时间:2024-01-08 10:31:01
导言:作为写作爱好者,不可错过为您精心挑选的10篇计算机视觉处理技术,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)03-0242-02
计算机人工智能技术中的一项重要技术就是计算机视觉技术,这种技术主要是让计算机利用图像来实现认知环境信息的目的,这一目的的实现需要用到多种高尖端技术。近年来随着计算机技术以及计算机网络的普及与发展,计算机视觉技术也得到了较快发展,并且在实际生产与生活中的应用也越来越广泛。
1 计算机视觉技术概述
1.1 基本概念
计算机视觉技术主要研究计算机认知能力的一门技术,其具体主要是通过用摄像机代替人的眼睛,用电脑代替人的大脑,最终使计算机具备类似于人类的识别、判断以及记忆目标的功能,代替人类进行部分生产作业。人们目前研究的人工智能技术中的一项重要内容就是计算机视觉技术,通过研究计算机视觉技术可以让计算机拥有利用二维图像认知三维环境的功能。总的来说,计算机视觉技术是在图像与信号处理技术、概率分析统计、网络神经技术以及信息处理技术的基础上,利用计算机来分析、处理视觉信息的技术,它是现代社会新兴起的一门高新技术。
1.2 工作原理
在亮度满足要求的情况下,首先使用摄像机对具体事物的图像信息进行采集,利用网络把采集到的图像信息向计算机内部输送,然后在计算机系统内部处理加工图像信息会把事物的原始图像得到,随后利用图像处理技术进一步处理原始图像,获得优化质量效果之后的图像,分类与整理图像中有特征价值的信息,通过智能识别技术识别与描述提取到的图像信息特征,最后把得到的高层次的抽象信息存储起来,在进行识别事务时分析对比这些储存信息就可以实现事物的识别,这样视觉系统的基本任务也就完成了。其具体视觉系统如图1所示:
1.3理论框架
人类研究视觉技术虽然起步比较早,但取得较大进步是在20世纪80年代初伴随着视觉计算理论的出现。它的出现把研究视觉理论的策略问题解决了,视觉技术是一项特别复杂的信息处理过程,要想对视觉的本质准确完整的理解,必须从不同角度与层次研究与分析视觉本质。视觉计算理论研究层次大致可分为:计算机理论、算法以及实际执行。站在计算机理论的角度分析视觉技术,我们可知必须用要素图、维图、以及三维模型表像来描述视觉信息。
所以,可以把计算机视觉技术当做从三维环境图像中抽取、描述与解释信息的过程,其主要分析步骤可分为感觉、处理、描述、识别、解释等。若依据上述各过程实现需用到的方法与技术的复杂性划分层次,可大致把计算机视觉技术划分为:低层视觉处理、中层视觉处理、高层视觉处理三个层次。
2 计算机视觉技术在自动化中的应用
2.1 农业自动化中计算机视觉技术的应用
在农业自动化中应用计算机视觉技术可以全天候实时监测农作物的生长状况,便于科学管理农作物。还可以应用计算机视觉技术来检测农产品的质量,例如可以应用计算机监测技术来监测大多数蔬菜的质量,传统的人工检测蔬菜质量的方法,不仅费时费力,而且检测结果的准确性也不能很好的保证,在实际人工检测过程中还容易伤害蔬菜,可以通过利用计算机视觉技术来感应蔬菜自身释放的红外线、紫外线以及其他可见光的能量大小,然后和质量达标蔬菜的光线能量大小进行对比,根据这些对比结果可以把蔬菜质量的好坏准确判断出来,在蔬菜质量检测过程中应用计算机视觉技术,把传统的蔬菜检测方法完全颠覆了,极大的方便了农产品的质量检测,由此可见,计算机视觉技术在农业生产中有很高的使用与推广价值。
2.2 在工业自动化中计算机视觉技术的应用
计算机视觉技术在工业自动化应用的一个重要领域就是可以精密测量零件尺寸,其测量与被测对象的原理如图2所示。
光学系统、计算机处理系统以及CCD摄像头,是计算机检测系统的主要组成,被测物体由光源发出的平行光束进行照射,利用显微光学镜把待检测部位的轮廓图像呈现在摄像机的面阵CCD上,然后再通过计算机处理这些图像,进而把被测部位的轮廓位置信息获取下来,若被测对象是出现位移时,可通过两次重复测量,利用两次测量的位置差就可以得出,被测物体的位移量。
此外计算机视觉技术还可以应用于逆向工程中,应用3D数字化测量仪可以快速准确的测出现有工件轮廓的坐标值,同时还能构建曲面,保存成CAD或CAM图像,把这些图像送入CNC制作中心加工,便可制作出产品,这也就是所谓的逆向工程。由上述分析我们可知逆向工程要想实现,最关键的一环就是如何通过精密测量系统来测量样品的三围尺寸,获得各部位数据,进而做曲面处理进而加工生产。对于这一难题我可以通过利用线结构光测量物体表面轮廓技术来实现,器具体轮廓结构示意图如下图3所示。
这种测量方法的工作原理为:利用激光穿越平行、等距的振幅光栅组件,或直接采用干涉仪发出的干涉条纹,形成平面条纹结构光,再向物体表面投射,由于物体各表面的深度与曲率的不同,条纹会自动出现变化,然后再通过使用CCD摄像机对变形条纹进行拍摄。这样就可以把物体表面轮廓的变化情况分析出来。摄像机在拍摄图像的过程中,把图像信号转化为模拟信号,再转化为数字信号,然后经过传送再还原信号到图形处理系统,就得到三维轮廓图像。
在工业自动化中计算机视觉技术的深入广泛应用,不但使工业产品的生产质量得到了保障,而且跨越式的提高了工业产品的生产速度。如计算机视觉技术可以很好的检测产品包装质量,封口质量以及印刷质量等等,如我国重点指定的印刷造币机器的南京造币厂,由于货币制造印刷是由印刷造币机器来实现的,所以要严格要求其生产工艺,一丝一毫的生产差错都不允许存在,为了保障印刷制造出来的造币机器质量完全达标,必须严格精确检测生产出来的成品。在印刷造币机器的过程中要求要有非常高的计算机视觉技术,随着计算机视觉技术的不断进步,计算机视觉技术已经对印刷造币机器的需求完全满足了,实际的应用效果也非常理想,印刷造币机器在实际生产的过程中,南京造币厂把计算机视觉技术应用在了每个应刷造币机器最后的生产工序上,硬币受到重力下落的瞬间,计算机视觉技术可以瞬间采集图像的信息,准确拍摄硬币在下落过程中的图像,通过高速光纤传感器可以把硬币图像向计算机系统快速传输,利用计算机系统处理信息与识别信息的超强能力,可以及时识别硬币质量,经大量实践研究得出,在印刷造币机器上应用计算机视觉技术已经几乎没有检查差错现象的发生,由此可知,在工业自动化中计算机视觉技术的应用不但可行,而且发展空间还很大。
2.3 在医学自动化中计算机视觉技术的应用
在医学领域计算机视觉技术也得到了广泛应用,如医学中经常用到的CT图像以及X射线图都用到了计算机视觉技术,这些技术的广泛应用很大程度上方便了医生准确判断病人病情,另外,在生产药品的过程中,应用计算机视觉技术可以高效检测药品包装的合格与否,其基本流程是:传送装置先准确运输药品到指定位置,传送装置自身又可分为检测与分离两个区域,在传送药品的过程中药品的图像信息会被特定的摄像机采集,采集完成后向计算机系统传递采集信息,然后计算机系统会分析与处理这些信息,把没有包装好的药品自动识别出来,并且向分离区传递识别信息,分离区的自动装置会依据传输的分离信息,隔离开没有包装好的药品,这样就可以有效分类包装好的药品与没有包装好的药品,在药品包装检测方面应用计算机视觉技术代替传统人工检测,不但可以实现药品准确无误的检测,而且还可以大大提高检测药品包装质量的效率,完善了药品生产的自动化,由此可见,在医学自动化中应用计算机视觉技术可以积极促进医学自动化的发展。
3 结束语
总之,计算机视觉技术是一门研究计算机识别能力的高新技术,它涵盖了很多其他技术,具有一定复杂性。要想使其在自动化生产中得到更好地推广与应用,我们必须在明白其基本概念、工作原理以及理论框架的基础上,结合实际生产情况,不断进行深入研究,只有这样才能使计算机视觉技术得到更好地推广与应用,才能使这项现代化的高新技术更好的服务于社会,服务于人类。
参考文献:
[1] 龚超,罗毅,涂光瑜.计算机视觉技术及其在电力系统自动化中的应用[J].电力系统自动化,2003(1).
