时间:2022-09-02 01:59:58
导言:作为写作爱好者,不可错过为您精心挑选的10篇化学成分分析论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。
2提取与分离
白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。
3结构鉴定
3.1化合物1
白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)
3.2化合物2
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。
3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)
3.4化合物4
白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。
3.5化合物5
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。
4结果与讨论
前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。
前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。
日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。
化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。
【参考文献】
[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.
[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.
[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.
[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.
[5]Warashina.Tsutomu,Nagatani.Yoshimi,Noro,Tadataka.ConstituentsfromthebarkofTabebuiaimpetiginosa[J].ChemicalPharmaceuticalBulletin,2006,54(1):14.
通光散Marsdeniatenacissima是萝藦科牛奶菜属植物,广泛分布于亚洲的热带和亚热带地区,我国云南、贵州、福建、广东、广西、台湾等地也有分布。其藤茎又名乌骨藤,其味苦,性微甘、凉,入肺、胃、膀胱经;具有消炎、清热解毒、止咳平喘、散结止痛等功效。以通光散为主要原料制备而成的中药消癌平,临床用于治疗肝癌、胃癌等各种晚期恶性肿瘤,疗效较好。现对通光散的化学成分及药理作用研究综述如下。
1化学成分研究
1.1C21甾体苷类C21甾体苷类化合物是通光散中研究最多的成分,也是其主要的生理活性物质。从20世纪80年代开始,陆续从该植物的藤茎及种子中分离出50多种C21甾体苷类,含有多种β去氧糖。糖链主要连接在苷元的3位。主要有6种不同结构的苷元:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ和Ⅵ。见表1。
1.2其它成分[9]从该植物中分离得到两个环醇:牛奶菜醇和二氢牛奶菜醇[9]。三个萜类化合物13(31,32dimethyl30methylene21αδacetoxytetradecanyl)29methylperhydrophenanthr1,3diene[17]、齐墩果18烯3乙酯和a香树脂醇乙酸酯。此外还有琥珀酸、硬脂酸、棕榈酸、二糖cymaroside等[18]成分。
2药理活性研究
2.1抗肿瘤活性现代药理研究表明,通光散所含C21甾体苷类和多糖具有抗肿瘤活性,通光散提取物对多种恶性肿瘤细胞有明显的抑制作用。
罗思齐等[3]测试了6种从通光散中分离得到的C21甾体苷元对KB,KB-VI,P338细胞株的毒性,只有化合物10,11和52对小鼠KB-VI细胞有弱的细胞毒活性,它们的ED50分别为4.1,2.5和3.4μg/ml。
应用MTT法观察通光散70%乙醇提取物的正丁醇萃取部位上大孔树脂后的95%乙醇洗脱部分和乙醚萃取部位对人骨肉瘤细胞Saos-2,人胃癌细胞SGC-7901,人肝癌细胞Bel-7404等的体外细胞毒作用,结果表明通光散对多种肿瘤细胞的生长抑制显示不同的敏感性,并呈现一定的剂量依赖性,其中对人骨肉瘤细胞和人肝癌细胞的作用较强,而对人胃癌细胞作用相对较弱。
用通光散提取物制备的消癌平口服液以20,10,5g生药/kg剂量对小鼠灌胃给药,发现消癌平口服液对小鼠体内移植的S180、胃癌、P388有明显抑制作用[19]。
李茂全等[20]研究了消癌平对SGC-7901胃癌细胞的作用及机制,体外抑制试验结果显示其对SGC-7901胃癌细胞有较好的抑制作用,药物作用7d后的IC50为21mg/ml。采用不同浓度消癌平抑制用胃癌细胞株移植后的昆明种小鼠体内肿瘤,用流式细胞仪检测,发现消癌平能抑制SGC-7901胃癌细胞株的生长,对G1期细胞有明显的阻断作用,使瘤体细胞主要停留在G1期。细胞形态学检查的结果表明消癌平能诱导癌细胞向正常细胞转换。
孙珏等[21]采用MTT比色法和放射免疫法观察消癌平对体外培养的人肝癌Bet-7404细胞、HepG2细胞的作用,以及对人肝癌细胞甲胎蛋白(AFP)分泌的影响,结果显示消癌平对上述肝癌细胞有显著的抑制作用,能显著降低AFP的分泌,提示消癌平在抑制肝癌细胞增殖的同时,能使AFP分泌量降低,可能使肝癌细胞向正常方向分化。
2.2平喘作用用组胺喷雾引喘法,豚鼠通光散苷100mg/kg腹腔注射,有一定的平喘作用。家兔静脉注射60mg/kg,能对抗组胺引起的气管痉挛松弛,还能减弱组胺引起的豚鼠离体肠管收缩。苦味甾体酯苷100~150mg/kg,腹腔注射能预防因组胺喷雾引起的支气管痉挛,有一定的平喘作用;离体豚鼠支气管灌注,对痉挛状态的支气管有解痉作用;对小鼠腹腔注射的LD50为274mg/kg。
2.3降压作用苦味甾体酯苷对离体兔耳血管灌注有直接扩张血管作用。麻醉犬静脉注射通光散苷有短暂、轻度的降压作用,无快速耐受现象,其降压似与中枢无关,离体兔耳血管灌流实验表明,它能直接扩张血管
2.4其他作用本品能明显提高机体的免疫能力,其抗癌作用的实现可能不是通过细胞毒,而是通过加强机体免疫力来达到抗癌效果。此外,尚有止痛、解毒、保肝利尿、恢复肿瘤患者放疗、化疗后白细胞下降作用。通光散总苷对肺炎双球菌和流感杆菌有抑制作用。
表1通光散中的C21甾体苷类化合物(略)
3结语
通光散对胃癌、肝癌、肺癌临床疗效显著,其化学成分和药理作用研究也较多,但是化学成分和药理作用的结合研究报道还比较少,其抗肿瘤的活性成分还没有明确,应加强此方面的研究。
【参考文献】
[1]杨仁洲,杨崇仁,周俊.通光藤苷元甲、乙和丙的结构[J].云南植物研究,1980,3(3):271.
[2]S.Miykawa,K.Yamaura,K.Hayashi,etal.FiveglycosidesfromtheChinesedrug"TONG-GUANG-SAN":thestemsofM.tenacissima[J].Phytochem,1986,25(12):2861.
[3]S.Q.Luo,L.Z.Lin,G.A.Cordell,etal.PolyoxypregnanesfromM.tenacissima[J].Phytochem,1993,34(6):1615.
