计算机视觉的研究内容模板(10篇)

时间:2024-01-10 10:13:34

导言:作为写作爱好者,不可错过为您精心挑选的10篇计算机视觉的研究内容,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

计算机视觉的研究内容

篇1

随着经济的迅猛发展,汽车的迅速普及,根据社会对汽车产业的要求,车辆的各方面指标都受到人们越来越多地关注,汽车涂装过程中的瑕疵直接影响汽车的外观质量,因此如何在生产过程中利用计算机视觉检测技术检测出并及时修补汽车涂装过程中产生的瑕疵就成了首要的任务[1]。本文的研究内容是首先了解计算机视觉检测系统的工作原理,汽车涂装瑕疵的种类,然后结合两者的特点,应用计算机视觉检测系统检测汽车涂装瑕疵。该研究的价值在于两方面:①对于汽车生产的自动化和过程自动化,计算机视觉是现实真正意义的自动的基础和一种重要的质量控制的手段;②对于汽车涂装瑕疵的修补可以提高其修补的精度。

2、汽车涂装瑕疵的计算机视觉检测系统

汽车涂装瑕疵检测系统主要包括照明系统、图像采集卡、CCD摄像机、计算机以及软件处理等几个主要部分[2]。综合计算机视觉检测系统的构成和线结构光测量的原理,基于计算机视觉的汽车涂装瑕疵的检测系统大致是这样构成的:将线结构光投射到被测物上,所形成的光斑作为传感信号,用CCD摄像机采集光斑图像,采集到的图像信号被传输到计算机,根据图像处理和计算机视觉检测系统的处理产生处理结果,返回到涂装生产线,对车身的涂装进行修正,从而提高产品质量。汽车涂装瑕疵的视觉检测系统如图1所示[3]。

3、计算机视觉检测

计算机视觉是计算机对图像进行自动处理并报告“图像中有什么”的过程,也就是说它识别图像中的内容。图像中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。计算机视觉系统基本原理:机器视觉系统通常采用CCD相机摄取图像,将其转化为数字信号,再采用先进的计算机硬件与软件技术对图像数字信号进行处理,从而得到所需要的各种目标图像特征值,并在此基础上实现模式识别、坐标计算、灰度分布图等多种功能。计算机视觉系统能够根据其检测结果快速地显示图像、输出数据、指令,执行机构可以配合其完成指令的实施。计算机视觉系统主要由图像获取、图像分析和处理、输出显示或控制三个功能模块组成[4]。视觉检测按其所处理的数据类型可分为二值图像、灰度图像、彩色图像和深度图像的视觉检测。另外,还有X射线检测、超声波检测和红外线检测。一个完整视觉检测系统包括:图像采集、图像分割、零件识别、模型匹配和决策判断。Newman[5]等描述了利用深度图像进行零件检测的AVI系统,具有一定的代表性。一个典型的AVI系统如图2所示。

4、汽车涂装瑕疵的检测算法

篇2

1.1计算机视觉概述

通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知。计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。

1.2计算机视觉领域基本体系结构

提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。

2计算机视觉在交通领域的应用

2.1牌照识别

车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。

2.2车辆检测

目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。

2.3统计公交乘客人数

城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。

2.4对车道偏离程度和驾驶员工作状态判断

交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。

2.5路面破损检测

最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。

3结论

本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。

作者:夏栋 单位:同济大学软件学院

参考文献:

[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).

[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).

[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).

篇3

中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)03-0242-02

计算机人工智能技术中的一项重要技术就是计算机视觉技术,这种技术主要是让计算机利用图像来实现认知环境信息的目的,这一目的的实现需要用到多种高尖端技术。近年来随着计算机技术以及计算机网络的普及与发展,计算机视觉技术也得到了较快发展,并且在实际生产与生活中的应用也越来越广泛。

1 计算机视觉技术概述

1.1 基本概念

计算机视觉技术主要研究计算机认知能力的一门技术,其具体主要是通过用摄像机代替人的眼睛,用电脑代替人的大脑,最终使计算机具备类似于人类的识别、判断以及记忆目标的功能,代替人类进行部分生产作业。人们目前研究的人工智能技术中的一项重要内容就是计算机视觉技术,通过研究计算机视觉技术可以让计算机拥有利用二维图像认知三维环境的功能。总的来说,计算机视觉技术是在图像与信号处理技术、概率分析统计、网络神经技术以及信息处理技术的基础上,利用计算机来分析、处理视觉信息的技术,它是现代社会新兴起的一门高新技术。

1.2 工作原理

在亮度满足要求的情况下,首先使用摄像机对具体事物的图像信息进行采集,利用网络把采集到的图像信息向计算机内部输送,然后在计算机系统内部处理加工图像信息会把事物的原始图像得到,随后利用图像处理技术进一步处理原始图像,获得优化质量效果之后的图像,分类与整理图像中有特征价值的信息,通过智能识别技术识别与描述提取到的图像信息特征,最后把得到的高层次的抽象信息存储起来,在进行识别事务时分析对比这些储存信息就可以实现事物的识别,这样视觉系统的基本任务也就完成了。其具体视觉系统如图1所示:

1.3理论框架

人类研究视觉技术虽然起步比较早,但取得较大进步是在20世纪80年代初伴随着视觉计算理论的出现。它的出现把研究视觉理论的策略问题解决了,视觉技术是一项特别复杂的信息处理过程,要想对视觉的本质准确完整的理解,必须从不同角度与层次研究与分析视觉本质。视觉计算理论研究层次大致可分为:计算机理论、算法以及实际执行。站在计算机理论的角度分析视觉技术,我们可知必须用要素图、维图、以及三维模型表像来描述视觉信息。

所以,可以把计算机视觉技术当做从三维环境图像中抽取、描述与解释信息的过程,其主要分析步骤可分为感觉、处理、描述、识别、解释等。若依据上述各过程实现需用到的方法与技术的复杂性划分层次,可大致把计算机视觉技术划分为:低层视觉处理、中层视觉处理、高层视觉处理三个层次。

2 计算机视觉技术在自动化中的应用

2.1 农业自动化中计算机视觉技术的应用

在农业自动化中应用计算机视觉技术可以全天候实时监测农作物的生长状况,便于科学管理农作物。还可以应用计算机视觉技术来检测农产品的质量,例如可以应用计算机监测技术来监测大多数蔬菜的质量,传统的人工检测蔬菜质量的方法,不仅费时费力,而且检测结果的准确性也不能很好的保证,在实际人工检测过程中还容易伤害蔬菜,可以通过利用计算机视觉技术来感应蔬菜自身释放的红外线、紫外线以及其他可见光的能量大小,然后和质量达标蔬菜的光线能量大小进行对比,根据这些对比结果可以把蔬菜质量的好坏准确判断出来,在蔬菜质量检测过程中应用计算机视觉技术,把传统的蔬菜检测方法完全颠覆了,极大的方便了农产品的质量检测,由此可见,计算机视觉技术在农业生产中有很高的使用与推广价值。

2.2 在工业自动化中计算机视觉技术的应用

计算机视觉技术在工业自动化应用的一个重要领域就是可以精密测量零件尺寸,其测量与被测对象的原理如图2所示。

光学系统、计算机处理系统以及CCD摄像头,是计算机检测系统的主要组成,被测物体由光源发出的平行光束进行照射,利用显微光学镜把待检测部位的轮廓图像呈现在摄像机的面阵CCD上,然后再通过计算机处理这些图像,进而把被测部位的轮廓位置信息获取下来,若被测对象是出现位移时,可通过两次重复测量,利用两次测量的位置差就可以得出,被测物体的位移量。

此外计算机视觉技术还可以应用于逆向工程中,应用3D数字化测量仪可以快速准确的测出现有工件轮廓的坐标值,同时还能构建曲面,保存成CAD或CAM图像,把这些图像送入CNC制作中心加工,便可制作出产品,这也就是所谓的逆向工程。由上述分析我们可知逆向工程要想实现,最关键的一环就是如何通过精密测量系统来测量样品的三围尺寸,获得各部位数据,进而做曲面处理进而加工生产。对于这一难题我可以通过利用线结构光测量物体表面轮廓技术来实现,器具体轮廓结构示意图如下图3所示。

这种测量方法的工作原理为:利用激光穿越平行、等距的振幅光栅组件,或直接采用干涉仪发出的干涉条纹,形成平面条纹结构光,再向物体表面投射,由于物体各表面的深度与曲率的不同,条纹会自动出现变化,然后再通过使用CCD摄像机对变形条纹进行拍摄。这样就可以把物体表面轮廓的变化情况分析出来。摄像机在拍摄图像的过程中,把图像信号转化为模拟信号,再转化为数字信号,然后经过传送再还原信号到图形处理系统,就得到三维轮廓图像。