引言
俗话说“书是人类进步的阶梯”,各大高校以及各大城市都建有图书馆,图书馆可以满足人们对各种知识的需求,因此对图书馆的管理工作也是十分重要。如今科技不断的发展,计算机视觉技术被运用到图书馆管理中。计算机视觉是用摄影机和电脑来代替人眼进行检测、监控、识别和测量等的机器视觉,它能够对收集来的图片和视频进行处理,然后获得相应的三维信息。计算机视觉是一门综合性的学科也是一个富有挑战性的领域,它已经被应用到各个领域中,它的重要性不言而喻。
一、计算机视觉技术的特点
(一)检测范围广泛
人眼的检测范围毕竟有限,有些细微的方面人眼是检测不到的,比如红外线、超声波等,但是计算机视觉技术却是可以检测到人眼所检测不到的范围。计算机视觉技术可以将红外线和超声波处理成图像呈现出来,它的检测范围十分广泛而且是不加选择的进行检测,可以说它的使用大大拓展了人眼的视野。
(二)检测安全可靠
我们都知道电子产品如果接触使用必然是会受到一定辐射的,但是计算机视觉与以往的检测机器不同,它是不需要与被测者进行接触的,观测者和被测者都是十分安全不会受到丝毫损伤的,而且它在使用的过程中并不会像人眼一样感到疲惫,它可以一直进行高效率的工作,因此对其检测结果也是十分的可靠的。
二、视觉技术在图书馆工作中的应用分析
(一)图书剔旧和修补
图书馆是人们知识的殿堂,是思想文化知识不断扩展的地方,因此图书馆的剔旧是一项十分重要的工作。图书馆的空间毕竟有限,一些相对陈旧而利用率较低的参考文献是需要不定期的进行筛选的,这些资料通常都是表面发黄、布满灰尘和封面破旧等,而图书馆的剔旧工作大多是由工作人员亲自到书库中进行挑选,这样不仅工作量大、耗时长还有可能会存在遗漏的现象,而且资料上的灰尘也会给工作人员的身体健康带来影响。
图书馆会收藏一些珍贵的古籍和字画,但是时间一长,受到温度、湿度等的影响会造成古籍和字画表面发黄、纸张变脆甚至会出现虫眼,这时候就需要对古籍字画进行修补工作。这项工作大多由工作人员亲力亲为,会给工作人员带来一定的健康影响,如果使用计算机视觉技术代替人们来进行工作,会大大减少工作人员的工作强度,同时也保证了工作效率。
(二)管理职工人员
图书馆中职工人员的正常有序的工作是保证图书馆正常运行的关键之处,在进行图书馆职工人员的管理上可以引用计算机视觉技术。以往的职工签到可能会出现代签现象,而计算机视觉技术可以采用图像视觉处理技术对职员进行磁卡、眼膜、人脸识别等进行签到,杜绝了以往签到工作所存在的弊端。同时,在图书馆工作处理中,计算机视觉技术也可以帮助职工人员处理一些难题,让图书馆工作能够有序高效的进行。
(三)监控检测系统
如今图书馆的书籍是完全向人们开放的,人们可以自由进行借阅,以往的人工检测会造成猜疑和尴尬,也会加大图书馆管理人员与读者之间的磨擦。计算机视觉技术的使用可以全自动化进行监控和检测,避免了以往人工监测所出现的问题。图书馆的书籍借阅管理工作异常重要,计算机视觉技术可以全程自动化进行高效工作,可以进行无人看管检测读者进出携带书籍文献和借阅空间的监控等,大大提高了工作效率,让图书馆的借阅工作顺利有序的进行。
三、视觉技术在图书馆工作中的应用问题的研究
(一)循序渐进的结合
计算机视觉作为一个新兴技术,虽然已经被运用到各个领域内,但是在引进入图书馆的管理中,如果想要快速的取代传统的管理模式,无论是工作人员还是工作理念都不可能及时接受这种改变的。新技术的融入必须要循序渐进,找到与传统的管理模式的结合点,然后进行慢慢磨合,达到与传统相结合的效果,这样人们才能够接受一种新技术的使用,不仅提高了工作效率减轻了工作人员的工作负担,也能够更好的发挥出计算机视觉技术的真正作用。
(二)提高专业人员的业务水平
新的技术需要新的业务水平来支持,如果没有相应的业务水平是没有办法发挥出新技术应有的作用。计算机视觉技术通过计算机成像系统来代替人类的视觉感官,能够自主适应环境、自主工作的能力。计算机视觉技术在不断的更新中,它的使用功能也是越来越多,操作方法越来越复杂,这时就需要图书馆的工作人员对计算机视觉技术有细的了解,能够熟练操作和运用计算机视觉技术。图书馆管理阶层应该组织工作人员进行培训工作,让他们接收新的知识掌握新的技术,不断的提高图书馆工作人员的业务水平,才能够保证图书馆工作高效进行。
(三)读者素质和应用手段的提高
现代化图书馆要想实现工作和服务的全面自动化,就需要有现代化技术的支持,计算机视觉技术的引用虽然是一个现代化技术的支持,但是如今仅停留在生物特征的识别领域。比如图书馆如今普遍有门禁系统,这也仅停留在计数功能和监控可冲消磁条的识别和认定上,如果有些读者素质不高故意去掉这些生物识别,图书馆的门禁系统就没有办法阻止这些读者的进入进出。因此,提高读者的素质和计算机视觉技术的应用手段,才能够保证计算机视觉技术在图书馆被广泛的进行使用。
【关键词】计算机视觉 交通领域 探究
近年来,随着科技水平的提高,计算机视觉技术逐渐被人们熟知并广泛应用。相较于其他传感器来说,视觉能获得更多的信息。因此,在我国交通领域中,也对计算机视觉技术进行研究完善,将计算机视觉技术应用在交通领域各个方面中,并取得了显著的成效。
1 计算机视觉的概述及基本体系结构
1.1 计算机视觉概述
通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。
计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知。
计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。
1.2 计算机视觉领域基本体系结构
提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。
2 计算机视觉在交通领域的应用
2.1 牌照识别
车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。
2.2 车辆检测
目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。
2.3 统计公交乘客人数
城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。
2.4 对车道偏离程度和驾驶员工作状态判断
交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。
2.5 路面破损检测
最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。
3 结论
本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。
参考文献
[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).
[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).
[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).
[4]马良红.三维物体影像的摄取与分析[J].中国公路学报,2014(05).
[5]朱学君,沈睿.关于计算机视觉在交通领域中的探讨[J].信息通信,2013(01):123.
[6]王大勇.关于计算机视觉在交通领域中的应用分析[J].科技与企业,2013(01):115.