[4]蒋毅,罗思齐.通光藤中新C21-甾体甙的化学结构研究[J].中国医药杂志,1996,27(9):391.
[5]陈纪军,张壮鑫,周俊.通光藤甙F,G,H和I结构[J].云南植物研究,1999,21(3):369.
[6]J.Deng,Z.X.Liao,D.F.Chen.MarsdenosidesA-H,polyoxypregnaneglycosidesfromM.tenacissima[J].Phytochem,2005,66(9):1040.
[7]J.Deng,Z.X.Liao,D.F.Chen.ThreenewpolyoxypregnaneglycosidesfromM.tenacissima[J].HelveticaChemActa,2005,88(10):2675.
[8]S.X.Qiu,S.Q.Luo,L.Z.Lin,etal.FurtherPolyoxypregnanesfromM.tenacissima[J].Phytochem,1996,41(5):1385.
[9]邢旺兴,陈斌,宓鹤鸣,等.通光藤的化学成分研究[J].中国中药杂志,2004,29(12):1148.
[10]邢旺兴,陈斌,宓鹤鸣,等.通光藤中两个新C21甾体苷类成分[J].药学学报,2004,39(4):272.
[11]罗思齐,徐光漪,易大年,等.通光藤中一个新C21甾族化合物的化学结构测定[J].化学学报,1982,40(4):321.
[12]周俊,杨崇仁,杨仁洲.通光藤苷元甲的化学结构[J].植物学报,1980,22(1):67.
[13]J.Deng,Z.X.Liao,D.F.Chen.TwonewC21steroidsfromM.tenacissima[J].ChinChemLett,2005,16(4):487.
[14]S.Singhal,M.P.Khare,A.Khare.Cissogenin,apregnanegeninfromM.tenacissima[J].Phytochem,1980,19(11):2427.
[15]S.Singhal,M.P.Khare,A.Khare.Tenasogenin,apregnaneesterfromM.tenacissima[J].Phytochem,1980,19(11):2431.
第1类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17
2-ara-glc-rha(R)3[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H
(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO
-glc-rha6||43|2xylMeCO-H(R)
第2类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha
-glc-rha3|2|6rha-H
第3类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H
第4类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)
第5类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc
第6类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO
第7类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH
第8类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H
第9类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H
第10类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO
第11类绞股蓝皂苷结构通式及特点:
第12类绞股蓝皂苷结构通式及特点:
glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-来苏糖基,Ac代表乙酰基,Me代表甲基,键上的数字代表键合的位置
随着人们对绞股蓝皂苷成分研究的不断深入,新的绞股蓝皂苷的不断发现,且在结构上有很大的差别。第1类、第4类、第5类、第6类、第7类、第10类和第11类在二十位碳上成环,但是在其成环的类型上又存在着很大的差别。第11类所成的环为含氧的双环。第1类、第4类、第6类、第7类和第10类所成的环为五元环,而其中的第1类、第4类和第7类为含氧的五元环,第6类和第10类为不含氧的五元环,而且即使在含氧的五元环中氧所在的位置也有所不同。第5类为含氧的六元环。此外,碳碳双键的有无和位置也有很大的区别,第4类、第5类、第6类和第11类不含碳碳双键,其他的几类都含有碳碳双键,第1类、第2类、第3类、第7类和第12类的碳碳双键在24和25位碳上,第8类的碳碳双键在23和24位碳上,第9类和第10类的碳碳双键在25和26位碳上。
2绞股蓝多糖的研究现状
多糖也是绞股蓝中含量比较多的化学成分,在研究皂苷的同时,对多糖的研究也逐渐地引起了人们的关注。王昭晶等[18]对碱提绞股蓝水溶性多糖进行了研究,并得到一种粗多糖AGM。经葡聚糖凝胶(G-100)柱层析检测其糖分布情况,表明AGM可能由两种多糖组成,其中一种含有结合蛋白质。而且经高效液相色谱确定了AGM的单糖组成为:鼠李糖∶木糖/岩藻糖(其中至少含有木糖或者岩藻糖中的一种)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《绞股蓝多糖的分离纯化及其药理活性研究》,2006山东中医药大学硕士论文)对绞股蓝多糖进行了较为系统的研究,共分离出了3种绞股蓝多糖GPS-2,GPS-3和GPS-4,并对其中的两种GPS-2,GPS-3进行了深入的研究,确定了GPS-2的分子量为10700Dal,GPS-3的分子量为9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。
3其它化学成分的研究现状
绞股蓝中除了含有皂苷和多糖外,还含有黄酮类化合物、萜类、有机酸、生物碱、多糖、蛋白质等以及锌、铜、铁、锰、硒等微量元素,但是,在最近几年里对这几方面的研究都比较少,对黄酮化合物的研究也只是对其含量的测定和精制上[19,20],目前,除了20世纪80年代报道过的商陆素、芦丁、商陆苷及丙二酸等十多种黄酮类物质外,未见有新的化学成分的报道。
4结束语
研究绞股蓝中的化学成分,将有利于进一步明确绞股蓝的药理活性。目前,国内外学者对绞股蓝中的化学成分进行了大量的研究,且取得了一定的进展,特别是在绞股蓝皂苷的成分研究中,发现了多种新绞股蓝皂苷,这些发现将有助于进一步对绞股蓝的开发和利用。此外,对绞股蓝中多糖的研究也引起了国内一些学者重视,而且也取得了一定的进展,但是近几年对绞股蓝中黄酮化合物成分的研究未见报道。由此可见,对绞股蓝多糖和黄酮类化合物成分的研究还有待进一步深入。
【参考文献】
[1]张瑞哲,张常胜,于慧敏.绞股蓝药理及临床作用研究进展[J].黑龙江医药,2000,13(5):295.
[2]任颖,王秋玉,吴泽民,等.绞股蓝皂甙的药理研究进展[J].中华实用中西医杂志,2001,14(5):988.
[3]侯慧丽,傅童生.绞股蓝的化学成分与药理作用研究进展[J].动物医学进展,2006,27(Z1):59.
[4]覃章铮,赵蕾,毕世荣,等.绞股蓝的皂苷成分及资源[J].天然产物研究与开发,1992,4(1):83.
ChemicalConstituentsofPyrolaxinjiangensis
Abstract:ObjectiveToinvestigatetheconstituentsofPyrolaxinjiangensis..MethodsSeparationandpurificationwereperformedonsilicagelCCandsephadexLH-20.Theirstructureswereestablishedonthebasisofphysicochemicalandspectralanalysis.ResultsFivecompoundswereisolatedandidentifiedasPyrolin(Ⅰ),Isoquercitrin(Ⅱ),Pirolatin(Ⅲ),Monotropein(Ⅳ),renifolin(Ⅴ),respectively.ConclusionThesecompoundsareisolatedfromPyrolaxinjiangensisforthefirsttime.