在工业自动化中计算机视觉技术的深入广泛应用,不但使工业产品的生产质量得到了保障,而且跨越式的提高了工业产品的生产速度。如计算机视觉技术可以很好的检测产品包装质量,封口质量以及印刷质量等等,如我国重点指定的印刷造币机器的南京造币厂,由于货币制造印刷是由印刷造币机器来实现的,所以要严格要求其生产工艺,一丝一毫的生产差错都不允许存在,为了保障印刷制造出来的造币机器质量完全达标,必须严格精确检测生产出来的成品。在印刷造币机器的过程中要求要有非常高的计算机视觉技术,随着计算机视觉技术的不断进步,计算机视觉技术已经对印刷造币机器的需求完全满足了,实际的应用效果也非常理想,印刷造币机器在实际生产的过程中,南京造币厂把计算机视觉技术应用在了每个应刷造币机器最后的生产工序上,硬币受到重力下落的瞬间,计算机视觉技术可以瞬间采集图像的信息,准确拍摄硬币在下落过程中的图像,通过高速光纤传感器可以把硬币图像向计算机系统快速传输,利用计算机系统处理信息与识别信息的超强能力,可以及时识别硬币质量,经大量实践研究得出,在印刷造币机器上应用计算机视觉技术已经几乎没有检查差错现象的发生,由此可知,在工业自动化中计算机视觉技术的应用不但可行,而且发展空间还很大。

2.3 在医学自动化中计算机视觉技术的应用

在医学领域计算机视觉技术也得到了广泛应用,如医学中经常用到的CT图像以及X射线图都用到了计算机视觉技术,这些技术的广泛应用很大程度上方便了医生准确判断病人病情,另外,在生产药品的过程中,应用计算机视觉技术可以高效检测药品包装的合格与否,其基本流程是:传送装置先准确运输药品到指定位置,传送装置自身又可分为检测与分离两个区域,在传送药品的过程中药品的图像信息会被特定的摄像机采集,采集完成后向计算机系统传递采集信息,然后计算机系统会分析与处理这些信息,把没有包装好的药品自动识别出来,并且向分离区传递识别信息,分离区的自动装置会依据传输的分离信息,隔离开没有包装好的药品,这样就可以有效分类包装好的药品与没有包装好的药品,在药品包装检测方面应用计算机视觉技术代替传统人工检测,不但可以实现药品准确无误的检测,而且还可以大大提高检测药品包装质量的效率,完善了药品生产的自动化,由此可见,在医学自动化中应用计算机视觉技术可以积极促进医学自动化的发展。

3 结束语

总之,计算机视觉技术是一门研究计算机识别能力的高新技术,它涵盖了很多其他技术,具有一定复杂性。要想使其在自动化生产中得到更好地推广与应用,我们必须在明白其基本概念、工作原理以及理论框架的基础上,结合实际生产情况,不断进行深入研究,只有这样才能使计算机视觉技术得到更好地推广与应用,才能使这项现代化的高新技术更好的服务于社会,服务于人类。

参考文献:

[1] 龚超,罗毅,涂光瑜.计算机视觉技术及其在电力系统自动化中的应用[J].电力系统自动化,2003(1).

篇4

接受信息的关键手段之一就是视觉系统,随着科学技术水平的不断发展,以及计算机和信号处理理论的诞生,让机器拥有人类视觉功能已经不再是梦。对所采集视频中的运动目标进行跟踪、检测,并对其目标行为进行分析,就是运动目标分析的内容,运动目标分析是计算机视觉领域关键内容之一,其属于图像理解与图像分析的范畴。而在运动目标分析系统中,跟踪与检测运动目标则为中级和低级处理部分,是分析与理解行为的高等层分析模块的基础。检测与跟踪运动目标技术主要包括了:机器人视觉导航、军事领域、运动图像编码、交通管制、视觉监视等。

1目标检测算法

连续图像序列由视频中提取出,由前景区域与背景区域共同组成了整个画面。前景区域包含了如运动的人体、车辆等动态要素,它是指人们较为感兴趣的区域。而背景区域主要包含例如树木、建筑物等静态要素,它的像素值仅发生微弱变化或者不产生变化。在连续图像序列中,采用一系列算法分隔开背景区域和前景区域,将运动目标信息有效提取,则为运动目标检测。以静态场景为基础的运动目标检测算法包括了光流法、背景差分法、帧间查分法等,文章主要针对背景差分法进行介绍。

背景差分法通常适用于静态场景,其是将背景图像与当前帧图像进行差分,运动目标依靠阀值化进行检测,因为该算法仅能够在背景变化缓慢或者不发生变化的情况下应用,因此就有着一定的局限性。假设当前帧图像为fk(x,y),背景图像B(x,y)可通过一定的方法得出,而这时背景差分图像则为:

(1)

而假设二值化阀值为Th,二值化图像B(x,y)则为:

(2)

运动目标检测结果可通过数学形态学处理获得。

2 背景模型的实时更新

要更新背景图像可采用一阶KALMAN滤波来实现,为了克服气候变化、光照变化等外部环境变化对运动检测产生的影响,采用一阶KALMAN滤波更新背景图像公式如下:

Bk+1(p)=Bk(p)+g(Ik(p)-Bk(p)) (3)

而增益因子则为:g=?琢1(1-Mk(p))+?琢2Mk(p) (4)

公式中?琢1和?琢2是权值系数;M是第k时刻二值化后目标图像中p像素的值;B为背景图像;I为当前帧图像。要想将运动目标从背景序列图像中有效分割出来,就必须要达到?琢2足够小的条件,且?琢1应等于或者大于10?琢2,若?琢1值过大,就会将算法自身的去噪特性丧失,在序列背景图像中也会存储越来越多的运动变化。

3 更新车辆目标模型

核与活动轮廓算法具有效率高、技术复杂度低等特点,它以非参数核概率密度估计理论为基础,在视频运动目标跟踪中广泛应用。彩色图像序列通过摄像机获取,人脸目标模型可以采用RGB颜色空间来进行描述。在跟踪车辆的过程中,噪声、遮挡、光照等干扰或多或少存在,因干扰因素的存在,车辆像素特征也会发生相应的微弱变化。若不对目标模型进行更新,会对跟踪精度产生影响,所以,采用的矩形模板会包括一定背景。而在实施跟踪的过程中,要对车辆目标模型进行更换。如果其过程物遮挡,当BHATTACHARYYA系数满足?籽>Tudm条件时,更新车辆目标模型,更新模型为:

(5)

公式中Tudm是模板更新阀值;qk-1是更新之前的车辆目标模型。通过视频跟踪,在近场景和远场景拍摄到的视频中,多尺度图像空间由各个帧图像构成。例如:将将书本作为跟踪对象,由远及近从书本的正上方拍摄六十帧图像,为了能使矩形框正好能够包含书本,对每帧图像张书本手工划定矩形框,并对框内图像的信息量进行统计。最后,随书本尺度的变化,给出图像信息量变化曲线。

4 计算机视觉原理

计算机视觉是一门研究怎样使机器进行观察的科学,更切确地说,就是指利用电脑和摄影机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为传送给仪器检测或更适合人眼观察的图像。计算机视觉研究相关的理论和技术作为一个科学学科,尝试创建能够从图像或者多维数据中获取信息的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个决定的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中感知的科学。

计算机视觉就是由计算机来代替大脑完成处理和解释,用各种成象系统代替视觉器官作为输入敏感手段。使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力就是计算机视觉的最终研究目标,而需要经过长期的努力才能达到这个目标。所以,在实现最终目标以前,通过努力的中期目标是建立一种视觉系统,这个系统能依靠反馈的某种程度的智能和视觉敏感完成一定的任务。例如:计算机视觉的一个重要应用领域就是自主车辆的视觉导航,但要实现自主导航的系统,却还没有条件实现象人那样能识别和理解任何环境。所以,人们通过不懈的努力,研究在高速公路上具有道路跟踪能力,有效避免与前方车辆碰撞的视觉辅助驾驶系统。人类视觉系统是有史以来,人们所知道的功能最强大和完善的视觉系统。这里要指出的一点是在计算机视觉系统中计算机起代替人脑的作用。计算机视觉可以而且应该根据计算机系统的特点来进行视觉信息的处理,但并不等于计算机必须按人类视觉的方法完成视觉信息的处理。可以说,对人类视觉处理机制的研究将给计算机视觉的研究提供指导和启发,所以,用计算机信息处理的方法研究人类视觉的机理,建立人类视觉的计算理论,与此同时也是一个十分重要和让人感兴趣的研究领域。这方面的研究被称为计算视觉。计算视觉可被认为是计算机视觉中的一个研究领域。计算机视觉领域的不完善性与多样性为其突出特点。

5 结束语

对视频中的运动目标进行跟踪、识别、检测,并对目标行为进行研究、分析,这就是基于视觉运动目标分析。以计算机视觉为基础,分析运动目标,包括了目标行为的理解与分析、目标跟踪、运动目标检测、预处理图像等,它是计算机视觉领域重要内容之一。理解与分析运动目标的行为,既是计算机视觉的根本目的之一,也是检测与跟踪运动目标的最终目标。从理论层考虑,理解与分析运动目标的行为可以分为人工智能理论研究与模式识别。简要阐述基于计算机视觉的运动目标分析,而所面临的是对运动目标行为的理解。

参考文献

[1]杨可,刘明军,毛欣,夏维建,刘伟,周旋,吴炜,周凯.基于计算机视觉的电缆终端表面温升分析系统[J].电视技术,2013(7).