作者简介
随着经济的迅猛发展,汽车的迅速普及,根据社会对汽车产业的要求,车辆的各方面指标都受到人们越来越多地关注,汽车涂装过程中的瑕疵直接影响汽车的外观质量,因此如何在生产过程中利用计算机视觉检测技术检测出并及时修补汽车涂装过程中产生的瑕疵就成了首要的任务[1]。本文的研究内容是首先了解计算机视觉检测系统的工作原理,汽车涂装瑕疵的种类,然后结合两者的特点,应用计算机视觉检测系统检测汽车涂装瑕疵。该研究的价值在于两方面:①对于汽车生产的自动化和过程自动化,计算机视觉是现实真正意义的自动的基础和一种重要的质量控制的手段;②对于汽车涂装瑕疵的修补可以提高其修补的精度。
2、汽车涂装瑕疵的计算机视觉检测系统
汽车涂装瑕疵检测系统主要包括照明系统、图像采集卡、CCD摄像机、计算机以及软件处理等几个主要部分[2]。综合计算机视觉检测系统的构成和线结构光测量的原理,基于计算机视觉的汽车涂装瑕疵的检测系统大致是这样构成的:将线结构光投射到被测物上,所形成的光斑作为传感信号,用CCD摄像机采集光斑图像,采集到的图像信号被传输到计算机,根据图像处理和计算机视觉检测系统的处理产生处理结果,返回到涂装生产线,对车身的涂装进行修正,从而提高产品质量。汽车涂装瑕疵的视觉检测系统如图1所示[3]。
3、计算机视觉检测
计算机视觉是计算机对图像进行自动处理并报告“图像中有什么”的过程,也就是说它识别图像中的内容。图像中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。计算机视觉系统基本原理:机器视觉系统通常采用CCD相机摄取图像,将其转化为数字信号,再采用先进的计算机硬件与软件技术对图像数字信号进行处理,从而得到所需要的各种目标图像特征值,并在此基础上实现模式识别、坐标计算、灰度分布图等多种功能。计算机视觉系统能够根据其检测结果快速地显示图像、输出数据、指令,执行机构可以配合其完成指令的实施。计算机视觉系统主要由图像获取、图像分析和处理、输出显示或控制三个功能模块组成[4]。视觉检测按其所处理的数据类型可分为二值图像、灰度图像、彩色图像和深度图像的视觉检测。另外,还有X射线检测、超声波检测和红外线检测。一个完整视觉检测系统包括:图像采集、图像分割、零件识别、模型匹配和决策判断。Newman[5]等描述了利用深度图像进行零件检测的AVI系统,具有一定的代表性。一个典型的AVI系统如图2所示。
4、汽车涂装瑕疵的检测算法
计算机的视觉又叫做机器视觉,通过利用计算机或者是其他的一些机械设备来帮助人们视线事物到图片的过程,从而进行三维世界的感知活动。计算机的快速发展,离不开神经心理学,心理学和认知科学方面的研究和发展,计算机视觉检测技术的发展方向就是对周围的三维空间进行感知和分析。一旦能够拥有这种能力,计算机不仅能感知到周围的总体环境,而且,还能够具有对物体进行描述,识别理解和储存的能力。
二、计算机视觉检测的基本原理
要实现人工智能对视觉的计算机处理是很重要的方面在计算机视觉应用领域中如果要让我们的计算机明白图像的信息就必须经过一系列的处理过程―――数字图像处理.数字图像的处理包括5个步骤:图像预处理(去除噪声)、分割处理分割后区域、测量、图像判读、图像技术.根据抽象程度和处理方法的不同图像技术可分为三个层次:图像处理、图像分析和图像理解.这三个层次的有机结合也称为图像工程.而计算机视觉(Computer vision)则是用计算机实现人的视觉功能对客观世界三维场景的感知、识别和理解.视觉检测按其所处理的数据类型又大致可分为二值图像、灰度图像、彩色图像和深度图像的视觉检测.另外还有X射线检测、超声波检测和红外线检测。
作为新兴检测技术计算机视觉检测充分利用了计算机视觉研究成果采用像传感器来实现对被测物体的尺寸及空间位置的三维测量能较好地满足现代制造业的发展需求.与一般意义上的图像处理相比计算机视觉检测更强调精度、速度和无损性以及工业现场环境下的可靠性.例如基于三角法的主动视觉测量理具有抗干扰能力强、效率高、精度合适等优点非常适合制造业生产现场的在线、非接触产品检测及生产监控.对人类视觉感知能力的计算机模拟促进了计算机视觉技术的产生和发展制造业上获取这些信息的目的有:(1)计算出观察点到目标物体的距离;(2)得出观察点到目标物体的运动参数;(3)甚至可以判断出目标物体的内部特性;(4)推断出目标物体的表面特征有时要求形成立体视觉。
三、亚像素检测技术
随着工业检测等应用对精度要求的不断提高,像素级精度已经不能满足实际检测的要求,因此需要更高精度的边缘提取算法,即亚像素算法。亚像素级精度的算法是在经典算法的基础上发展起来的,这些算法一般需要先用经典算法找出边缘像素的位置,然后使用周围像素的灰度值作为判断的补充信息,利用插值、拟合等方法,使边缘定位于更加精确的位置。现在的亚像素提取算法很多,如重心法、概率论法、解调测量法、多项式插值法、滤波重建法、矩法等。由于这些算法的精度、抗噪声能力和运算量各不相同,他们的应用场合也是各不相同的。
边缘是图像的基本特征,所谓边缘是指图像中灰度存在阶跃或尖顶状变化的像素的集合,边缘广泛存在于物体与物体、物体与背景之间。图像测量是通过处理被测物体图像中的边缘而获得物体的几何参数的过程,边缘的定位精度直接影响最终的测量结果。因此,图像边缘提取方法是检测的基础和关键之一。在视觉测量领域中,早期使用的都是像素级边缘检测方法,例如常用的梯度算子、Lapacian算子和门式算子等。以上的边缘检测方法的精度可以达到像素级精度,即可以判断出边缘位于某个像素内,但不能确定边缘在该像素内的更精确的位置。如果一个像素对应的实际长度较大,就会产生较大的误差,传统的整像素边缘检测方法就不再适用。
四、计算机视觉检测技术在机加工零件检测中的应用要素与过程
(一)曲阵CCD相机
面阵CCD是本项目图像采集系统中的主要设备之一,其主要功能是采集实验图像。该CCD相机主要由CCD感光芯片、驱动电路、信号处理路、电子接口电路和光学机械接口等构成。
(二)工业定焦镜头
在图像测量系统中,镜头的主要作用是将目标聚焦在图像传感器的光敏面上。镜头的质量直接影响到图像测量系统的整体性能,合理选择并安装光学镜头是图像测量系统设计的重要环节。
(三)数字图像采集卡
随着数字信号处理技术和嵌入式处理器技术在图像采集卡中的应用,使得图像采集卡向高速度、多功能和模块化方向不断发展。这类图像采集卡不仅具有高速图像采集功能,同时还具备部分图像处理功能,因此又可以称之为图像处理卡。
(四)标定板
为提高测量精度,需要进行摄像机标定。标定过程中,采用NANO公司的CBC75mm}.0型高精度标定板,外形尺寸为75mmx75mmx3.0mm,图形为棋盘格,其尺寸为2.0mmx2.0mm,精度为1级,即图形尺寸精度与图形位置精度为。
(五)背光源
背光方式只显示不透明物体的轮廓,所以这种方式用于被测物需要的信息可以从其轮廓得到的场合。因此,为精确提取轴的图像中的边缘特征,需采用背光源。为使图像边缘更锐利,光源颜色选择红色。
五、结语
随着计算机技术和光电技术的发展,已经出现了一种新的检测技术―基于计算机视觉的检测技术,利用CCD摄像机作为图像传感器,综合运用图像处理等技术进行非接触测量的方法,被广泛地应用于零件尺寸的精密测量中。本文以面阵CCD为传感器,研究了零件在线测量的方法,实现了零件尺寸的图像边缘亚像素定位测量,对面阵CCD在高精度测量方面的应用作了进一步的探索和研究,为面阵CCD在复杂零件尺寸高精度测量的实现打下了基础。
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)05-1211-02
新型计算机视觉图像精密测量是一种基于计算机程序设计以及图像显示的高精度的关键技术,它广泛用于测量的领域,对于测量的准确性有很好的保证。这种关键技术是几何了光学的特性,发挥了图像学的显影性,把普通的测量技术瞬间提升到了一个新的高度。在这项关键技术中包含了物理学中光的效应,图像中的传感器以及计算机中的编程软件,这还不完全,还有一些其他科学领域知识的辅助,可以说这项关键技术是一个非常有技术含量的技术,很值得学者进行研究。
