资本化的各项借款费用、相关税费等计入初始成本,记入“研发支出———资本化支出”科目。

(二)碳排放权的后续计量

我国的《企业会计准则》对无形资产的后续计量并未引入公允价值模式,且本文所研究的碳排放权,在我国尚属于起步阶段,我国企业正面临转型升级发展低碳经济的特殊时期,许多企业尚未引入环境成本的计量,绝大部分地区也不存在碳交易的活跃市场,因此现阶段我国对碳排放权的后续计量可以暂时采用成本计量模式。随着经济的发展,应逐步完善公允价值计量模式,这需要各利益相关方的共同努力,以便更好地与国际市场接轨。后续计量采用成本计量模式,首先应确定其使用期限,并在期限内按照客观合理的方法计提累计摊销,作为“无形资产———碳排放权”的备抵科目。其次,将摊销额借记“制造费用”、“管理费用”等科目,摊销额配比计入成本费用。再次,存在减值迹象的应计提减值准备,借记“资产减值损失”,贷记“无形资产减值准备”。

二、火电企业对碳排放权的会计处理

(一)火电企业现行对碳排放权的会计处理及存在的问题

我国火电企业现行成本核算的会计处理是:在环境支出实际发生时计入费用。例如,违反了法规中污染物排放标准的规定而产生的罚款;对投入的环保设备计提折旧并转入成本。其存在的主要问题是:(1)不利于企业将环境因素考虑在内,不能够促进企业采取改进技术、减少排放的环保措施;(2)收入与费用不配比,只在实际发生时列为费用,虚增了利润,不符合收入和费用的配比原则。

(二)碳排放权的会计核算

碳排放权作为一种重要的环境资产,将其引入火电企业能够规范成本核算,对于我国的环保事业及经济发展的可持续性意义重大。

三、碳排放权对火电企业成本管理的影响

在中国的首份按行业统计的二氧化碳排放量估算名单中,排在第一的产业部门是电力、热力的生产和供应业,占二氧化碳排放总量的40.1%。我国是传统能源煤炭丰富的国家。火电企业占据电力行业的主导地位,是大气污染物排放大户,其未来的发展对经济社会的发展尤为重要。本文将碳排放权核算引入火电企业,将会对成本管理产生积极影响。

(一)全面了解火电企业成本构成

在低碳经济的背景下,重视环保是发展趋势。以往的成本管理研究主要涉及经济领域和管理领域,较少涉及环境与自然资源。随着国家对环保的重视及对企业向环境排放污染物的限制,环境成本支出将在企业生产成本中占据越来越高的比重。我国的电价只反映了直接生产成本,没有反映环境的影响和资源的消耗,使得成本的构成不合理,进而影响了企业的利润表。引入碳排放权核算有助于火电企业全面了解成本构成,更加准确地核算成本并制定电价,使企业管理层能透过财务数据更清晰地把握企业的发展状况,并据此做出财务判断。

(二)改善成本管理方法

火电企业传统成本核算中没有涉及环境成本,忽略了环境成本给企业带来的影响,不利于加强管理,控制并降低成本。通过碳排放权核算,也可以引导企业通过其他方法降低成本,提高收益。例如通过改进生产技术、提高煤炭使用效率,安装减少温室气体排放的洗涤装置等方法,可以大量减少向大气排放温室气体,从而获得碳排放信用。将碳排放信用在国际碳交易市场上出售,获得的收益将大于火电企业投入的环境治理成本,且这种收益具有长期性、持续性的特点,所以企业得以通过碳排放信用交易获取大量利润。同时也减少了因碳排放量超标的罚款支出及向市场购买碳排放权的支出。

(三)改进成本管理目标

1.以投入少量成本获取更多收益为目标。企业投入的环保成本会带来超过投入成本的增值收益。在低碳经济发展的大背景下,改进工艺、节能减排是经济发展的趋势。环境治理能力强的企业将更具竞争优势,有利于在长远发展中获得更高经济利益。火电企业在治理环境方面的投入使排放的温室气体减少,在稀缺的碳排放市场上能够获取超过环境投入成本的收益。

2.以实现经济发展和环境治理的双重效益为目标。实现经济与环境的可持续发展是低碳经济下企业发展的必经之路。碳排放权对传统会计的冲击引起了企业对环境治理的重视。全球范围内的环境问题日益严重,企业只有通过加强环境治理,才能履行自己的社会责任,实现经济利益和社会效益的双赢,实现长远利益。

篇10

低碳经济是指以低能耗、低污染、低排放为基础的经济模式,低碳经济的实质是要提高能源的效率,转变能源结构,减少污染的排放。发展低碳经济可能会使企业未来的交易中涉及到碳排放权交易问题,鉴于此企业经营中就会面临新的问题,诸如,投资时要考虑碳排放低的技术项目、日常经营中要核算碳合规成本,并通过提高价格把增加的碳合规成本转移给消费者等,决策者需要这些信息。由此可见,在低碳经济时代,成本管理的内涵和管理模式都发生了变化,如何从战略的角度对发展低碳经济的成本进行分析和管理,便显得尤为重要。

一、碳成本管理产生的背景

《京都议定书》的签署是为了人类免受气候变暖的威胁。发达国家从2005年开始承担减少碳排放量的义务,而发展中国家则从2012年开始承担减排义务。《京都议定书》需要占全球温室气体排放量55%以上的至少55个国家批准,才能成为具有法律约束力的国际公约。中国于1998年5月签署并于2002年8月核准了该议定书;欧盟及其成员国于2002年5月31日正式批准了《京都议定书》;2004年11月5日,俄罗斯总统普京在《京都议定书》上签字,使其正式成为俄罗斯的法律文本。截至2005年8月13日,全球已有142个国家和地区签署该议定书,其中包括30个工业化国家,批准国家的人口数量占全世界总人口的80%。2005年2月16日,《京都议定书》正式生效。这是人类历史上首次以法规的形式限制温室气体排放。为了促进各国完成温室气体减排目标,议定书允许采取以下四种减排方式:一是两个发达国家之间可以进行排放额度买卖的“排放权交易”,即难以完成削减任务的国家,可以花钱从超额完成任务的国家买进超出的额度。二是以“净排放量”计算温室气体排放量,即,从本国实际排放量中扣除森林所吸收的二氧化碳的数量。三是可以采用绿色开发机制,促使发达国家和发展中国家共同减排温室气体。四是可以采用“集团方式”,即,欧盟内部的许多国家可视为一个整体,采取有的国家削减、有的国家增加的方法,在总体上完成减排任务。有关碳排放制度最大特征在于“总量控制和排放交易(cap and trade)”计划,参与该计划的国家或地区政府都必须承诺碳排放量在规定限额下,碳排放权市场交易的结果导致了企业因购买碳排放权而拥有碳资产,因碳排放而形成了碳成本,扩展了传统成本核算和管理的内容,从而产生了对碳成本核算方法的探讨和碳成本管理内容的研究。