[2]叶闯,沈益青,李豪,曹思汗,王柏祥.基于人类视觉特性(HVS)的离散小波变换(DWT)数字水印算法[J].浙江大学学报:理学版,2013(2).

[3]何青海,马本学,瞿端阳,李宏伟,王宝.基于机器视觉棉叶螨自动监测与分级方法研究[J].农机化研究,2013(4).

篇5

作者简介:陈芳林(1983-),男,湖南株洲人,国防科学技术大学机电工程与自动化学院,讲师;周宗潭(1969-),男,河南洛阳人,国防科学技术大学机电工程与自动化学院,教授。(湖南 长沙 410073)

中图分类号:G643.2 文献标识码:A 文章编号:1007-0079(2013)26-0065-02

进入21世纪,创新型人才的培养成为各国政府和高等教育界关注的一个焦点。世界各国研究型大学的共同特点是在研究生教育阶段致力于培养富有创新意识和创新能力的高级人才。[1]研讨式教学是培养研究生创新精神、科研能力的有效途径,教师讲解与学生探讨两部分相结合是研讨式教学采用的主要模式。[2]将课程分成两部分之后,教师讲解的时间就必须压缩,教师一方面需要思考如何在较短的时间内完成课程的讲解,同时还需要考虑课程讲解要与学生探讨部分紧密结合。因此,如何上好研讨式教学教师讲解这部分课,越来越受高等院校的重视。本文针对笔者教授工科研究生课程“计算机视觉”的实践与经验,阐述了笔者对于如何上好研讨式教学教师讲解这部分课的个人体会。总结为两点:第一,首先要充分做好课程准备;第二,上课环节采取回顾—案例—小结的讲解方式。下面从课程准备、课前回顾、课程讲解、课后小结四个方面分别阐述(如图1所示)。

一、“计算机视觉”课程准备

要上好一门研讨式教学的课程,一定要结合该门课程的特点,量身定制课程内容,进行精心准备。本节先介绍“计算机视觉”课程的特点,然后结合该门课程的特点,介绍笔者对于“计算机视觉”的课程准备。

1.“计算机视觉”课程特点

“计算机视觉”是“数字图像处理”和“模式识别”等课程的后续课程。该课程重点在于图像或者图像序列的分析理解。课程知识在机器人导航、侦查、测绘、测量、精密加工和目标跟踪等多个领域都有广泛的应用。[3]近年来基于视觉信息的控制反馈也开始受到广泛关注。国内高校一般都为研究生开设了此门课程。

计算机视觉技术应用广泛、算法原理涉及面广:涉及到概率与数理统计、信号与系统、图像等基础知识。“计算机视觉”是一门重要的控制类、电子类及计算机类专业研究生的选修课程,它内容广泛、综合性强,研讨能力的培养显得非常关键。

2.课程准备

首先,结合“计算机视觉”课程内容广泛、技术日益更新和丰富的特点,将课程36学时分为12次课,每次课为3小时,每堂课教师讲解一个专题。这种设计,一方面可以更广地涉及计算机视觉的各个领域;另一方面以专题的形式来讲解,可以将学生带入到该专题,介绍基本背景、理论、知识和方法,让学生有一个初步的了解,方便课后学生对感兴趣的专题进一步深入挖掘与研究。

其次,在课程开始之前,教师仔细统筹,安排好每次课的专题,这样既方便学生一开始对整个课程有一个整体的了解,也方便学生选择课堂研讨的题目与内容。根据12个专题,将各个专题讲解的内容与课件在开课之前准备好,这样有利于把握各个专题之间的前后承接关系。例如,“区域”与“分割”是既有区分又有联系的两个专题,在课程开始之前,将课件准备好,就有利于宏观把握,在“区域”专题提到的分割算法,就不需要在“分割”专题再次重复,而在“分割”专题可以结合前面“区域”专题进行互相补充,以帮助学生融会贯通。

最后,在每个专题上课之前,再对课件进行精雕细琢,主要是对内容分好层次,对方法进行分类,力图在较短的时间内,让学生对该专题有较全面的认识。例如,在讲解图像分割时,由于图像分割方法非常多,可以将分割方法分为若干个大类,每个大类只讲1~2个方法。这样既可以尽可能涉及更广的领域,又可以提高讲解的效率。

二、“计算机视觉”课前回顾

课前回顾是指每堂课的前面一小段时间用来回顾上一堂课的内容。虽然课前回顾时间非常短,一般为3~8分钟,但是课前回顾是课堂教学中的一个重要环节。课前回顾可以帮助学生加强将要学习的内容与已学过内容之间的联系。通过课前回顾,学生可以回忆前续课程所讲解的概念、理论、算法的步骤等内容,有助于解决新问题或者理解新知识。

课前回顾最重要的是既要复习前续课程的内容,又要注意将前续内容与当前内容联系起来。由于讲解时间有限,要使研讨式教学的教师讲解部分效率高,教师帮助学生回忆上堂课的概念、模型、算法等内容,就变得非常重要。如果不做课前回顾,那么当讲到某处新知识时,往往需要停下来,将前续课程再讲一遍,否则学生无法理解新的知识,这样就降低了教学的效率。

课前回顾的时间,一般以3~8分钟为宜。课前回顾的形式可以多样化,如讲解课后作业、回顾概念、提问等。笔者认为应根据当天课程与前续课程的关系,采取合适的方式。各种方式结合使用,提高课前回顾的效率。

三、“计算机视觉”课程讲解——案例教学

案例教学已经成功地应用于数学、计算机科学等领域的教学。通过案例,学生可以很快地掌握相应的概念、算法的步骤等,从而提高教师讲解部分的效率。[4]例如,在讲解马尔科夫随机场时,笔者通过案例式教学,将马尔科夫随机场用一个生活中的例子来向学生解释。首先,将马尔科夫随机场分解成两个重要的概念,分别是随机场与马尔科夫性,然后将它们对应到例子中,帮助学生理解。

随机场包含两个要素:位置(site)和相空间(phase space)。当给每一个“位置”中按照某种分布随机赋予“相空间”的一个值之后,其全体就叫做随机场(如图2(a))。[5]这个概念非常抽象,难以理解。笔者应用案例式教学,拿庄稼地来打比方。“位置”好比是一亩亩农田,“相空间”好比是种的各种庄稼。给不同的地种上不同的庄稼,就好比给随机场的每个“位置”,赋予“相空间”里不同的值。所以,可以形象地理解随机场就是在哪块地里种什么庄稼的布局(如图2(b))。

马尔科夫性指的是一个随机变量序列按时间先后顺序依次排开时,第N+1时刻的分布特性,与N时刻以前的随机变量的取值无关。为了更直观地理解马尔科夫性,笔者仍然拿庄稼地打比方,如果任何一块地里种的庄稼的种类仅仅与它邻近的地里种的庄稼的种类有关,与其他地方的庄稼的种类无关,这种性质就是马尔科夫性。

符合上述两个特征,那么这些地里种的庄稼的集合,就是一个马尔科夫随机场。通过案例式教学,笔者发现可以加深加快学生对课程内容的理解,提高教师讲解环节的效率。

四、课后小结

课后小结指的是一堂课将要结束时,教师对本堂课进行一个简短的总结。许多成功的教师都会在其教学中坚持课后小结这个环节,给学生一个总体的印象,以帮助学生消化本次课程的内容。