1 计算机视觉图像精密测量的关键技术的具体形式
在以往的测量中,选择的测量方式还是完全采用机械的形式,但是在使用了计算机视觉图像精密测量后,完成了许多以往技术所不能达到的任务。在我们的研究中,计算机视觉图像测量的原理是通过摄像机将被处理的对象采集进行影像采集,在多个控制点的数据采集完成后,系统会自动将这些图像进行整合,得出相关的几何多变参数,再在计算机上以具体的数据显示出来,以供技术人员使用参照。
在上面所说的摄像机并不是我们通常意义上生活中使用的摄像机。它是一种可视化较强,表针比较敏感的测试仪。可以将视觉中的二维形态通过显影,记录在机械的光谱仪上,再将这种的二维图像做数学处理,有二阶矩阵转换为三阶矩阵,通过播放仪呈现出三维的影像。这时的图像变为立体化,更有层次感,效果上也有了明显的变化,这是一种显示方法。此外还有一种造价较高的仪器,我们不常使用,就是图像提取器。同样是采集控制点的数据,将数据整合在系统之内,然后对于原始的图像进行预处理,不再经过有曝光这个程序,将图像中关键点的坐标在整个内部轴面上体现出来,提取数据帧数,再运用机器的智能识别系统,对控制点的坐标进行数据分析,自动生成图形,这也可以用于精密测量。它的优点就是使用上极其的方面,基本只要架立仪器和打开开关,其他的工作机械系统都会自动的完成。使用的困难就是造价极其的高,不适合一般企业使用。在基于计算机视觉图像测量中使用上的原理如下:
1) 计算出观察控制点到计算机视觉图像测量仪器的有效距离;
2) 得出观察点到目标控制点之间的三维的运动几何参数;
3) 推断出目标控制点在整个平面上的表面特征( 大多时候要求形成立体视觉);
4) 还通过观察可以判断出目标物体的几何坐标方位。
在整个计算机视觉图像精密测量的关键技术中最关键的元件就是压力应变电阻仪,这也是传感器的一部分。压力应变电阻仪的使用方式是将应力片粘贴在控制点位上,事先在物体表面打磨平整,清理干净后,涂抹丙酮试剂,在液体完全风干后就可以黏贴应力片,通过导线的联接,形成了一小段闭合的电路,时刻让计算机视觉图像系统可以感应到并作跟踪观察。因受到来自不同方面谐波的影响后,应力片会产生一定数值的电阻,在电路中,这些电阻会转化为电流,视觉图像系统接收到了电流后就会显示在仪表盘上相应的数据,我们就可以根据仪表盘中的数据记录测量中的数据,很好的解决了原始机械在使用过程中大量的做无用功所消耗资源的现象。传感器对每个应点都进行动态的测量,将数据模转换成现实中的图像,精确的成像可以测算出控制点的位置,用计算机视觉图像精密测量结合数据方面的相关的分析,得出施工中的可行性报告分析,减低了施工中的成本,将施工的预算控制在一个合理的范围之内。
当无法观察到控制点是,计算机视觉图像精密测量可以通过接收信号或是相关的频率波段来收集数据,不会因为以往测量的环境不好,距离太远,误差太大的影响。
2 计算机视觉图像精密测量的关键技术分析
在计算机视觉图像精密测量的关键技术中解决了很多以往很难完成的任务,但是在使用过程中还是发生了很多的问题。尤其在视觉图像的选择中,无法使用高帧数的图片显示,无法将计算机视觉图像精密测量的关键技术的优点发挥出来。我们就计算机视觉图像精密测量的关键技术中常见的问题进行讨论。
2.1 降低失误的概率
在很多的数据误差中,有一部分是出现在人为的因素上面。对于机器的不熟悉和操作中的疏忽都会在一定程度上对图像的视觉感模拟带来麻烦。对于网络设备的配置上,要经常性的学习,将配置在可能的情况下设置的更加合理和使用,保证网络连接系统的安全性。为防止更多因操作带来的误差,选用系统登入的制度,用户在通过识别后进入系统,在采集数据后,确定最终数据上又相关的再次确定的标识,系统对本身有的登录服务器和路由器有相关的资料解释,记录好实用操作的时间,及时备份。
2.2 对于权限的控制
权限控制是针对测量关键所提出的一种安全保护措施,它是在使用计算机视觉图像精密测量的关键技术中对用户和用户组赋予一定的权限,可以限制用户和用户组对目录、子目录、文件、打印机和其他共享资源的浏览和更改。图像中的运行服务器在停止的情况下可以做出不应答的操作指令,立刻关闭当前不适用的界面,加快系统的运行速度,对于每天的日志文件实时监控,一旦发现问题及时解决。对于数据终端的数据可采用可三维加密的方法,定时进行安全检测等手段来进一步加强系统的安全性。如果通过了加密通道,系统可以将数据自动的保存和转换为视图模式,对于数据的审计和运行可以同时进行,这样就可以很好的保证大地测量中的图像数据安全,利用防护墙将采集中废弃的数据革除在外,避免数值之间发生紊乱的现象,进一步改善计算机视觉图像精密测量的关键技术。
2.3 开启自动建立备份系统
计算机视觉图像精密测量的关键技术的完善中会常遇到系统突然崩溃或是图像受到严重干扰导致无法转换的一系列情况,发生这种情况最大的可能性就是系统在处理多组数据后无法重新还原成进入界面。这时为保证图片转换成数字的系统数据不丢失,我们对系统进行备份。选定固定的磁盘保存数据,定期将产生的数据(转换前的图像和转换后的数值)导出,保证程序的正常运行。当系统一旦发生错误,可以尽快的恢复数据的初始状态,为测量任务的完成争取更多的时间。我们还要减少信号源周围的干扰,定期的更新系统数据库,保持数据采集的稳定性,把摄像机记录出的数据节点保存在相应的技术图纸上,用这样的方式来知道测量工作。系统备份的数据还可以用于数据的对比,重复测量后得出的数据,系统会自动也备份的数据进行比对,发现误差值在规定以外,就会做出相应的预警,这样也能在工作中降低出现误差的概率。
3 计算机视觉图像精密测量的关键技术遇到的困难和使用前景
计算机视觉图像精密测量的关键技术作为一种新兴技术在使用时间上不过十几年,其使用的程度已经无法估算。正是因为它的简单、使用、精度高以及自动化能力卓越的特点受到了测量单位的广泛青睐。在测量方面的这些可靠性和稳定性也是有目共睹的。在土木和机械测量的行业计算机视觉图像精密测量的关键技术都会有广泛和良好的使用,前景也是十分的广阔。但是不容忽视该技术也有一些弊端。这项关键技术中涵盖的学科非常的多,涉及到的知识也很全面,一旦出现了机器的故障,在维修上还是一个很大的问题,如何很好的解决计算机视觉图像技术的相关核心问题就是当下亟待解决的。
我们都知道,人的眼睛是可以受到吱声的控制,想要完成观测是十分简单的,但是在计算机视觉图像技术中,毕竟是采取摄像机取景的模式,在取得的点位有的时候不是特别的有代表性,很难将这些问题具体化、形象化。达不到我们设计时的初衷。所以在这些模型的构建中和数据的转换上必须有严格的规定和要求,切不可盲目的实施测量,每项技术操作都要按规程来实施。
上文中也谈到了,计算机视觉图像精密测量的关键技术中最主要的构建是传感器,一个合理的传感器是体统的“心脏”,我们在仪器的操作中,不能时时刻刻对传感器进行检查,甚至这种高精度的元件在检查上也并不是一件简单的事情,通过不断的研究,将传感器的等级和使用方法上进行一定的创新也是一项科研任务。
4 结束语
在测量工程发展的今天,很多的测量技术已经离不了计算机视觉图像技术的辅助,该文中详细的谈到了基于计算机视觉图像精密测量的关键技术方面的研究,对于之中可能出现的一些问题也提出了相应的解决方案。测量工程中计算机视觉图像精密测量的关键技术可以很好的解决和完善测量中遇到的一些问题,但是也暴露出了很多的问题。
将基于计算机视觉图像精密测量的关键技术引入到测量工程中来,也是加强了工程建设的信息化水平。可以预见的是,在未来使用计算机视觉图像技术建立的测量模型会得到更多、更好的应用。但作为一个长期复杂的技术工程,在这个建设过程中定会有一些困难的出现。希望通过不断的发现问题、总结经验,让计算机视觉图像精密测量的关键技术在测量中作用发挥的更好。
参考文献:
[1] 汤剑,周芳芹,杨继隆.计算机视觉图像系统的技术改造[J].机电产品开发与创新周刊,2005,14(18):33-36.