Keywords:PyrolaxinjiangensisY.L.Chou;Chemicalconstituents
新疆鹿蹄草PyrolaxinjiangensisY.L.Chou为鹿蹄草科鹿蹄草属植物,产于新疆维吾尔自治区境内的天山及阿尔泰山脉,是新疆民族药常用药材[1]。该属植物共有三十余种,我国产27种3变种,较为集中的分布在我国的西南部和东北部[2]。《中国药典》中收载的中药鹿蹄草是鹿蹄草或普通鹿蹄草的干燥全草,其性温,味甘、苦,具有祛风除湿、强壮筋骨、补虚益肾、收敛止血的功效,主治风湿痹痛,肾虚盗汗,筋骨酸软,虚弱咳嗽,外伤出血。哈萨克民间用新疆鹿蹄草治疗和预防心血管疾病,对冠心病、高血压病以及由其引发的心痛、胸闷、心悸等有特效。体外抗血小板聚集活性测试表明新疆鹿蹄草的70%乙醇提取物对血小板聚集有显著的抑制作用。本实验对新疆鹿蹄草乙醇提取物的正丁醇萃取部分进行了化学成分分离,从中得到五个化合物,通过化学和光谱方法鉴定了它们的结构,分别为鹿蹄草素(Ⅰ),异槲皮苷(Ⅱ),鹿蹄草苷(Ⅲ),水晶兰苷(Ⅳ),肾叶鹿蹄草苷(Ⅴ),所有化合物均为首次从新疆鹿蹄草中获得。
1仪器与材料
Yanaco显微熔点测定仪(温度未校正),FTS165型红外光谱仪(美国PerkinElmer公司生产),EI-MS和FABMS用ZABHS型质谱仪,Varianinova400型核磁共振仪(TMS作内标)。柱色谱硅胶(200300目)和薄层色谱硅胶GF254均为青岛海洋化工厂产品,sephadexLH20为Pharmacia公司产品。化学试剂均为分析纯。药材购自新疆阿勒泰,由新疆生态与地理研究所沈观冕研究员鉴定为新疆鹿蹄草PyrolaxinjiangensisY.L.Chou。
2方法与结果
2.1提取与分离
取新疆鹿蹄草干燥全草3.5kg粉碎,用70%乙醇回流提取3次,合并提取液,减压浓缩,得浸膏848g。将浸膏分散于水中,依次用石油醚,氯仿,醋酸乙酯,正丁醇萃取。取正丁醇部位63g进行硅胶柱色谱分离,以氯仿-甲醇(100∶0~0∶100)梯度洗脱,每500ml为1个流份,合并成分相似流份,再经反复硅胶柱色谱和sephadexLH20分离纯化,得到化合物Ⅰ(69mg),Ⅱ(120mg),Ⅲ(19mg),Ⅳ(45mg),Ⅴ(15mg)。
2.2结构鉴定
2.2.1化合物Ⅰ无色片状结晶(氯仿),分子式:C7H8O2;mp126-127℃;三氯化铁-铁氰化钾反应显阳性;IRνKBrMaxcm-1:3320,1615,1600,1490,1380,1190;EI-MS(m/z):124[M]+,107,95,77,57,43;1H-NMR(DMSO-d6):8.61(1H,s,OH),8.53(1H,s,OH),6.57(1H,d,J=8.1Hz,H-6),6.50(1H,d,J=2.0Hz,H-3),6.41(1H,dd,J=1.8Hz,8.1Hz,H-5),2.05(3H,s,2-CH3);13C-NMR(DMSO-d6):149.52(C-1),147.73(C-4),124.41(C-2),117.20(C-3),115.12(C-6),112.63(C-5),16.13(2-CH3)。根据以上数据并参照文献报道[3],鉴定为鹿蹄草素。
2.2.2化合物Ⅱ黄色粉末(甲醇),mp231~233℃;分子式:C21H20O12;盐酸镁粉反应显红色,molish反应显阳性;IRνKBrMaxcm-1:3340(OH),1654(C=O),1602,1498(Ar);FAB-MS(m/z):487[M+Na+];1H-NMR(DMSO-d6):12.61(s,-OH),7.61(1H,dd,J=1.6Hz,8.4Hz,H-6'),7.48(1H,d,J=1.8Hz,H-2'),6.76(1H,d,J=8.4Hz,H-5'),6.34(1H,d,J=2.4Hz,H-8),6.15(1H,d,J=2.4Hz,H-6),5.31(1H,d,J=8.1Hz,H-1″).3.3~3.65(5H,m,H一2″~6″);13C-NMR(DMSO-d6):178.43(C-4),165.02(C-7),162.18(C-5),157.20(C-9),l57.15(C-2),149.53(C-4′),145.77(C-3′),134.30(C-3),123.07(C-6′),122.12(C-l′),116.94(C-5′),116.24(C-2′),104.83(C-l0),99.60(C-6),94.55(C-8),102.74(C-l″),72.30(C-2″),74.13(C-3″),68.95(C-4″),76.84(C-5″),61.01(C-6″),根据以上数据并参照文献报道[4],鉴定为异槲皮苷。
2.2.3化合物Ⅲ白色针状结晶(甲醇),mp165~167℃;分子式:C23H34O8;IRνKBrMaxcm-1:3340-3100,2916,1507,1205,1028;FAB-MS:461[M+Na]+;1H-NMR(CD3OD):6.95(1H,s,H-3),6.60(1H,s,H-6),5.37(1H,qt,J=6.7Hz,1.2Hz,H-2′),5.31(1H,t,J=7.2Hz,H-6'),4.80(1H,d,J=8.1Hz,H-1″),4.12(2H,s,2H-8′),3.3~3.75(7H,m,H-2″~6″,2H-1'),1.98~2.30(4H,m,2H-5',2H-4′),2.16(3H,s,5-CH3),1.76(3H,d,J=2.1Hz,7′-CH3),1.73(3H,s,3′-CH3);13C-NMR(CD3OD):151.45(C-4),149.64(C-1),136.22(C-3′),135.52(C-7′),130.92(C-2),128.41(C-2′),124.52(C-6′),123.37(C-5),120.08(C-6),116.39(C-3),61.34(C-8'),40.88(C-4'),28.57(C-1'),27.11(C-5'),21.31(7'-CH3),16.20(3'-CH3)),15.90(5-CH3),104.08(C-1″),75.05(C-2″),77.84(C-3″),71.51(C-4″),78.12(C-5″),62.70(C-6″)。根据以上数据并参照文献报道[5],鉴定为鹿蹄草苷。