研讨式教学教师讲解部分的课后小结与普通教学方式应有所区别。笔者认为这主要是因为通过课后小结可以将本次课程所讲内容与学生的研讨环节结合起来,而不仅仅是对内容进行简单的总结。

为了达到课后小结使本次课程内容与学生探讨环节建立联系的目的,笔者在教学中常采用如下方式:首先,像普通教学方式一样,总结本次课程内容;然后,在此基础上,抛出若干问题,这些问题,不需要学生马上解答,而是留给学生课后思考,提供他们选择研讨主题的素材;最后,介绍其他在本次课程中没有涉及到的前沿知识、方法与理论,拓宽学生的视野,从而增加学生选择探讨主题的覆盖面。

通过应用这种方式,笔者发现学生的思维更开阔,在探讨环节,学生往往可以选择一些比较新颖的主题(例如视频中不动点的检测等),而不仅仅局限于教师所讲内容,从而提高了研讨式教学的效果。

五、结论

在“计算机视觉”课程中引入研讨式教学,通过总体设计规划好整门课程内容,课堂讲解注意采用回顾—案例—小结的方式,笔者对如何上好研讨式教学教师讲解这部分课进行了个人经验的总结。通过本次教学改革,笔者体会到如果要提高教学效果,一定要注意教师讲解与学生探讨两个环节的紧密结合。

参考文献:

[1]侯婉莹.我国研究型大学本科生科研研究[D].济南:山东大学,

2009.

[2]张晴,李腾,韦艳,等.研讨式教学模式的理论研究[J].中国科技纵横,2011,(10).

篇6

中图分类号:TP391.41 文献标识码:A文章编号:1009-3044(2007)04-11102-03

1 引言

基于案例推理(case-base reasoning)是人工智能中正不断发展的一项重要推理技术。基于案例推理与类比推理方法相似,案例推理将旧经验或教训转换为知识,出现新问题时,首先查找以前是否有相似的案例,并用相似案例解决新问题。如果没遇到相似案例的,经过推理后解决新问题的方法,又会成为新的案例或新经验,下一次再遇到相同问题时,就可以复用这些案例或经验。

这与人遇到问题时,首先会用经验思考解决问题的方式相似,这也是解决问题较好的方法。基于案例推理应用于工业产品检测或故障诊断时具有以下特点:

CBR智能化程度较高。利用案例中隐含的难以规则化的知识,以辅助规则推理的不足,提高故障诊断系统的智能化程度。

CBR较好解决“知识获取”的瓶颈。CBR知识表示以案例为基础,案例的获取比规则获取要容易,大大简化知识获取的过。

CBR求解效率较高。是对过去的求解结果进行复用,而不是再次从头开始推导,可以提高对新问题的求解效率。

CBR求解的质量较高。CBR以过去求解成功或失败的经历,可以指导当前求解时该怎样走向成功或避开失败。

CBR持续不断的学习能力,使得它可以适应于将来问题的解决。

所以基于案例推理方法正不断应用在产品质量检测和设备故障诊断方面,并取得较好的经济效益。为了产品检测和设备故障诊断中,更为智能化,更容易实现现场检测和诊断,计算机视觉技术起到很大的作用。

计算机视觉是研究用计算机来模拟人和生物的视觉系统功能的技术学科,使计算机具有感知周围视觉世界的能力。通过计算机视觉,进行图像的获取预处理、图像分割与特征抽取、识别与分类、三维信息理解、景物描述、图像解释,让计算机具有对周围世界的空间物体进行传感、抽象、判断的能力,从而达到识别、理解的目的。

计算机视觉随着科学技术发展,特别计算机技术、通信技术、图像采集技术、传感器技术等,以及神经网络理论、模糊数学理论、小波的分析理论等计算机视觉理论的不断发展和日趋成熟,使计算机视觉从上世纪60年代开始兴起发展到现在,取得快速发展,已经从简单图像质量处理发展到围绕着纹理分析、图像编码、图像分割和滤波等研究。图像的分析与处理,也由静止转向运动,由二维转向三维,并主要着眼于对图像的识别和理解上,也使计算机视觉的应用领域更为广泛,为案例推理中运用计算机视觉打下基础。

2 案例推理系统的主要关键技术

(1)案例的表示与组织

案例的表示与组织即是如何抽取案例的特征变量,并以一定的结构在计算机中组织存储。如何将信息抽取出特征变量,选择什么语言描述案例和选择什么内容存放在案例中,案例按什么组织结构存放在存储器中,这关系到基于案例推理方法的效率,而且对于案例数量越来越多,结构十分复杂的案例库,尤其重要。

(2)案例的索引与检索

案例的索引与检索即是为了查找最佳相似案例,如何建立案例索引和相似度算法,利用检索信息从案例库中检索并选择潜在可用相似案例。后面的工作能否发挥出应有的作用,很大程度上依赖于这一阶段得到的案例质量的高低,因此这一步非常关键。

(3)案例的复用和调整

案例的复用即是如何根据旧案例得出新解,涉及到找出案例与新问题之间的不同之处,案例中的哪些部分可以用于新问题,哪些部分不适合应用于新问题的解决。而复用还分案例的结果复用,案例的求解方法复用。

(4)案例的学习

案例的学习即是将新解添加到案例库中,扩充案例库的案例种类与数量,这过程也是知识获取。此过程涉及选取哪些信息保留,以及如何把新案例有机集成到案例库中,包括如何存储,如何建立索引等等。

针对案例推理的关键技术,根据检测和故障诊断系统的特点,计算机视觉主要解决如何将产品图像输入系统,如何将产品图像特征进行抽取和描述,如何区别产品不同之处。以便案例推理系统进行案例建模,确立案例的表示形成和案例相似度的计算。本文主要从计算机视觉如何运用在案例推理系统进行探讨。

3 产品输入系统

产品输入系统在不同产品类型和生产环境可能有不同之处,主要应有传感器单元和图像采集单元。如图1。

图1 产品输入系统结构

传感器单元主要判断是否有产品存在,是否需要进行图像采集,是否继续下一个产品图像的采集。这简单传感器可使用光电开关,配合光源,当产品经过时,产品遮挡住光源,使光电开关产生一个0值,而没有产品经过时,光电开关产生相反的1值,系统通过判断光电开关的值,从而判断是否有产品。

图像采集单元简单地说是将产品拍摄并形成数字化图像,主要包括光源、反射镜、CCD相机和图像采集卡等组成。光源和反射镜作用主要使图像中的物体和背景之间有较大灰度。CCD相机主要是拍摄设备。图像采集卡主要是将图像数字化。通过传感器判断有产品后,光源发出的光均匀地照在被测件上,CCD相机拍摄,拍摄图像经过图像采集卡数字化后输入存储设备。存储设备即为计算机硬盘。存放原始图像、数据、处理结果等。

这是案例推理系统的原始数据,是图像处理、图像特征抽取描述的基础。

4 图像处理

在案例推理系统中,需要对案例的组织和案例建模,案例的组织即案例的表示,相对计算机而言,即图像特征的抽取,即某图像具有与其它图像不同之处,用于区别其它图像,具有唯一性。同时,又能完整地表示该图像。所以案例的表示要体现案例的完整性、唯一性、操作容易性。

图像中有颜色区别、又有物体大小之分以及图像由不同的物体组成。如何表示图像,或说图像内部包含表示的本质,即图像的描述。根据图像特点,确立图像案例的表示,以图像的像素、图像的数字化外观、图像物体的数字组成等属性。这需要对产品输入的原始图像进行处理。

在计算机视觉技术中,对原始图像主要进行图像增强、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。具体工作流程如图2所示:

图2 计算机视觉的任务与工作流程

图像预处理是将产品的数字图像输入计算机后,首先要进行图像的预处理,主要完成对图像噪声的消除以及零件的边缘提取。预处理的步骤为:图像二值化处理;图像的平滑处理;图像的边缘提取。

图像二值化处理主将灰度图形二值化的关键是阈值的选取,由于物体与背景有明显的灰度差,可以选取根据灰度直方图中两峰之间的谷值作为阈值来分割目标和背景。

图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中因成像设备和环境所造成的图像失真,提取有用信息。

图像边缘提取是为了将图像中有意义的对象与其背景分开,并使之具有某种指定的数学或符号表达形式,使计算机能够理解对象的具体含义,检测出边缘的图像就可以进行特征提取和形状分析了。可采用多种算法,如采用Sobel算子提取边缘。