中图分类号:TP391.41
受到CIMS的推动和影响,诸多企业的发展趋势逐步趋向于个性化以及自动化,这种大的发展趋势间接的对我国的计算机辅助技术提出了更高的要求,计算机相关技术的发展面临着更加严峻的挑战。就现阶段分析来看,计算机辅助检测技术在现代诸多企业中得到了广泛的应用。随着柔性制造系统的不断进步与发展,驱动图像处理软件、现场总线技术的日趋成熟,检测系统的灵敏性、智能化特点愈发受到人们的关注,在这种大的发展趋势之下,计算机视觉检测技术得到了较快的发展。基于计算机视觉系统现已经广泛应用于现场监控、工况监视等诸多环境之中。
1 关于对视觉技术的相关研究
1.1 基于计算机的视觉检测技术的原理分析和探究
图像技术主要指的就是通过各种途径所实现的对图像的获取以及进一步的深入加工和处理技术。根据视觉检测技术的抽象程度以及对图像处理方式的不同,可以大致将图像的处理和加工技术划分为三个最主要的层次,这三个层次分别是图像的加工处理、图像的分析以及对于图像的理解。将这三个层次进行进一步的结合,便是图像工程。计算机视觉检测技术是一门新兴的计算机检测技术,该技术建立在对计算机视觉研究的基础之上,吸收和借鉴相关的研究成果,借助于传感器来实施三维测量,进而有效获得被测物体的空间具置信息,故而可以很好的满足当代制造业的发展需求。区别于一般的图像处理系统,计算机视觉检测技术所获取的相关数据信息更为精准和迅速,其环境适应性更强。
基于计算机的视觉检测技术注重计算理论的辅导作用,以应用为目标进行视觉技术分析。自上世纪七十年代以来,我国关于对计算机视觉检测技术的研究又取得了显著的进步,并且逐步迈入更为实质性的研究阶段,在该阶段中,逐步开始从通过从多个角度(诸如光学角度、生理学角度以及投影射影角度等等)对其成像问题加以分析。以Marr为代表的专家更是建立了一些一般性的视觉性处理模型来辅助该技术的研究。
1.2 视觉检测技术中传感器的作用
在计算机的控制下配有相关的视觉检测系统,在该视觉检测系统中,主要有三个主要方面的主要作用:第一,对于视觉传感器模型的分析以及确定;第二,进行图像数据分散与整理的相关工作;第三,CAD模型的建立。传感器的主要作用就是对测量棒材的多个截面进行分析,将所收集得到的数据经由图像采集卡采集后,传到相关的图像处理系统中,进而进一步辅助准确的模型的建立。
2 基于计算机的视觉检测技术的应用研究分析
2.1 基于计算机的视觉检测技术的发展状况研究
在研究的初步阶段,相关技术人员借助于数字化的图像处理技术,主要就是为了进一步提高所获得的数字照片的清晰度和质量要求,进而更为精准、科学、规范的对照片所提供的信息加以辨别,为航空卫星图片的读取、识别和分类做准备。在这一系列的视觉工作中,其中最为主要和常见的工作主要是包括分类、识别判读以及三维结构的构建。
基于计算机的视觉检测技术借助于对计算机视觉技术,将所获得的被观察物品的相关信息加以信号转换,并传递给图像处理系统,图像处理系统通过甄别和判断不同照片像素的分布和亮度等讯息,将其进一步转换成为数字化信号,接下来由计算机的图像系统抽出符合目标特征的信号加以运算,对下一步的设备动作加以决定和执行。
就现阶段而言,我国的计算机视觉检测技术系统在诸多领域均有所应用,最为典型的领域诸如医学的辅助诊断、机器人的感应系统、智能化的人机接口等均是建立在该技术的基础之上。借助于计算机视觉技术这一手段,可以有效提高对产品检测的效率,提高精准度,这种新型的视觉检测技术相比较于传统的人眼在流水线上的跟进,其具有显著的优越性,其获取测量结构迅速、检测结果可以直接被观察、可以进行自动识别以及定位准确和实时性的特点,这就很好的避免了由于人的一些主观性因素所导致的误差出现。
二十世纪以来,基于生物特性的计算机视觉检测技术得到了空前的发展,具体表现在人脸识别、生硬识别、指纹识别以及虹膜的识别中,形式日趋灵活和复杂多变。借助于计算机的视觉检测技术,可以有效对用户的身份进行鉴定和识别、判定用户的特殊信息等。除此之外,还可以将基于计算机的视觉识别技术逐步推广到其他领域,如海关的安全检查以及出口、入口的安全控制等领域。
2.2 基于计算机的视觉检测技术的相关应用分析
2.2.1 数码相机中所采用的图像采集技术
视觉检测技术的一个显著特点就是有效提高了生产的柔性和自动化程度,本世纪以来,数码相机凭借其高分辨率,快速成像、显像,功能丰富多变以及性价比较高的特定风靡全球,逐步取代了传统的照相机,传统的照相机主要采用的是CCD 摄像头,其主要的核心及时采集卡,显然这种采集系统已经逐步落后于时展的脚步,现已逐步被淘汰。
2.2.2 微文字识别系统的相关研发和设计
随着科学技术的不断进步与发展,大规模集成电路得到了较快的进步,基于计算机的视觉检测系统的成本得到了极大的降低,基于计算机视觉检测技术的微文字识别系统的研发也被提到了日程中来。微文字识别系统的处理芯片大多是借助于数字信号处理芯片来实现图像的识别,进而借助先进的语音合成技术将朗读变为可能。此外,为了便于使用,该系统的体积被尽可能的缩小,并且可根据美观度和实用性等设计为各种形状。
2.2.3 特殊用纸水印在线检测系统
基于计算机的视觉检测技术可以在某一特定领域代替人的主观判断,诸如水印质量的自动检测方面。区别于普通的工作人员,计算机可以实现长时间工作,对于误差范围的控制可以通过设置等实现,而且在计算机执行任务期间,所受到的客观和主观因素相对较少,这就极大程度上避免了由于人的因素所导致的失误性操作,进而有效提高了工作效率以及检测的精准度。这一优点,在水印质量标准的认定中具有十分重要的意义和作用,通过研发一定的程序和软件,可以制定出一套操作性强、权威性较高的水印清晰度量化标准。
3 基于计算机的视觉检测技术的发展展望
综合分析来看,计算机视觉检测技术现已有大约四十年的历史,作为一种新兴的检测技术,该技术的显著优越性不言而喻,该检测技术以其高精度、反应灵敏迅速、智能化、自动化等特点被广泛应用于诸多领域和行业之中,并取得了显著的成,可以说,该技术具有十分广阔的发展前景。但是,不可否认,基于计算机的视觉检测技术并不是十分的成熟,在其设计和研发过程中仍然存在着诸多不足,而且视觉检测技术是一项设计到心理、生理等多方面知识的复杂性技术,涉及领域众多,更强大功能的实现需要人类知识的不断拓展和延伸,因此,必须意识到该检测技术发展道路上的困难和挑战。
4 结束语
随着科学技术的不断进步与发展,经济的发展对于新技术的研发提出了更高的挑战,再者由于广大人民群众生活质量的不断提高,对于生活水平也有了进一步的认识和了解。基于计算机的视觉检测技术的研发和进步,无疑更好推动了高速发展的经济,不断满足了人民群众日益提高生活需求。由此来看,深入对视觉检测技术的研究和探究无疑具有十分重要的作用,笔者衷心希望,以上关于对我国基于计算机的视觉检测技术的相关探究能够被相关负责人合理的吸收和采纳,进而更好的推动科学技术的创新和进步,推动经济的不断进步与发展。
参考文献:
[1]李旭港.计算机视觉及其发展与应用[J].中国科技纵横,2010(06):42.