2.2.4化合物Ⅳ无色针状结晶(甲醇),mp170-172℃;分子式:G6H22O11;IRνKBrMaxcm-1:3460-3000(OH),3000-2450(COOH),1702(C=O),1647(C=C);FAB-MS:413[M+Na]+;1H-NMR(DMSO-d6):7.32(1H,d,J=1.2Hz,H-3),6.11(1H,dd,J=2.5Hz,6.0Hz,H-6),5.53(1H,d,J=1.8Hz,H-1),5.48(H,dd,J=1.8Hz,6.0Hz,H-7),4.67(1H,d,J=7.5Hz,H-1'),3.3~3.70(8H,m,H-2'~6',5,10),2.59(1H,dd,J=2.0Hz,8.5Hz,H-9);13C-NMR(DMSO-d6):170.50(C-11),151.17(C-3),137.23(C-7),132.08(C-6),109.36(C-4),93.93(C-1),84.77(C-8),66.24(C-10),43.52(C-9),36.25(C-5),98.40(C-1'),73.13(C-2'),76.41(C-3'),70.26(C-4'),77.12(C-5'),61.24(C-6')。根据以上数据并参照文献报道[6,7],鉴定为水晶兰苷。
2.2.5化合物Ⅴ无色针状结晶(甲醇),mp231~233℃;分子式:C18H24O7;RνKBrMaxcm-1:3350,1610,1513,1451,1205;FAB-MS:353[M+1]+;1H-NMR(CD3OD):6.61(1H,s,H-6),5.60(1H,m,H-3),4.78(1H,d,J=7.6Hz,H-1'),4.16(2H,s,2H-1),3.37~3.78(5H,m,H-2'~6'),3.28(2H,m,2H-4),2.30(3H,s,7-CH3),1.81(3H,s,2-CH3);13C-NMR(CD3OD):151.80(C-5),146.71(C-8),132.65(C-8a),130.87(C-2),130.07(C-7),120.70(C-4a),118.49(C-3),114.97(C-6),31.02(C-1),26.08(C-4),23.61(2-CH3),17.40(7-CH3),105.70(C-1'),75.61(C-2′),77.82(C-3′),71.45(C-4′),78.01(C-5′),62.79(C-6′)。
根据以上数据并参照文献报道[8],鉴定为肾叶鹿蹄草苷。
3讨论
文献报道的对鹿蹄草属植物的研究主要集中在鹿蹄草P.calliantha.H.Andres和普通鹿蹄草P.decorateH.Andre。从本次实验结果可见,新疆鹿蹄草中含有的主要化学成分与以上两种鹿蹄草属植物相同,本研究对维吾尔医中把新疆鹿蹄草作为常用药材提供了理论依据。
【参考文献】
[1]新疆植物志编辑委员会.新疆植物志,第4卷[M].乌鲁木齐:新疆科技卫生出版社,2002.
[2]中国科学院中国植物志编辑委员会.中国植物志,第56卷[M].北京:科学出版社,1990.
[3]周玉波,李洪侠,王金辉,等.绿花鹿蹄草中的化学成分[J].中药研究与信息,2005,7(6):11.
[4]易醒,石建功,周光雄,等.青钱柳化学成分研究[J].中国中药杂志,2002,27(1):43.
[5]InouyeH,InoueK.Structureofrenifolinandreconfirmationofthestructureofpirolatin[J].Phytochemistry,1985,24(8):1857.
(2)、掌握好化学方程式的书写,必须准确无误的书写出化学式,即尊重客观事实,不要任意臆造。
(3)、对未见过的化学方程式的书写,题中必然会给出条件(某实验现象或具体的反应物、生成物的名称或化学式及反应条件等)。
(4)、将写好的化学式须进行配平,一定要牢记“反应前后原子种类不变,原子个数不增减”。验证反应前后的原子个数是否一致,原子数目是否相等,否则就应检查化学式是否正确或反应物、生成物是否随意增加了还是减少了。如:2KClO3+MnO22KCl+3O2这个方程式显然是不正确的,根据质量守恒定律生成物中无Mn元素,从而证明MnO2是不能写在反应物中去而只能写在等号上面。2KClO32KCl+3O2牢记以上四点书写原则,化学方程式的书写就不会咸到困难了。
例1、(利用已知条件):科学家预言未来最理想的能源是绿色植物,即绿色植物的桔杆[主要成分(C6H5O5)n]和水在适当的催化剂等条件下生成葡萄糖(化学式C6H12O6)再将葡萄糖在一定条件下转化生成乙醇(C2H5OH)同时放出CO2,乙醇是很好的燃料,写出化学方程式(2000年四川省化学竞赛试题19题).
①②.
解析:此题是初中课本中没有出现过的化学方程式的书写,如果死记硬背是难解决此题的,如果按照上述方法审题就会迎刃而解,首先找出①步反应中的反应物是(C6H5O5)n和H2O,而生成物是C6H12O6。
从而得出方程式:①、(C6H5O5)n+H2OnC6H12O6②反应物是C6H12O6而生成物是(C2H5OH)和CO2。
所以②式为:C6H12O62C2H5OH+2CO2
例2、(利用实验现象)在日常生活中常使用一些铝制器皿,在清洗铝制器皿表面污垢时,不能使用热的碱性溶液,因为热的碱性溶液中的氢氧化钠与铝发生作用而被腐蚀,生成偏铝酸钠(NaAlO2)和一种可燃性气体,则该反应的化学方程式为:(1999年哈尔滨市初中升B卷)。
解析:题中反应物是铝、碱(氢氧化钠)和水生成物是偏铝酸钠(NaAlO2)和一种可燃性气体。根据质量守恒定律可知反应物中有H,而生成物中还没有出现,则可推出另一种可燃性气体一定是氢气。由此可得化学方程式为:2Al+2NaOH+2H2O2NaAlO2+3H2
例3、将氯气溶于水时,有一部分氯气跟水反应:
Cl2+H2OHClO(次氯酸)+HCl。
写出氯气通入消石灰水溶液中发生反应的化学反应方程式:
(1995年全国竞赛试题)
解析:首先搞清反应物是氯气和消石灰水(Ca(OH)2溶液),根据已知条件可知氯气首先与水反应生成HClO和HCl.而生成的HClO再与(Ca(OH)2反应生成Ca(ClO)2和水。
Cl2+H2OHClO(次氯酸)+HCl……(1)
Abstract:WithmoreexploitationandutilizationofGynostemmapentaphyllum,peoplehavelearnedmoreaboutchemicalingredientsinit.Inthispaper,somenewachievementsinchemicalingredientresearchwereintroduced,whichisfavorabletofurtherresearchofchemicalingredientsofGynostemmapentaphyllu.