图像预处理是为下一步的特征描述打基础,预处理的好坏直接影响案例推理的结果和检测诊断的效率。

特征提取是对图像进行描述,是案例建模关键,案例建模是根据案例组织要求抽取图像特征,是建立案例索引和检索的关键。如果图像没有特征,就谈不上进行检索。图像特征可通过图像边界、图像分割、图像的纹理等方法,确定图像特征,包括是什么产品、产品形状大小、产品颜色,产品有什么缺陷、产品缺陷在什么位置等特征,根据这些图像特征进行描述,形成计算机中属性值,并从数据库查找相应信息资料,从而确定产品之间的关系,相似度,也就是案例推理的方向。

5 系统的检索

根据案例推理原理和相应算法,建立案例推理系统模型,如图3所示。

图3 案例推理系统

对话系统:完成人机交互、问题描述、结果显示和系统总控制。

案例库系统:由案例库及案例库管理系统组成。

数据析取系统:对各种已有的源数据库的数据通过转换而形成所需的数据。

多库协同器:根据问题求解的需要,按照一定的数据抽取策略,完成问题求解过程中对模型库系统、方法库系统、知识库系统和数据库系统等资源的调度与协调。

知识库系统:由产生式规则组成,这些知识包括专家经验和以规则形式表示的有关知识,也可以是数据挖掘结论,支持案例检索、案例分析、案例调整等。 模型库系统:由模型库、算法库、模型库管理系统组成。完成模型识别和调用,并把结果综合,送入对话系统显示,作为补充信息供案例检索、调整使用。

数据库系统:存放待决策支持的所有问题,并完成其维护与查询等功能。

由于系统主要应用产品的现场实时检测监控或故障诊断,所以系统的检索时,也必须输入检索值,即输入现场产品的图像,在通过产品预处理、图像的二值化、分割和边界处理后,进行图像特征描述,根据图像描述进行分类识别。根据案例推理的算法检索案例库中,是否有相似的案例。即确定相似度。相似度确定主要由案例推理的算法确定,如贴近分析法。确定相似度最大作为结果,并将案例的解输出,给相关控制系统进行决策。如产品质量检测,确定产品质量是否合格,是否有不合格产品,不合格产品是什么原因造成,故障源是什么,如何解决和排除故障,等等。

6 结论

案例推理方法有效地解决计算机视觉技术中图像检索问题。对提高图像检索的效率和准确度提供了平台。

计算机视觉技术也为案例推理系统实现产品现场实时检测、监控、诊断提供技术支持。计算机视觉技术现场的数据采集、处理为案例推理打好基础。

两者的结合设计的系统适用范围很广,只要产品需要进行质量检测、监控,或设备需要进行故障诊断和维护,都可以适用。

系统提供的实时检测、监控和诊断功能,提高企业的生产效益,降低了生产成本。

参考文献:

[1](美)桑肯(Sonka,M).图像处理分析与机器视觉[M].人民邮电出版社.

[2]王宏等译.计算机视觉[M].电子工业出版社.

[3]蔡建荣.自然场景下成熟水果的计算机视觉识别[J].农业机械,36(2):61-64.

[4]王宇辉.基于计算机视觉的锥体零件尺寸在线检测算法[J].重型机械,2005,2:4-6

[5]骆志坚.基于计算机视觉检测技术自动计数系统的研究与应用[J].仪表技术与传感器,2005,3:41-43.

[6]左小德.贴近度分析法在案例库推理中的应用[J],南大学学报(自然科学版),1997,18(1):21-26.

篇7

中图分类号:G643.2 文献标识码:A DOI:10.16400/ki.kjdkz.2016.03.015

Research and Practice on Course Group of Pattern Analysis and

Visual Processing for Graduated Students

SUN Han, CHEN Songcan, LIU Ningzhong, HUANG Yuanyuan, ZHU Qi

(College of Computer Science and Technology, Nanjing University of

Aeronautics and Astronautics, Nanjing, Jiangsu 210016)

Abstract By analyzing the teaching status of pattern analysis and visual processing course group, this paper puts forward the new teaching goal, which includes improving students' international vision, the ability of linking theory with practice, and promoting the engineering practice ability and innovative consciousness. Then this paper discusses the whole process of course group reform. Firstly the structure of teachers' group is optimized. And then the knowledge system of course group is sorted and the teaching mode is improved. Finally the practice system of course group is optimized and the assessment system is reformed.

Key words pattern analysis; computer vision; teaching reform

1 背景

我校模式分析与智能计算研究所师资团队是江苏省“青蓝工程”创新团队,主要研究领域包括智能数据分析、图像处理和机器视觉等方向,承担研究生和本科生的模式识别、机器学习、数据挖掘、智能信息检索、数字图像处理、计算机视觉等课程的教学任务。以往的教学过程中虽然积累了丰富的教学经验,但当前新知识不断涌现、新技术发展迅猛,对模式分析与视觉处理课程群的知识体系、实践体系改进提出了新的挑战。

近年来,国内外高校在该类课程教学上,已涌现出众多新理念、新方法。Coursera联合创始人Andrew Ng推出的机器学习课程,开启了教育领域的MOOC时代,引领了教育教学方法的新革命。①深圳大学、②江苏科技大学③分别进行了基于CDIO工程教育理念的计算机视觉课程教学改革实践,实现多层次项目设计的教学模式改革,讲座式、讨论式、实践式教学方法的探索。国防科技大学④在计算机视觉课程中引入研讨式教学模式,通过案例教学、小组研讨的方式来替代传统的教学方式。华中科技大学⑤从教学内容国际化、教学方式国际化、教学成果国际化三个方面开展了计算机视觉课程的国际化建设。另外,也有高校进行了图像工程课程群建设,⑥基于图像分析与计算机视觉应用课程结合的项目协同创新能力培养实践。⑦

在分析上述国内外高校该类课程改革的基础上,我们重点以模式分析与视觉处理课程群的实践教学体系改革为切入点,优化师资队伍结构,梳理课程群知识体系,优化课程授课模式,完善课程群实践体系,改革实践考核模式,实现学生国际化视野、理论联系实际、工程实践和创新能力全面提升的目标。

2 模式分析与视觉处理课程群特点

模式分析与视觉处理课程群涵盖了模式识别、机器学习、数据挖掘、数字图像处理、计算机视觉等多门课程。该类课程存在以下特点。

(1)该类课程属于多学科交叉,涉及的知识面既广又深。由于该方向涉及计算机科学与技术、应用数学、自动化、电子科学与技术、信息工程等多学科内容,而学生在大学本科阶段很难学习和了解如此多的知识模块,这对研究生阶段学习来说,具有相当大的挑战。同时,对于每个知识模块,所要求的数学基础较高,理论具有相当的深度,理解和掌握不容易。

(2)该类课程既重视扎实的基础理论,也强调良好的工程实践能力。该类课程的基础理论教学一直受到各高校的重视。随着近年来产业界的迅猛发展,计算机视觉应用层出不穷,对学生的工程实践也提出了更高要求,需要能够在系统层次上有整体认知,同时要能对各功能模块进行优化,提升系统的整体性能。

(3)该类课程所面向的选修学生面广。该类课程既是多学科交叉,也面向计算机应用、电子科学与技术、自动化、应用数学等不同研究方向、不同水平层次的研究生开设。这对课堂教学和实验实践也带来更大挑战。

3 模式分析与视觉处理课程群改革举措

针对上述分析的课程群特点,我们重点以实践体系改革为突破口,通过优化师资队伍结构,梳理课程群知识体系,优化课程授课模式,完善课程群实践体系,改革实践考核模式等举措,实现学生国际化视野、理论联系实际、工程实践和创新能力全面提升的目标。

3.1 师资队伍结构优化

为了学生能够适应模式分析与视觉处理产业的快速发展,在课程群建设过程中更强调学生的工程实践和创新能力培养。这首先对师资队伍结构提出了新的要求。

近年来,课程教学团队引进海内外具有深厚理论功底和较强工程能力的高水平师资4名,大大充实了机器学习、数据挖掘、图像处理等课程的教学力量。对于现有教师队伍,鼓励教师跟产业一线企业广泛合作,目前已与华为、中兴等企业在视频检索、智能交通视觉处理等方面开展了实质合作。这些来源于产业界的高质量课题对科研和教学起到了良好的促进作用。

与此同时,通过研究生工作站、企业短期实习等渠道,鼓励企业高级研发人员参与到学生实践能力培养环节中,将实际项目进行适当切分或提炼,实现该类课程实践环节的模块化、专题化训练。