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。
1 计算机视觉技术
计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。
2 计算机视觉技术在各领域的应用分析
随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。
2.1 在工业领域中的应用
工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。
2.2 在农业生产领域中的应用
该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。
2.3 在林业生产中的应用
该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。
2.4 在农产品检测中的应用
农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。
2.5 在电力系统自动化中的应用
计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。
2.6 在图书馆工作中的应用
随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。
3 结束语
通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。
中图分类号:TP391.41 文献标识码:A文章编号:1009-3044(2007)04-11102-03
1 引言
基于案例推理(case-base reasoning)是人工智能中正不断发展的一项重要推理技术。基于案例推理与类比推理方法相似,案例推理将旧经验或教训转换为知识,出现新问题时,首先查找以前是否有相似的案例,并用相似案例解决新问题。如果没遇到相似案例的,经过推理后解决新问题的方法,又会成为新的案例或新经验,下一次再遇到相同问题时,就可以复用这些案例或经验。
这与人遇到问题时,首先会用经验思考解决问题的方式相似,这也是解决问题较好的方法。基于案例推理应用于工业产品检测或故障诊断时具有以下特点:
CBR智能化程度较高。利用案例中隐含的难以规则化的知识,以辅助规则推理的不足,提高故障诊断系统的智能化程度。
CBR较好解决“知识获取”的瓶颈。CBR知识表示以案例为基础,案例的获取比规则获取要容易,大大简化知识获取的过。
CBR求解效率较高。是对过去的求解结果进行复用,而不是再次从头开始推导,可以提高对新问题的求解效率。
CBR求解的质量较高。CBR以过去求解成功或失败的经历,可以指导当前求解时该怎样走向成功或避开失败。
CBR持续不断的学习能力,使得它可以适应于将来问题的解决。
所以基于案例推理方法正不断应用在产品质量检测和设备故障诊断方面,并取得较好的经济效益。为了产品检测和设备故障诊断中,更为智能化,更容易实现现场检测和诊断,计算机视觉技术起到很大的作用。
计算机视觉是研究用计算机来模拟人和生物的视觉系统功能的技术学科,使计算机具有感知周围视觉世界的能力。通过计算机视觉,进行图像的获取预处理、图像分割与特征抽取、识别与分类、三维信息理解、景物描述、图像解释,让计算机具有对周围世界的空间物体进行传感、抽象、判断的能力,从而达到识别、理解的目的。
计算机视觉随着科学技术发展,特别计算机技术、通信技术、图像采集技术、传感器技术等,以及神经网络理论、模糊数学理论、小波的分析理论等计算机视觉理论的不断发展和日趋成熟,使计算机视觉从上世纪60年代开始兴起发展到现在,取得快速发展,已经从简单图像质量处理发展到围绕着纹理分析、图像编码、图像分割和滤波等研究。图像的分析与处理,也由静止转向运动,由二维转向三维,并主要着眼于对图像的识别和理解上,也使计算机视觉的应用领域更为广泛,为案例推理中运用计算机视觉打下基础。
2 案例推理系统的主要关键技术
(1)案例的表示与组织
案例的表示与组织即是如何抽取案例的特征变量,并以一定的结构在计算机中组织存储。如何将信息抽取出特征变量,选择什么语言描述案例和选择什么内容存放在案例中,案例按什么组织结构存放在存储器中,这关系到基于案例推理方法的效率,而且对于案例数量越来越多,结构十分复杂的案例库,尤其重要。
(2)案例的索引与检索
案例的索引与检索即是为了查找最佳相似案例,如何建立案例索引和相似度算法,利用检索信息从案例库中检索并选择潜在可用相似案例。后面的工作能否发挥出应有的作用,很大程度上依赖于这一阶段得到的案例质量的高低,因此这一步非常关键。
(3)案例的复用和调整
案例的复用即是如何根据旧案例得出新解,涉及到找出案例与新问题之间的不同之处,案例中的哪些部分可以用于新问题,哪些部分不适合应用于新问题的解决。而复用还分案例的结果复用,案例的求解方法复用。
(4)案例的学习
案例的学习即是将新解添加到案例库中,扩充案例库的案例种类与数量,这过程也是知识获取。此过程涉及选取哪些信息保留,以及如何把新案例有机集成到案例库中,包括如何存储,如何建立索引等等。
针对案例推理的关键技术,根据检测和故障诊断系统的特点,计算机视觉主要解决如何将产品图像输入系统,如何将产品图像特征进行抽取和描述,如何区别产品不同之处。以便案例推理系统进行案例建模,确立案例的表示形成和案例相似度的计算。本文主要从计算机视觉如何运用在案例推理系统进行探讨。
3 产品输入系统
产品输入系统在不同产品类型和生产环境可能有不同之处,主要应有传感器单元和图像采集单元。如图1。
图1 产品输入系统结构
传感器单元主要判断是否有产品存在,是否需要进行图像采集,是否继续下一个产品图像的采集。这简单传感器可使用光电开关,配合光源,当产品经过时,产品遮挡住光源,使光电开关产生一个0值,而没有产品经过时,光电开关产生相反的1值,系统通过判断光电开关的值,从而判断是否有产品。
图像采集单元简单地说是将产品拍摄并形成数字化图像,主要包括光源、反射镜、CCD相机和图像采集卡等组成。光源和反射镜作用主要使图像中的物体和背景之间有较大灰度。CCD相机主要是拍摄设备。图像采集卡主要是将图像数字化。通过传感器判断有产品后,光源发出的光均匀地照在被测件上,CCD相机拍摄,拍摄图像经过图像采集卡数字化后输入存储设备。存储设备即为计算机硬盘。存放原始图像、数据、处理结果等。
这是案例推理系统的原始数据,是图像处理、图像特征抽取描述的基础。
4 图像处理
在案例推理系统中,需要对案例的组织和案例建模,案例的组织即案例的表示,相对计算机而言,即图像特征的抽取,即某图像具有与其它图像不同之处,用于区别其它图像,具有唯一性。同时,又能完整地表示该图像。所以案例的表示要体现案例的完整性、唯一性、操作容易性。