Keywords:Gynostemmapentaphyllu;Chemicalingredients;Saponin;Polysaccharide
绞股蓝Gnostemmapentaphyllum(Thunb.)Makino又名七叶胆,为葫芦科绞股蓝属植物。主要分布在东南亚及我国长江以南的广大地区,资源丰富。绞股蓝中含有皂苷、多糖、黄酮类化合物、有机酸和微量元素等多种化学成分。绞股蓝能够有效地保护心、脑、血管和肝脏,降低血脂、降胆固醇、降转氨酶、调节免疫和抗诱变,而且在抗衰老、抗疲劳、抗辐射和消除自由基的同时,还能改善神经系统功能、抗溃疡、抑制胆结石形成和调节内分泌活动[1~3]。因此,研究绞股蓝中的化学成分,有利于进一步开发和利用绞股蓝,明确绞股蓝中的药理活性成分。本文主要介绍了绞股蓝皂苷和多糖等成分的研究进展,为绞股蓝的开发提供参考。
1绞股蓝皂苷成分的研究现状
1976年日本人永井正博等在绞股蓝中分离得到了人参二醇和2α-羟基人参二醇,首次揭示了绞股蓝中含有达玛烷(dammarane)型皂苷类成分。随后,人们对绞股蓝的化学成分进行了大量的研究,迄今发现的绞股蓝皂苷(Gyp)总共达136种,其中有绞股蓝皂苷(Gyp)Ⅲ、Ⅳ、Ⅷ、Ⅻ与人参皂苷(Gin)-Rb1,-Rb3,-Rd和-F2完全相同,此外还分离得到了人参皂苷Rd3,K,其余为人参皂苷的类似物。由于绞股蓝的产地不同,其中的皂苷成分和含量也有很大的不同。覃章铮[4]等曾经对1990年以前发现的84种皂苷成分进行过综述性报道,但由于绞股蓝皂苷具有较好的药理疗效,因此,对绞股蓝皂苷成分的研究一直是热点。1990年后,又有52种绞股蓝皂苷被相继报道。根据苷元结构相近的程度,本文将这52种皂苷分为11类。
第1类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17
2-ara-glc-rha(R)3[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H
(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO
-glc-rha6||43|2xylMeCO-H(R)
第2类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha
-glc-rha3|2|6rha-H
第3类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H
第4类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)
第5类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc
第6类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO
第7类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH
第8类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H
第9类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H
第10类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO
第11类绞股蓝皂苷结构通式及特点:
第12类绞股蓝皂苷结构通式及特点:
glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-来苏糖基,Ac代表乙酰基,Me代表甲基,键上的数字代表键合的位置
随着人们对绞股蓝皂苷成分研究的不断深入,新的绞股蓝皂苷的不断发现,且在结构上有很大的差别。第1类、第4类、第5类、第6类、第7类、第10类和第11类在二十位碳上成环,但是在其成环的类型上又存在着很大的差别。第11类所成的环为含氧的双环。第1类、第4类、第6类、第7类和第10类所成的环为五元环,而其中的第1类、第4类和第7类为含氧的五元环,第6类和第10类为不含氧的五元环,而且即使在含氧的五元环中氧所在的位置也有所不同。第5类为含氧的六元环。此外,碳碳双键的有无和位置也有很大的区别,第4类、第5类、第6类和第11类不含碳碳双键,其他的几类都含有碳碳双键,第1类、第2类、第3类、第7类和第12类的碳碳双键在24和25位碳上,第8类的碳碳双键在23和24位碳上,第9类和第10类的碳碳双键在25和26位碳上。
2绞股蓝多糖的研究现状
多糖也是绞股蓝中含量比较多的化学成分,在研究皂苷的同时,对多糖的研究也逐渐地引起了人们的关注。王昭晶等[18]对碱提绞股蓝水溶性多糖进行了研究,并得到一种粗多糖AGM。经葡聚糖凝胶(G-100)柱层析检测其糖分布情况,表明AGM可能由两种多糖组成,其中一种含有结合蛋白质。而且经高效液相色谱确定了AGM的单糖组成为:鼠李糖∶木糖/岩藻糖(其中至少含有木糖或者岩藻糖中的一种)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《绞股蓝多糖的分离纯化及其药理活性研究》,2006山东中医药大学硕士论文)对绞股蓝多糖进行了较为系统的研究,共分离出了3种绞股蓝多糖GPS-2,GPS-3和GPS-4,并对其中的两种GPS-2,GPS-3进行了深入的研究,确定了GPS-2的分子量为10700Dal,GPS-3的分子量为9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。
3其它化学成分的研究现状
绞股蓝中除了含有皂苷和多糖外,还含有黄酮类化合物、萜类、有机酸、生物碱、多糖、蛋白质等以及锌、铜、铁、锰、硒等微量元素,但是,在最近几年里对这几方面的研究都比较少,对黄酮化合物的研究也只是对其含量的测定和精制上[19,20],目前,除了20世纪80年代报道过的商陆素、芦丁、商陆苷及丙二酸等十多种黄酮类物质外,未见有新的化学成分的报道。
4结束语
研究绞股蓝中的化学成分,将有利于进一步明确绞股蓝的药理活性。目前,国内外学者对绞股蓝中的化学成分进行了大量的研究,且取得了一定的进展,特别是在绞股蓝皂苷的成分研究中,发现了多种新绞股蓝皂苷,这些发现将有助于进一步对绞股蓝的开发和利用。此外,对绞股蓝中多糖的研究也引起了国内一些学者重视,而且也取得了一定的进展,但是近几年对绞股蓝中黄酮化合物成分的研究未见报道。由此可见,对绞股蓝多糖和黄酮类化合物成分的研究还有待进一步深入。
【参考文献】
[1]张瑞哲,张常胜,于慧敏.绞股蓝药理及临床作用研究进展[J].黑龙江医药,2000,13(5):295.
[2]任颖,王秋玉,吴泽民,等.绞股蓝皂甙的药理研究进展[J].中华实用中西医杂志,2001,14(5):988.