综上,通过引培并举,优化校内师资队伍结构;通过校企合作,积极吸引企业师资参与。良好的师资队伍为该类课程的实践体系改革提供了有力支撑。

3.2 课程群知识体系梳理与授课模式改革

模式识别、机器学习、数据挖掘、智能信息检索、数字图像处理、计算机视觉等课程既有一定的逻辑关系,也存在相互交叉的混杂关系。一般认为,模式识别、机器学习是模式分析与视觉处理领域的基础理论课程,数据挖掘是建立在模式识别、机器学习和数据库基础上的应用类课程,智能信息检索则是数据挖掘基础上更为具体的应用实现。数字图像处理为计算机视觉课程提供了基础支撑,计算机视觉则是在综合利用模式识别、机器学习、数字图像处理、数据挖掘等知识模块基础上面向应用的系统实现。但是,这些课程也存在着知识点的交叉或重复。例如,模式识别和机器学习中都有贝叶斯参数估计、支持向量机模型等知识点,但视角和侧重点有所不同;图像处理、计算机视觉中都有颜色模型、成像模型等知识点,也同时存在与模式识别、机器学习交叉的知识点。

我们针对来自不同研究领域的学生群体,对该课程群的知识点进行系统梳理,既避免知识点的重复讲授,也防止重要知识点的缺漏。课程教师集体讨论,形成每门课程的核心知识集,和针对不同研究领域的选讲知识集。学生在学习课程时,在掌握核心知识集的基础上,结合自己的研究方向选择相关的选讲知识集学习。

在课程教材和参考书的选择上,注重挑选国际上有影响力的教材。例如,模式识别的参考书为Richard O. Duda等人编著的Pattern Classification;机器学习的参考书为Tom M. Mitchell编著的Machine Learning和Christopher M. Bishop编著的Pattern Recognition and Machine Learning;数据挖掘的参考书为Jiawei Han等人编著的Data Mining:Concepts and Techniques;数字图像处理的参考书为K. R. Castleman编著的Digital Image Processing;计算机视觉的参考书为D. A. Foryth编著的Computer Vision: A Modern Approach和Richard Szeliski编著的Computer Vision: Alogrithms and Applications。这些教材已被国内外著名大学普遍采用。同时,每门课程都提供相关的国内外顶级会议和期刊的列表,供学生课后追踪研究领域的热点问题。

在课堂授课环节上,注意采用灵活多样的授课方式。对于核心基础知识模块,以教师讲授为主,同时提供国内外该类课程的热门MOOC网址给学生参考。对于选讲知识模块,鼓励学生事先结合各自研究方向有目的自学,在学生报告的基础上进行课堂讨论方式进行。充分发挥学生学习的主体作用,也便于教师了解学生的水平和学习状况。

除此以外,不定期邀请国内外著名学者来校做学术报告,让学生充分了解该研究领域的最新前沿动态,并就热点问题进行专题讨论。

3.3 课程群实践体系完善与考核方式改革

工程实践和创新能力的培养是该课程群改革的重要目标。我们在上述师资队伍结构优化、课程群知识体系梳理与授课模式改革的基础上,着力进行课程群实践体系的改革与完善。我们通过多层次菜单式的实验项目选择、项目牵引的创新能力训练、学生综合研究能力的全面考查等方面来实现。

首先,整合和优化课程群实践内容,实现多层次菜单式灵活选择。根据各研究领域的要求进行灵活搭配,根据学生个体的能力与水平选择适当规模和难度的实践内容,通过课程内的基础实验、课程间的综合实验、课程群的创新实验来选择和组合,如图1所示。

图1 多层次菜单式实验内容示意图

基础型实验内容主要是各课程核心知识点的实验验证,主要包括模式识别,机器学习,数据挖掘,图像处理与分析,计算机视觉等课程的实验。要求选课学生对这些基础实验必做,打下良好的研究基础。

综合探索型实验在基础型实验基础上,既有单门课程内总的综合实验,也有课程间知识的综合应用。主要分为两大块,包括模式分析与机器学习方向的综合实验,以及图像处理与机器视觉方向的综合实验。实验目的主要是针对这两大块方向重点知识的综合分析和比较,能够熟练掌握和灵活应用。例如模式分析、机器学习、数据挖掘等方向都用到的线性判别分析、支持向量机、均值聚类等内容;图像处理与机器视觉中的图像特征抽取、视觉系统选型、目标检测、特定平台的算法优化等内容。学生可根据各自研究方向有目的的选择两块综合实验的大部分内容。

在综合型实验基础上,该课程群通过若干创新型实验来检验学生理论知识掌握程度和实践方法应用能力,为后续的研究课题开展打下良好的科研素养。主要内容包括人脸识别、二维条码识别、车辆属性识别、智能视觉监控、以及企业来源的关键技术等。这些项目实践既涉及用到图像处理与机器视觉的内容,也涉及模式分析与机器学习方向的知识。并且需要学生在综合运用相关知识的基础上有创新能力。

其次,重视各类项目牵引的创新能力训练。一方面,鼓励教师从国家自然科学基金、企业合作项目等研究中提炼出问题规模和难度适中的训练项目,作为课程群的综合能力训练项目。另一方面,鼓励学生参加挑战杯、全国研究生智慧城市技术与创意设计大赛等各类具有挑战性的竞赛项目,以赛代练,提升学生的工程实践和创新能力。同时,也鼓励学生利用百度、微软等相关研究领域的企业实习机会,参与产品一线的工程实践能力训练。

再次,注重考核环节,实现科研素养和实践能力的全面考查。只有严格、公平、公正的考核,才能保证实验实践的质量和水平,才能提升学生的科研素养和实践能力。我们主要在手段、方式方法上进行了改进。在题目选择上,根据学生个体水平和研究领域要求的差异,在选题上有适当的难易区分度,让每位学生都有锻炼和提升的机会;在考核方式上,采用结题书面报告来检验学术论文的写作能力,采用程序演示检验系统的设计与实现水平,采用上台汇报的方式检验学生的表达能力,多管齐下全面检查学生的综合科研素养;在考核成绩评定上,采用现场教师和学生共同评分的方式,公平合理;最后,通过网站展示、发表学术小论文、专利、软件著作权等方式展示和公开优秀成果,激发学生的学习热情,并由此形成积累,有利于学生实验实践氛围的传承。

4 结语

本文在分析国内外高校模式分析与视觉处理类课程群改革现状的基础上,以学生国际化视野、理论联系实际、工程实践和创新能力全面提升为目标,重点开展了师资队伍结构优化、课程群知识体系梳理、课程授课模式改革、课程群实践体系完善和实践考核模式改革等工作,取得了良好的效果,并为校内其他课程群的教学改革作为示范推广。

注释

① https:///learn/machine-learning/

② 郭小勤,曹广忠.计算机视觉课程的CDIO教学改革实践.理工高教研究,2010.29(5):98-100,148.

③ 史金龙,白素琴,庞林斌,钱强.研究生机器视觉课程的CDIO教学改革实践.计算机教育,2013.9:40-43.

④ 陈芳林,刘亚东,沈辉.在《计算机视觉》课程中引入研讨式教学模式.当代教育理论与实践,2013.5(7):112-114.

篇8

计算机视觉行业规模将进一步扩大

iiMedia Research(艾媒咨询)数据显示,2016年中国人工智能产业规模已突破100亿元,以43.3%的增长率高速增长,预计2017年产业规模将以51.2%的增长率达到152.1亿元,并于2019年增长至344.3亿元。

艾媒咨询分析师认为,中国人工智能产业起步相对较晚,随着科技、制造等业界巨头公司的布局深入,人工智能产业的规模将进一步扩大。计算机视觉作为人工智能的子领域,其发展和应用也很大程度受到人工智能核心技术的影响。未来,作为人工智能子领域的计算机视觉产业规模也会相应扩大。

计算机视觉用户市场有待挖掘

iiMedia Research(艾媒咨询)数据显示,2017上半年网民对于计算机视觉行业整体了解程度还不深,智能识别贴图应用以63.8%的了解比例名列各领域之首,其余领域网民了解比例均未超过五成。艾媒咨询分析师认为,计算机视觉行业作为新兴行业,其概念还未深入大众群体,大众对于其作用了解程度不深,未来计算机视觉行业用户市场开发潜力较大。

计算机视觉整体渗透率低

iiMedia Research(艾媒咨询)数据显示,2017上半年网民中,有四成用户使用过图搜索功能。还有六成用户仍未使用过图搜索功能。图搜在技术计算机视觉领域中已经发展比较成熟,然而在网民种的渗透率仍不高。艾媒咨询分析师认为,计算机视觉作为新兴技术,其投入实际应用时间较短,且技术依托的平台种类和数量都较少,用户市场培养还需时间。