图像中有颜色区别、又有物体大小之分以及图像由不同的物体组成。如何表示图像,或说图像内部包含表示的本质,即图像的描述。根据图像特点,确立图像案例的表示,以图像的像素、图像的数字化外观、图像物体的数字组成等属性。这需要对产品输入的原始图像进行处理。
在计算机视觉技术中,对原始图像主要进行图像增强、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。具体工作流程如图2所示:
图2 计算机视觉的任务与工作流程
图像预处理是将产品的数字图像输入计算机后,首先要进行图像的预处理,主要完成对图像噪声的消除以及零件的边缘提取。预处理的步骤为:图像二值化处理;图像的平滑处理;图像的边缘提取。
图像二值化处理主将灰度图形二值化的关键是阈值的选取,由于物体与背景有明显的灰度差,可以选取根据灰度直方图中两峰之间的谷值作为阈值来分割目标和背景。
图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中因成像设备和环境所造成的图像失真,提取有用信息。
图像边缘提取是为了将图像中有意义的对象与其背景分开,并使之具有某种指定的数学或符号表达形式,使计算机能够理解对象的具体含义,检测出边缘的图像就可以进行特征提取和形状分析了。可采用多种算法,如采用Sobel算子提取边缘。
图像预处理是为下一步的特征描述打基础,预处理的好坏直接影响案例推理的结果和检测诊断的效率。
特征提取是对图像进行描述,是案例建模关键,案例建模是根据案例组织要求抽取图像特征,是建立案例索引和检索的关键。如果图像没有特征,就谈不上进行检索。图像特征可通过图像边界、图像分割、图像的纹理等方法,确定图像特征,包括是什么产品、产品形状大小、产品颜色,产品有什么缺陷、产品缺陷在什么位置等特征,根据这些图像特征进行描述,形成计算机中属性值,并从数据库查找相应信息资料,从而确定产品之间的关系,相似度,也就是案例推理的方向。
5 系统的检索
根据案例推理原理和相应算法,建立案例推理系统模型,如图3所示。
图3 案例推理系统
对话系统:完成人机交互、问题描述、结果显示和系统总控制。
案例库系统:由案例库及案例库管理系统组成。
数据析取系统:对各种已有的源数据库的数据通过转换而形成所需的数据。
多库协同器:根据问题求解的需要,按照一定的数据抽取策略,完成问题求解过程中对模型库系统、方法库系统、知识库系统和数据库系统等资源的调度与协调。
知识库系统:由产生式规则组成,这些知识包括专家经验和以规则形式表示的有关知识,也可以是数据挖掘结论,支持案例检索、案例分析、案例调整等。 模型库系统:由模型库、算法库、模型库管理系统组成。完成模型识别和调用,并把结果综合,送入对话系统显示,作为补充信息供案例检索、调整使用。
数据库系统:存放待决策支持的所有问题,并完成其维护与查询等功能。
由于系统主要应用产品的现场实时检测监控或故障诊断,所以系统的检索时,也必须输入检索值,即输入现场产品的图像,在通过产品预处理、图像的二值化、分割和边界处理后,进行图像特征描述,根据图像描述进行分类识别。根据案例推理的算法检索案例库中,是否有相似的案例。即确定相似度。相似度确定主要由案例推理的算法确定,如贴近分析法。确定相似度最大作为结果,并将案例的解输出,给相关控制系统进行决策。如产品质量检测,确定产品质量是否合格,是否有不合格产品,不合格产品是什么原因造成,故障源是什么,如何解决和排除故障,等等。
6 结论
案例推理方法有效地解决计算机视觉技术中图像检索问题。对提高图像检索的效率和准确度提供了平台。
计算机视觉技术也为案例推理系统实现产品现场实时检测、监控、诊断提供技术支持。计算机视觉技术现场的数据采集、处理为案例推理打好基础。
两者的结合设计的系统适用范围很广,只要产品需要进行质量检测、监控,或设备需要进行故障诊断和维护,都可以适用。
系统提供的实时检测、监控和诊断功能,提高企业的生产效益,降低了生产成本。
参考文献:
[1](美)桑肯(Sonka,M).图像处理分析与机器视觉[M].人民邮电出版社.
[2]王宏等译.计算机视觉[M].电子工业出版社.
[3]蔡建荣.自然场景下成熟水果的计算机视觉识别[J].农业机械,36(2):61-64.
[4]王宇辉.基于计算机视觉的锥体零件尺寸在线检测算法[J].重型机械,2005,2:4-6
[5]骆志坚.基于计算机视觉检测技术自动计数系统的研究与应用[J].仪表技术与传感器,2005,3:41-43.
[6]左小德.贴近度分析法在案例库推理中的应用[J],南大学学报(自然科学版),1997,18(1):21-26.
随着计算机技术的快速发展,计算机设备逐渐被应用到社会生活的各个方面,尤其是在当前计算机视觉技术和图像处理技术快速发展的时期,各个科技领域中的计算机视觉技术已经逐渐成熟。计算机视觉技术主要是利用计算机智能化来替代人眼,即对于客观存在的三维立体化世界的理解和识别,整个实现过程均是以计算机技术作为基础。随着计算机视觉技术的不断发展,现今其已逐渐成为了一门神经生理学、计算机工程、信号学、物理学、应用数学等综合性学科。计算机视觉技术系统其在高性能计算机基础之上来实现对大量数据的获取,并且通过智能算法来对获取数据进行处理,从而完成对数据集成。
一、视频中运动物体检测原理
对于视频中的运动物体检测主要分为两中方法,其一为宏观检测法;其二为微观检测法。宏观检测法是对获得的整幅图像进行检测,而微观检测法则是对所需要的区域进行图像检测。视觉技术在检测运动物体的时候,首先对图像进行采集,并对采集的信息数据进行预处理,将图像进行分割,然后分别提取运动物体的影象,从而实现参数的更新。图像采集过程中采用背景差分法,实现对背景图像的提取,其通过一定算法采用人为手段获取没有背景的图像。另外在进行运动物体检测的时候还可以采用帧间差分法,其主要是实时获取帧图,然后实现一帧一帧图像比值的比较,从而获取具有差值的图像。运动物体进行检测的时候需连续获取帧图,将这些帧图组合起来,其实就是物体的运动轨迹,然后同分割技术就能勾勒出物体的轮廓。随着计算机视觉技术的不断深入研究,发现此两种方法单独使用仍然存在的一些缺点,于是研究人员将二种检测方法进行融合,形成一种综合检测方法。综合检测法将两者检测方法的优势进行了融合,并将其灵活的应用到了生产和生活之中,取得了十分不错的效用。
二、基于Opencv的计算机视觉技术探究
(一)基于Opencv的运动物体检测
运动物体在进行检测的时候,基于Opencv的检测原理主要为:根据物体某项特定信息,例如,颜色、轮廓、性状等,在复杂背景中利用这些特定的信息将物体分离出来。整个图像的分离过程首先是进行视频流捕捉,然后是进行视频的格式转换,再将图像进行预处理,从而提取前景物体,减少环境因素对图像处理的误差,最后根据物体特征提取,并完成对运动物体的跟踪。从图像中提取所需的目标物体,其实质就是对整个屋里轮廓进行检测和分割,根据每个图像的帧差异来进行提取。