[3]侯慧丽,傅童生.绞股蓝的化学成分与药理作用研究进展[J].动物医学进展,2006,27(Z1):59.
[4]覃章铮,赵蕾,毕世荣,等.绞股蓝的皂苷成分及资源[J].天然产物研究与开发,1992,4(1):83.
[5]SoniaP,CosimoP.Newdammarane-typeglycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1995,58(4):512.
[6]YinF,HuLH.SixNewTriterpeneSaponinswitha21,23-LactoneSkeletonfromGynostemmapentaphyllum[J].HelveticaChimicaActa,2005,88(5):1126.
[7]HuLH,ChenZL,XieYY.Newtriterpenoidsaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1996,59(12):1143.
[8]FangZP,ZengXY.StructureofgypentonosideafromgynostemmapentaphyllumMAKINO[J].ActaPharmaceuticaSinica,1996,31(9):680.
[9]YinF,HuLH,LouFC,etal.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(6):942.
[10]HuLH,ChenZL,XieYY.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].Phytocheraistry,1997,44(4):667.
[11]LiuX,YeWC,MoZY,etal.FiveNewOcotillone-TypeSaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(7):1147.
[12]LiuX,YURM,HsiaoWL,etal.ThreeNewDammaraneGlycosidesfromgynostemmapentaphyllum[J]ChineseChemicalLetters.2004,15(1):46.
[13]YinF,HuLH,PanRX.Noveldammarane-typeglycosidesfromgynostemmapentaphyllum[J].Chem.Pharm.Bull,2004,52(12):1440.
[14]YinF,ZhangYN,YangZY,etal.Ninenewdammaranesaponinsfromgynostemmapentaphyllum[J].Chemistry&Biodiversity.2006,3(7):771.
[15]AkeN,NguyenKH,EdvardsL,etal.ANovelinsulin-releasingsubstance,Phanoside,fromtheplantgynostemmapentaphyllum[J].TheJournalofBiologicalChemistry,2004,279(40):41361.
[16]TomH-WH,ValentinaR-N,NoerisKS,etal.AnovelLXR-aactivatoridentifiedfromthenaturalproductgynostemmapentaphyllum[J].BiochemicalPharmacology,2005,70(9):129.
[17]刘欣,叶文才,萧文鸾,等.绞股蓝的化学成分研究[J].中国药科大学学报,2003,34(1):21.
面对众多初中学习的成功者沦为高中学习的失败者,我对他们的学习状态进行了研究,调查表明,造成成绩滑坡的主要原因有以下几个方面.
1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.
2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.
3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.
4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
二、对策
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动.针对学生学习中出现的上述情况,我采取了以加强学法指导为主,化解分化点为辅的对策,收到了一定的效果.
1.加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为.什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.
课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上.上课是理解和掌握基本知识、基本技能和基本方法的关键环节.“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼.
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”.
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情.
2.循序渐进,防止急躁
2注重课堂互动,提高学生学习兴趣
在传统课堂教学模式中,教师满堂灌难以激发学生参与教学活动的积极性。近年来,随着社会对复合型人才需要越来越高,传统教学模式已难以适应人才培养需要,对课堂教学提出了新的要求。课堂互动是在课堂教学情境中,教师和学生之间、学生和学生之间发生的具有促进性或抑制性的相互作用、相互影响,进而达到师生心理或行为的改变[3]。加强课堂互动,既可调动学生参与学习的积极性,又可提高教学质量、促进学生的全面发展。我们在分析化学教学过程中通过采用课堂提问、现场解题、专题讨论等方式让学生参与到教师教学过程中,同时对一些性格内敛、自信心不足的同学进行语言鼓励并分析参与课堂互动的益处,让他们在分析化学课堂中也能积极参与互动并逐渐找到自信,学生参与互动积极性高,课堂气氛活跃,教学效果好,同时学生的语言表达、分析问题和解决问题等能力也得到了全面提高。
3课堂理论教学和实验教学有机结合,提高学生运用理论知识解决实际问题的能力
分析化学是一门实验科学,学习理论知识主要是想把它运用于实践当中,所以分析化学课堂教学要与分析化学实验内容紧密联系。在课堂教学中要把实验原理潜移默化到理论教学中来,例如在讲授酸碱指示剂的时候,教师要向学生解答为什么用HCl溶液滴定NaOH溶液时一般采用甲基橙指示剂,而用NaOH溶液滴定HCl溶液时以酚酞为指示剂,减少学生在实验过程中对实验操作的疑惑。教师在课堂教学时可以结合实验中的问题,采用启发式、提示式教学方法提高学生学习的主动性和兴趣。通过课堂理论教学和实验教学相结合的教学方式可以培养学生运用理论指导实践的能力,并能达到提高学生运用理论知识解决实际问题的能力的目的。
4优化考核方式,增强考核方法科学性
成绩考核是教学活动的有机组成部分,它是检验“教”与“学”效果的有效手段。在传统的考核方法中,期末考试占有很大的比重,平时成绩考核不够全面,不仅给学生造成了很大的压力,而且不能做到全程考核学生学习效果,以这种方式评定成绩,容易出现高分低能的现象,使社会对人才质量的判断出现偏差。我们可以结合应用型工程技术人才培养要求,对分析化学课程考核方法进行改进,首先将平时成绩占总成绩的比重由之前的20%提高到30%,不仅可以减轻学生学期末的考试压力还可以提高学生平时学习的主观能动性;其次增加平时成绩的考核指标,平时成绩由课后练习题成绩、课堂讨论成绩、课程小论文成绩、课堂笔记成绩和考勤成绩等几部分组成,并且每个考核指标均制定相应的评分标准,比如课后练习题成绩,首先精选练习题,要求学生独立完成,并给出标准答案和评分标准,分析化学课程总共布置10次课后练习题,学生课后练习题最终成绩为10次课后练习题的平均成绩;最后期末考试根据本课程特点,在考查学生知识点情况的前提下,增加知识应用性强的综合题比重,以检查学生运用知识分析和解决问题的能力。改进后的分析化学课程考核方式可以全程、全面地检查和督促学生学习、增强学生学习的主体意识,更能科学地评价学生综合素质,符合应用型人才培养要求,该考核方式受到了学生的好评。
学生通过实验这个环节,可以提高其动手能力、独立思考的能力、解决问题的能力以及实践能力等,为将来从事科研项目奠定了基础。然而,高校中的大多数学生进行实验的能力普遍较差,达不到探究性教学这一要求,主要因为学生们的实验操作能力较差,不能根据课堂所学的理论知识进行实际操作,遇到问题就束手无策,独立思考的能力较差。
1.2课程内容单一
如今的高校有机化学教学课程较单一,几乎所有学校的学生都学习相似的内容,同一高校的学生更是学习同样的教学书籍内容。所以,有机化学这门课程缺乏创新,选择性较差,综合能力差,知识的相互关联性有待加强,不能形成一个完善的有机化学课程群。因此,有些学生无法系统地掌握有机化学的理论知识,实践能力较差,从而无法解决实验过程中遇到的一些问题。
2.完善高校有有机分析化学教学的措施
2.1改善教学理念和方法
一方面,在高校有机化学教学中主要实施探究性的启发式教学。即教学者在有机化学教学中对学生进行诱导式教育,充分调动学生主动学习的能力和积极性。教师不能对学生进行大量灌输抽象的理论知识以及强迫学生背诵记忆,这会导致学生厌恶有机化学的学习,并且在实际操作中无法解决遇到的问题,不能正确、有效的学习这门课程。所以,这种探究性启发式的教学模式不仅能够开发学生主动学习有机化学的兴趣,提高学生自主学习的能力,而且提高了学生的学习效率,培养学生的思考能力,为以后更深层的学习奠定了坚实的而基础。另一方面,还应注重培养学生解决问题的能力。这就要求教学者要针对学生的具体实际情况,即学生掌握基本知识的水平、接受知识的能力、兴趣爱好等,进行适当地专业知识传授和实验指点,不仅是单纯领略到该专业知识,更重要的是提高学习的能力,走出误区,突破盲点,不仅提高了学生主动学习的能力和兴趣、加深对专业知识的理解能力和掌握能力,也提高了学生的独立思考能力和学习能力。
2.2注重科学素养教育
首先,在高校有机化学教学体系中应重视对新知识的更新、补充。更新是高校当今进行教学改革中十分重要、紧迫的一项任务,更新教学内容,使教学知识现代化,不仅要求教育思想方面的更新、改革,还要求对专业技术方面问题的研究和解决。高校中有机化学教学模式中一些内容的理论性比较强或是知识比较陈旧,内容比较抽象,不好理解。所以,应适当将近年相关专业知识的一些成就、创新引入有机化学教育课堂上,不仅充实了学生的课堂学习和对有机化学更深刻、形象地理解,而且使学生了解该专业的发展现状和具体应用,提高了学生对有机化学的理解深度,培养了学生的学习兴趣。其次,教学者应结合实际生活中的案例进行课堂教学,丰富课堂活动。有机化学知识的呈现与人们的生产生活息息相关,人们的生活环境中处处体现有机化学,如各种食品健康问题,都是进行化学处理从而危害人们的健康。所以,任课教师应根据实际生活中的各种实例来阐述相应的原理知识,强调有机化学专业学科的重要性,开拓学生的视野。并且相应进行化学实验,培养学生思考和解决问题的能力,进行实践从而处理遇到的问题,进行科学探究和知识创新等。
2.3完善专业课程体系
当前农村初中实施化学新课程的成绩巨大,效果显著,但也存在着一些影响化学新课程实施的具体问题,对这些问题的处理与否,将直接影响到农村课程改革的深化和发展。
一、当前农村初中化学新课程实施中存在的主要问题及原因分析
当前农村初中还存在着一些与新课程不相适应的问题,成为新课程实施的“阻力”因素。这些问题主要表现在教师、学校和社会等3个层面上。
(一)教师层面——思想认识不够,其教学行为与新课程理念之间存在落差
少数教师对国家实施课程改革的重要性认识不足。其表现:一是“消极”思想,认为课程改革是政府的事,学校发展是校长的事,缺少实施新课程的主动性、积极性。二是“守旧”思想,这部分教师或者昔日教学成绩斐然,还沉浸在过去创造的“辉煌”中,不希望改变现有的一切;或者在学校年龄大、资历老,认为自己已经“船到码头车到站”,缺少进取、创新的精神。三是“畏难”思想,认为实施新课程条件不够,困难太多,担心实施新课程影响教学质量,缺乏面向未来和教书育人的责任感和使命感。
课堂教学是新课程实施的主阵地,从看课、调研中发现,有些教师的课堂教学改革还停留在口头上,一边喊着要改变教学观念,一边却一如既往地重复昨天的“故事”,没有把新课程理念内化为自己的教学行为。具体表现在:
一些地方把新课程倡导的“自主学习”等理念演绎为“放任自流”,过于强调学生的主体性,把时间还给学生,把书本还给学生,把课堂还给学生……把一切都还给了学生,教师的主导作用何在?学生活动缺乏教师恰当地点拨和指导,因而学习效率低、效果差是可想而知的。
处处“科学探究”,实际上是“泛化”探究教学,是对新课程理念倡导的“以科学探究为主的多样化的学习方式”理解不够,重于形式而失于内涵。
生硬的、标签式的“情感、态度与价值观”,使课堂教学显得沉闷、僵硬,失去了课堂教学应有的活力。如此等等的一些行为,其根本原因在于有的教师对以学生的终身发展为根本的素质教育的核心理念认识不够,没有把新课程教学理念内化为自觉的教学行为,导致其教学行为与新课程理念之间存在落差。
(二)学校层面——实验室建设不达标,教师负担偏重,班级人数过多