(二)基于Opencv图像预处理
视觉技术应用于复杂的环境之中,由于存在着光照的变化,其场景中所出现的环境因素对视频采集设备性能影响很大。环境因素会使得获取的图像信息的质量降低,并且在图像中无法避免的存在着噪点,这对于运动物体的检测和图像采集会造成很大的影响。当获取视频帧图像之后需对其数据进行预处理,通常有平滑度滤波处理、图像填充、图像背景更新等。
1.平滑度滤波处理
由于在进行视频图像采集的时候存在着噪点,那么我们就需要对其进行噪点处理,以求减小噪声。滤波平滑度滤波处理,其具有线性和非线性两种方式,其中线性方式进行处理器运算简单、运算速度快,但是在进行处理之后的图像都会呈现不清晰的情况。而非线性方式尽心给处理之后,虽然能够很好的减小噪点,确保信号的局部特点,但是其运算的速度会较慢。
2.图像填充
对于帧图像进行处理,通常采用检测边缘填充法或者是腐蚀膨胀法来完成,其中填充法是指当检测出目标物体之后,利用边缘检测方法来对物体进行辨识,然后利用形态学的漫水填充法进行填充。图像的腐蚀膨胀则主要是由于摄像机的性能等问题造成的。
3.实时背景更新
在进行图像差分之前,需要对背景图样进行确定,并且需要对其进行初始化处理。以方便以后在进行检测时候能够对实时背景图进行差分计算,只有这样,才能够获得极佳的前景效果。在进行图像差分时,首先需要根据指定法来确定第一帧背景的图像,并将其指定为第一张背景图片,然后在检测过程中根据算法对背景实施更新。整个图像在进行更新时,其主要的流程为:判断并读取图像是否为第一帧;将Opencv处理的图像转化为单通道灰度值;将实时采集的图像进行高斯平滑度处理,去除噪点;最后使用形态学滤波处理噪点。
(三)提取前景运动物体图像
检测运动物体的时候,只有在检测流程中确保精确度,才能够获取满意的前景跟踪效果。此过程中主要分为两个步骤,第一步为二值化图像之后进行分割;第二步,图像分析前处理,进行充分填充,确保前景图的完整性。其中,前景图的提取主要分为下面几个步骤:首先对前景图像和背景图像进行差分,然后对差分的图像进行二值化,再对背景中的前景图像边缘进行检测,根据轮廓进行填充图像。由于摄像头存在于不同的场景和环境之中,不论是室外或者是室内随着场景的变化都会对图像的采集产生影响。那么在前景图中提取目标就需要在检测系统中采用有效手段来完成背景实时更新。
阀值二值化分割法可以对检测的物体进行前景和背景差图分割,从而使目标物体能够分离出图像,且阀值分割先要确定每个像素的点是否处于灰度范围值之内。将图像中的像素灰度与确定的阀值进行比较,其结果解释所有像素点分为2类,一类像素的灰度小于阀值,另外一类就是大于阀值。阀值二值化分割时,确定分割的阀值T,然后分割图像。选取合适的阀值进行分割,可以有效的减少光照因素影响,常用的动态阀值主要有直方图来法与最大类方差法这另种分割方法。
三、计算机视觉三维技术
计算机视觉技术的核心为分割问题、运动分析、3D立体场景重构等,立体视觉主要是从多幅图像的参照中获取目标物体的三维几何信息。计算机视觉所模拟出的3D立体画面只需要摄像机从不同的角度同一时间针进行图像捕获,将2D信息进行3D重构,进而将计算机程序重建于真实的三维场景之中,以恢复物体的真实空间信息。
(一)视觉系统
视觉系统捕获图像的过程,实则可以看成为对大量信息进行处理过程,整个系统处理可以分为三个层次,其一,理论层次;其二,描述层次;其三,实现层次。在摄像机视觉系统之中,输入的是2D图像,但是输出为3D信息,而这就可以实现对图像的位置、距离等信息的如实描述。视觉系统分为三个进阶层次,第一阶段为基础框架;第二阶段为2.5D表达;第三阶段为三维阶段。在第二阶段中实现的2.5D表达,其原理是将不完整的3D图像信息进行表达,即以一个点为坐标,从此点看去某一些物体的部分被遮挡。第三阶段的三维阶段,则是人眼观察之后可以从不同的角度来观察物体的整体框架,从而实现了将2.5D图像信息的叠加重合运算,进一步处理之后得到了3D图像。
(二)双目视觉
人们从不同角度观看同一时间内的同一物体的时候,可以利用算法测量物体间的距离。此法被称为双目立体感觉,其依据的原理是视觉差原理,利用两台摄像机或者一台摄像机,对两幅不同的图像进行不同角度观察,并且对其观察的数据进行对比分析。实现双目立体视觉与平面视觉图像获取,其主要的步骤为:
(1)图像获取
从两台不同的摄像机,捕获帧图像,由于环境因素会造成图像差异困难。为了更好的跟踪目标、检测,当捕获图像之后,需要对图像进行预处理。
(2)摄像标定方式
获得真实坐标系中的场景点中的与平面成像点占比见的对应关系,借用三维立体空间中的三维坐标,标定之后确定摄像机的位置以及属性参数,并建立起成像的模型。
(3)特征提取方式
所谓的特征提取方式主要是为了提升检测、跟踪目标的准确性,需要对目标物体进行特征提取,从而实现对图像分割提取。
(4)深度计算
深度信息主要是根据几何光学原理,从三维世界进行客观分析,因为距离会产生不同的位置,会使得成像位置与两眼视网膜上有所不同。简单来说,客观景物的深度可以反映出双目的视觉差,而利用视觉差的信息结合三角原理进行计算,可呈现出深度的图像信息。
(三)摄像机模型
摄像机在标定过程中确定了其建立的基础为摄像机的模型,摄像机模型在标定过程中关系到三个不同坐标系的转换,分别为2D图像平面坐标系、摄像机自身坐标系以及真实的世界坐标系。摄像机在摄像的时候起本质是2D图像坐标转换,首先要定义摄像机的自身坐标系,将坐标系的原点设置为光心,X、Y、Z成立三维坐标系。其次则是建立平面的图像坐标系,用以透视模型表示,其原点也在广心的位置,称之为主点。实际应用中,物理的距离光心的位置d≠f焦距,而且会远远大于焦距,为了解决如此问题就提出了平面概念。在光轴z上设置一个虚拟的图像平面,然后在此位置于平面关于光心对称。接着,在设置的虚拟2D坐标系中,光轴和原点重合,并且摄像机与垂直平面的垂直方向相同,真实图像上的点影射到摄像机坐标系。
(四)3D重构算法
视频流的采集,主要是采用Kinect设备、彩色摄像头、红外发射摄像头、红外接收摄像头。使用微软提供API控制Kinect设备,在操作之前需调用NUI初始化函数,将函数的参数设置为用户信息深度图数据、彩色图数据、骨骼追踪图数据、深度图数据。上述的视频流的打开方式不同,既可以是一种打开方式,也可以是多种打开方式,尤其在进行Kinect传输数据处理的时候,需遵循三条步骤的运行管线。此三条管线分别为:第一条为处理彩色和深度数据,第二条为根据用索引添加颜色信息,并将其放入到深度图之中,第三条为骨骼追踪数据。
四、总结
随着计算技术的快速发展,视觉技术逐渐被广泛的应用于我们日常的研究之中。本文通过对视觉技术的相关问题进行分析,探究了图像处理、分割、前景提取、运动物体观测以及重构3D图等问题,为实现视觉技术更加深入研究做出了相应的贡献;为广大参与计算机视觉技术研究同仁提供一个研究的思路,为实现视觉技术的腾飞贡献薄力。
参考文献