新课程的实施是一项庞大而系统的教育改革工程,学校的基础设施和建设是保证新课程实施的物质基础。调查表明:相当部分的农村初中学校实验室建设不达标,教师工作负担偏重,部分班级人数过多等。
就化学实验室建设来看,有相当部分农村初中学校的实验教学条件目前还达不到完成教学任务的要求。其表现有:第一,实验仪器、药品缺少。数据统计显示:42.1%的老师反映学校实验药品缺少或非常缺少,仪器药品配备齐全的仅占6.8%。第二,实验室数量配备不足。33.7%的老师反映学校实验开出率不到50%,只有41.6%的老师反映学校实验室能满足2~4人/组实验的要求。第三,实验室利用效率不高。学校化学实验室能对学生开放的仅占15.3%;有些实验条件相对好一点的学校,实验室利用效率也不高。我们考察的一所山区初中学校,全校十多个班级,化学和生物共用一个简陋的实验室,18张水泥台面作为实验桌,室内座椅不全,通风设备、电源等没有安装到实验桌上,平时无专人管理和打扫,卫生环境也不好。
农村教师工作负担偏重主要表现在课时多、兼职(课)多和班级学生过多等方面。问题最为突出的矛盾还是由于学校合并及人口增长而导致的班级人数过多现象。统计表明:85.7%的老师所带班级超过国家规定50人/班的规模,更有12%的教师所任班级人数超过80人。由于班级人数过多而导致的学生管理困难、活动组织困难、教师身心疲惫、教育质量滑坡等负面影响,已成为制约新课程实施的主要问题之一。
(三)社会层面——升学压力大,教师待遇偏低
由于目前还没有形成完善的素质教育评价体系,特别是中考和高中招生只看考试分数,导致社会上形成了一种“对学生的进步看名次,对教师的工作看学生的考试成绩,对学校的业绩看升学率”的唯考试论。这种观念又导致课堂上教师将教学目标指向中考,教学内容紧扣中考,教学方法服从中考。“教师满堂灌,学生听和看”的现象成为初中化学课堂上一道挥之不去的“风景”。有些农村中学的教师一边学理念,口口声声“喊”课改,一边战题海,扎扎实实抓备考,“应试教育”的思想根深蒂固,素质教育流于形式。
造成以上现象的原因是多方面的。从历史看,传统的“一考定乾坤”的思想影响很深,这是“应试教育”的思想基础和历史渊源。从现实看,是生存忧患意识在教育中的反映,这是“应试教育”的社会基础和根本原因。从评价方式看,统一、单调的纸笔测试支持了上述现象的存在,这是素质教育评价的制度缺憾。从这次的调查问卷中可以看出,绝大多数(72.2%)教师认为“升学考试压力太大”是影响新课程实施的最大阻力。所以,要消除“应试教育”的负面影响,不是教师和学校能独立完成的任务,必须是全社会的共同努力。
教师是课程改革的主力军,教师的生活状况直接或间接地影响新课程的有效实施。调查表明:近几年,随着国家经济条件的好转,特别是对义务教育阶段的经费统筹和管理实施了“以县为主”的模式后,农村中学教师的生活状况有了较大的改善,但“一费制”的实施也减少了学校办学经费的一个重要来源,政府的补贴还不能完全满足学校办学所需,特别是少数地方拖欠教师工资的现象仍然没有杜绝。
二、关于进一步推进农村初中化学新课程实施的建议
农村化学新课程的实施面临一些问题和困难,需要依靠政府的政策支撑,需要学校领导的高度重视,也需要教师发挥主观能动性。换言之,需要人们冷静地分析问题,勇敢地面对困难,为新课程的顺利实施和深入发展创造条件。
(一)采取多种途径,提高农村初中化学教师队伍的整体素质
实施新课程,关键在于有一支思想素质和业务能力过硬的师资队伍。针对农村教师队伍整体素质与全面实施素质教育的要求还存在一定差距的现状,建议实施以提高农村教师素质为目的的“造血工程”“活血工程”等,增强农村教师竞争意识和竞争能力,提高农村师资队伍的整体素质。
以“农村教师素质提高工程”为载体,实施“造血工程”,构建农村教师专业发展的新机制。首先,要加强学科骨干教师队伍建设。在农村培养和建立一支有思想、有学识、有水平的中青年骨干教师队伍,充分发挥骨干教师在教学中的引领、示范和辐射作用。
其次,要在教育行政部门的指导下,有计划地组织不同形式、不同层次的培训活动,如新课程培训、现代技术教育培训、化学教材教法培训等。传授先进教育理念和教育教学方法,发挥专家引领作用,促进农村学校师资水平的不断提高。
再次,要加大对远程教育资源运用方式的探索,改变农村中小学远程教育资源闲置的现状,保证远程教育资源“超市”的有效利用。转以“城镇教师援助农村教育行动计划”为载体,实施“活血工程”,构建城镇教师援助农村教育的交流机制,即:由省、市教育行政部门统筹教师资源,建立区域内骨干教师“巡回授课制”,城镇教师到乡村学校“支教服务制”,城乡优秀教师定期“对调工作制”等,缩小城乡教师队伍专业水平的差距。同时,要在各级教研部门的组织下,根据各地实际情况,定期开展“联片教研”“网络教研”等活动,整合优质资源,实现课程信息和资源共享,提高教研工作的覆盖面,逐步建立和完善以城带乡、城乡互动、相互促进、共同提高的城乡教师教研交流协作体。
(二)改革评价制度,建立与我国国情相符合的素质教育评价体系
建立一整套测量学校实施素质教育质量的评价体系,是促进新课程实施、提高教育教学质量的重要举措。要充分发挥教育评价在学校课程设置、教师课堂教学、学生自主学习中的导向作用。特别是要改变当前一部分地方以中考成绩的好坏作为学校工作唯一评价依据的现状,让教师能全身心地投入到工作中,研究新课程、实践新课程。
初中化学处于特别学段,复习备考是初中化学教学不可回避的任务之一。当前,统一、单调的纸笔测试根本无法全面反映学生的学习状况和多元能力的发展,不能全面考察学生的综合能力。将纸笔测试和实验操作考察结合起来,作为学生化学学科素质评价的标准,是中考改革的有效方案之一,值得决策部门认真考虑。
(三)加强实验教学,努力改善农村中学化学实验教学条件
就农村中学化学教学而言,努力改善化学实验条件是新课程顺利实施的重要保证。
第一,要使实验室建设能基本满足教学需要。建议根据义务教育九年级化学课程标准和在校学生人数,制订初中化学实验室建设的最低标准和规模,实验室建设的一次性投入和使用期补充投入应有据可依,把实验室建设经费落实到位。同时把实验室建设水平作为学校工作考核的项目之一,以引起学校领导的高度重视。部分农村或山区学校可以在政府统筹建设和管理的框架内,尝试吸纳社会资金,以建设“冠名实验室”等形式,解决资金不足的问题。规模极小的偏远山区中学,还可以适当降低要求,建设小型实验室,同时发挥教师的主观能动性,就地取材、因地制宜,努力完成实验教学任务。
第二,充分发挥评价的导向作用,把学生素质评价及学校工作评价与学校实验室建设结合起来,并将化学实验操作考核纳入学生发展评价体系中,其考核成绩记入中考成绩,这样才能从制度上确保实验教学落到实处。
第三,加强实验室工作的管理与评价,提高化学教师及化学实验员的劳保补贴,使实验室切实发挥应有的作用。要定期对实验室进行检查和评估,以确保化学实验教学的顺利进行。
(四)建立有效机制,提高农村教师的工资、福利待遇