图搜功能获用户认可

iiMedia Research(艾媒咨询)数据显示,在对2017上半年使用过“图搜”功能的网民准确率感知调研中,将近七成的用户对“图搜”功能的准确率给予肯定。“图搜”技术已经较为成熟,正在逐渐将便利带到用户生活中,未来随着“图搜”功能进一步在各应用中扩张,其区别于传统搜索的优势将会更明显被用户感知。

2017上半年网民图搜索场景分布

iiMedia Research(艾媒咨询)数据显示,2017上半年图搜网民中,69.6%的用户在搜索引擎中使用图搜功能,网购场景下使用图搜功能的用户占比53.5%。艾媒咨询分析师认为,搜索引擎直接应用了图搜功能,发展较早,故用户基础较扎实,其余领域中,网购图搜变现能力最强,是厂商优先合作的重点领域。

边看边买用户市场潜力较大

iiMedia Research(艾媒咨询)数据显示,2017上半年边看边买网民渗透率仅有11.9%,而在未尝试过人群中,有意愿进行尝试的人群超过六成。艾媒咨询分析师认为,明星经济拉动下,同款销售具有宣传效应加成。边看边买技术一方面可以加强视频门户的变现能力,一方面作为流量入口能够为电商平台导入流量,且对于消费者来说,智能匹配同款可以减少其搜索筛选的时间成本,未来市场有较大发展潜力。

实名制机器认证部分取代人工 未来规模看涨

iiMedia Research(艾媒咨询)数据显示,2017上半年机器实名制认证网民渗透率为43.6%,有超一半用户未使用过机器实名制认证功能。随着计算机视觉技术发展,在广州、上海等城市已经开始使用机器实名制认证部分或全部代替人工认证,以减少人工成本,释放劳动密集产业用工压力。艾媒咨询分析师认为,随着时间检验和技术进一步成熟,机器实名制会进一步向中小城市渗透,未来网点铺设规模有望进一步扩大。

机器认证效率获用户认可

iiMedia Research(艾媒咨询)数据显示,2017上半年使用过机器实名制认证的网民中,82.6%的用户表示机器实名制认证加快了验证流程。艾媒咨询分析师认为,计算机视觉精准快速无主观性的特点和实名制认证流程要求相匹配,在技术比较成熟的情况下,能够提高验证效率,缓解铁路站点因人工验证慢导致的拥挤、乘客等候过久等现象。此技术在中国各铁路站点会慢慢渗透,应用规模有望扩大。

个人信息泄露成为用户刷脸支付最大顾虑

iiMedia Research(艾媒咨询)数据显示,2017上半年了解刷脸支付的网民中,59.0%认为个人信息泄露是刷脸支付最大隐患。识别不准确和使用渠道不畅通分别以57.6%和41.9%位列第二和第三名。

艾媒咨询分析师认为,作为个人信息比较敏感的金融支付领域,用户对于信息安全重视度相较其他领域更高,而2017年初315晚会对刷脸支付泄露个人信息隐患的点名,无疑为刷脸支付规模扩张设置障碍,加强用户信息保障能力,获取用户对于技术安全的信任是刷脸支付未来重点发力方向。另外,由于计算机视觉概念未在大众群体中普及,其规模化需依托场景搭建,故使用渠道畅通也可以助力加快行业规模化进程。

精确性+场景化:C端市场打开方式

iiMedia Research(艾媒咨询)数据显示,2017上半年中国网民对于计算机视觉行业的愿景分布中,准确率更高以64.3%的关注度成为用户最期待改进方向,使用更加方便和保障信息安全也是用户重点关注问题。艾媒咨询分析师认为,行业发展初期,用户对概念理解程度不高,易产生“不易”使用的印象而不愿进行尝试,未来商家可尝试提供装备完全的硬件设备和解决方案,并尝试丰富使用场景,让计算机视觉更易被广泛网民接受。

篇9

表面缺陷检测以及特征提取,所涉及的范围是非常广泛的,包括了铁轨表面缺陷、带钢表面缺陷以及织物表面缺陷等。因此加强对产品的表面缺陷提取以及质量检测显得尤为重要,目前基于计算机视觉的构件缺陷检测系统已经受到国内外研究人员的重视,如何更好地将计算机视觉技术引入到产品表面质量缺陷检测中去是未来发展的重点。笔者将在下文中就此展开详细的阐述。

1.计算机视觉的基本工作原理

1.1系统结构

计算机视觉是一项涉及范围广泛的技术,他通过图像采集装置将检测目标转化为图像信号,再经过专门性的额图像处理系统最终生成具体的表面特征。具体来讲在图像处理环节米旭涛根据图像的具体像素以及图像分布和颜色、亮度、饱和度等进行目标提取,再比照系统预设的参照值得出最终的检测结果,例如尺寸大小、颜色等师傅偶合格。计算机视觉处理系统包括了光源、镜头、计算机以及图像采集装置和处理系统等,这些系统综合组成共同推动了计算机视觉系统的正常稳定运行。

1.2计算机视觉硬件设计

计算机视觉系统的硬件平台包括了照明系统、镜头相机以及图像采集装置和工控机四个部分,这四个部分缺一不可,共同组成了整个计算机视觉系统。

1.2.1照明系统

照明系统是整个计算机视觉系统的关键,尤其是在光源和照明方案的配合上更是直接影响了整个系统运行的成败。因此在照明方案的制定以及光源的选择上应该尽可能的突出物体特征参量,综合考虑对比度以及亮度等因素,将计算机视觉系统的光源与照明方案相匹配,选择需要的几何形状以及均匀度等,同时还需要结合被检测物体的表面特征几何形状。针对构件表面缺陷的照明方案,笔者认为应该选择功率相对较大的LED光源,用低角度的方式进行照明。

1.2.2相机镜头

相机系统是成像的关键,因此在相机镜头的选择上应该适用于具体的构件。一般来说相机镜头包括了两方面内容,一是线扫,二是面扫。通过二者的综合运用实现更好地成像效果。

1.2.3图像采集卡

图像采集卡主要是指在计算机视觉系统中位于图像裁剪机设备和图像处理设备之间的重要接口。是成像的中间环节,发挥着不可或缺的作用。

2.基于计算机视觉的构件表面缺陷特征提取

基于计算机视觉的构件表面缺陷特征提取可以分为为三个重要部分,分别是图像预处理部分:主要是指针对构件进行区域的定位,将非构件的部分移出计算机视觉的缺陷提取技术中去,从而降低了后续工作的工作难度;其次是进行缺陷定位,主要是指通过特定的技术和算法将缺陷从结果当中直接分离出来。第三部分是缺陷特征的提取,也是系统处理的结果部分,是通过计算缺陷的程度以及缺陷大小,从而为后期的构件维护提供参考依据。具体来说,这三个部分的操作主要体现在以下几个方面:

2.1区域定位

区域定位是减少构件处理和选择时间的关键,能够大大提高构件缺陷提取的效率。构件的表面的基本特征和大致集合框架提取是区域定位和的第一步,要将计算机区域定位和缺陷提取结合起来,更好地实现缺陷分析。要做好构件的区域定位首先需要明确构件的基本种类和特征:一是根据构件的重用方式来说,可以分为白匣子、灰匣子、黑匣子从构件的使用范围来看又可以分为通用构件和专用构件;根据构件的粒度的大小可以分为小。中大三种不同粒度的构件;再次是从构件的功能上来看可以分为系统构件、支撑构件以及领域构件三个部分。四是从构件的基本结构特征来看可以分为原子构件以及组合构件。最后从构件的状态来说,又可以分为动态和静态构件。因此从不同种类的构件进行区域定位为视觉系统正常运行创造了优良的条件。

2.2缺陷提取

在进行缺陷提取的过程中,难免会受到客观的环境影响,比如噪声、温度以及湿度等对图像处理的结果产生影响,因此需要对区域定位中产生的区域进行滤波处理,然后再采用阈值分割的办法进行缺陷提取。具体操作步骤如下所示:

(1)计算出成像中的最小最大灰度值,并且设置初始阈值。

(2)根据阈值,结合图像的分割目标,将图像分割成为目标和背景两个部分,求导出平均灰度值。

(3)再根据新的平均灰度值计算出新的阈值。

(4)观察阈值的初始值与新阈值之间的关系,如歌二者相等则整个计算过程就结束,如果不相等,则就需要进一步计算。

通过阈值计算得出啊的最佳阈值分割效果图,能够进行初步的缺陷预判,但是初步预判当中还存在较多的不确定因素,主要包括两类,一是在边缘部分出现的细小毛刺,由于与缺陷的距离较近,因此在初步缺陷提取中容易形成误判、再次是在构件表面有一些非常细小的缺陷,这些缺陷的影响较小,不会对构件的性能造成影响,因此在进行缺陷提取的过程中需要将这两个因素排除在外,具体主要是指采用图像形态学中开运算和闭运算,从而达到对构件中的明了细节和暗色细节的过滤。具体来说缺陷的分割提取采用的是Sobel算子。主要是利用了图像像素点的上下左右灰度加权算法,对构件表面的缺陷进行检测。再采用二值图像边界跟踪法,将缺陷从构件图像中分离出来。

2.3缺陷特征提取

缺陷特征提取,又可以称之为缺陷的定量计算和定性过程,是将前期所得的数据结果以更加直观的形式展现出来,通过对比指标参数判断构件的表面质量是否合格,符合基本的生产标准。一般来说常用的表示缺陷特征的标准有以下几种:

(1)周长:周长是对缺陷的边界长度的描述,在图像特征上显示则是指构件成像上的缺陷区域的边界像素数量。

(2)面积:面积相对于周长能够更加直观地反映整体缺陷的大小,它是缺陷区域中的像素的总数,因此更高体现缺陷的影响规模。

(3)致密性:这是一个相对专业的缺陷指标概念主要是指每平方面积上的平方周仓,是一个双单位描述指标。

(4)区域的质心:区域质心是描述缺陷的影响关键也就是缺陷区域内的核心区域,是对整个区域的核心描述。

(5)最小外接矩形。

3.结语

综上所述,构件表面缺陷直接影响构件的最终使用效果,构件表面缺陷的检测应用领域也逐渐广泛,而计算机视觉技术在检测缺陷中的优越性更体现了基于计算机视觉的构件表面缺陷特征提取的研究价值。本文主要针对构件表面缺陷的检测,综合计算机视觉技术提出了具体的检测方法和检测工作原理,通过对表面缺陷的检测,力图提高构件的整体质量。

【参考文献】

[1]陈黎,黄心汉,王敏,何永辉,龚世强.带钢缺陷图像的自动阈值分割研究[J].计算机工程与应用,2002,(07).

篇10

中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2014)07-0001-01

随着科学技术的快速发展,计算机技术也得到了飞速的发展。将计算机技术应用于人类的视觉系统,并辅助人们观察到一些眼睛难以看到的东西,已经逐渐成为一门大家所热捧和追逐的技术。随着人们对视觉传感器技术越来越多的探索,人们也逐渐实现了古代时想拥有千里眼的梦想。目前,人们已经把视觉传感器技术和计算机技术良好的结合在一起,并把这些技术应用到食品、建筑、医药、电子、航天航空等众多领域当中。而该项技术的快速发展,也帮助人们解决了一些日常工作当中人类视觉存在盲区的问题,保证了人们工作过程的安全。视觉技术与IT技术的完美结合使得人们的生活变得更加便利,让人们亲身体会到了IT技术给人们生活带来的便捷。

1 双目立体视觉概述

双目立体视觉又称双目视觉技术,是目前计算机视觉应用领域的重要研究内容。双目立体视觉控制系统的组成因其采用的原理和应用功能的不同,组成也都各不相同。

双目立体视觉的实现原理是基于人眼的视网膜看物体的特性,从两个不同的方向来观看同一个物体的不同角度,从而实现清楚的了解到物体的图像的目的。双目立体视觉从不同的角度获得物体的投影信息,并根据匹配的结果,获取同一个物体不同偏差位置的信息。最后在依据三角测量技术,根据已经获得的这些偏差信息从而获得这些不同点对应的距离信息,并最终获得这些实际物体的具体坐标位置信息。

视差测距技术告诉我们,要清楚的观察到一个物体的全貌,需要两个观察物从不同的方向,或者固定一个观察物,移动另外一个观察物的方式,以达到拍摄同一个物体的目的。根据同一个物体在两个观察物当中的位置偏差,从而确定该物体的三维信息。一般来说,双目立体视觉的组成包括:图像获取设备、图像预处理设备、摄像机标定设备、立体匹配设备、根据二维信息实现三维重构设备等五个重要设备。

2 双目立体视觉技术的原理

立体画又可以称之为三维立体画,是一种人们可以从三维立体图中获取二维平面图信息的技术。三维立体图表面看似毫无规则,但是假如通过一些特殊的技术或者通过合理的观察手段和观察设备,就可以看到一组秩序井然的美妙图片。

三维立体图是一组重复的二维图片有序的堆积积累而成,因此可以呈现出立体效果。人体观察物体的原理大致如下:当人类通过左右眼观察所在的空间平面的时候,这些平面图都只是一些毫无秩序的图片。而当左右眼重新聚焦或者在观察画面的时候呈现一定的层次感,则人类的左右眼观察到的一组重复案在经过人体识别以后,这些画面之间将存在一定的距离差异,从而在脑中生成立体感。

双目立体视觉技术正是基于以上的原理,从两个不同的方向去观察物体,并获得目标图像的信息,并经过一定的处理获得三维重建的物体立体信息的技术。

双目立体视觉在计算机技术中实现三维重建的大致流程

如下。

1)摄像机定位,并通过单片机计算得到要获取图像信息需要的外部的参数的大概值,并根据这些参数值设定摄像机。

2)用设定参数的摄像机拍摄目标场景的画面,并采集这些画面的二维图的信息。

3)通过计算机技术实现双目匹配,并判定采集画面中的二维图像中的不同点之间的对应关系。

4)在第三步中若得到两组二维图像的关系是稠密的时候,则生成三维视差图。如果不是则进一步采集图片信息。

5)根据得到的视差图最终实现场景的三维图形的重建。

3 双目立体匹配技术的研究难点和未来的发展方向

尽管目前有很多学者都投身到双目立体匹配技术的研究和开发当中,直至目前为止也解决了很多关于视觉理论当中存在的很多缺陷问题。但是视觉问题是一个复杂且难以解决的问题,特别是在双目立体匹配问题方面更是困难重重。立体匹配技术的难点已经成为限制将双目技术应用到计算机技术当中的重要瓶颈。

立体匹配的主要手段就是找到计算机采集到两幅和多副图片的中像素的对应关系,然后根据这些像素关系判定并生成三维重建图。但是二维图像的匹配存在层层困难,主要体现在以下几个方面。

1)由于视角的问题或者观察物体存在遮挡问题,导致采集回来的图片信息存在盲点,这样子更难找到图片的匹配区域。

2)场景中的一些深度不连续的区域大都处在场景当中的边界位置,这些位置容易出现像素不高,边界不清晰等问题,这些问题也给图像匹配带了很多困扰。

3)场景当中的低纹理的图片匹配特征和匹配关系较少,而且该位置的每个像素点极为相似。假如只是通过简单的像素相似性检测的话,会检测到很多匹配结果,而这些匹配结果当中有一大部分是错误的。这样子的结果势必会导致最终的图像匹配正确率极为低下。

从以上的分析,我们可以看出立体匹配技术存在很多技术上的难点,这些都在很大程度上限制双目立体匹配技术在计算机当中的应用发展。如何才能设计出有效、准确、快速、通用性强的立体匹配算法将会是以后双目立体匹配计算发展的重要方向。也只有通过设计出一套行之有效的立体匹配算法才能使得双目立体匹配技术在计算机视觉当中得到广泛的应用。

4 结束语

人们通过眼睛可以感受到外界事物的存在,可以清楚的了解到事物的立体信息,分辨出观察物的广度和深度,以及物体的远近。因此人类视觉感知系统就是一个双目的立体感知系统。本文讲述的计算机中的双目立体匹配技术正是基于人眼视觉观察物体的原理,通过双目立体视觉原理,对计算机采集获得两幅二维图像的信息进行分析,并结合计算机的分析,最终获得同人类眼睛一样观察到物体三维表面信息的目的。双目立体匹配技术与计算机技术的完美结合帮助人们可以更加轻易的获得物体的信息。希望在不久的将来,可以将该项技术应用于人类的视网膜当中,以帮助一些视网膜存在问题的人们,让他们重新感受到光明,感受世间的温暖。

参考文献

[1]高文,陈熙霖.计算机视觉算法与系统原理[M].北京:清华大学出版社,2002.

[2]明祖衡.双目立体视觉测距算法研究[M].北京:北京理工大学,2008.

[3]刘昌,郭立,李敬文,刘俊,杨福荣,罗锋.一种优于SAD的匹配准则及其快速算法[J].电路与系统学报,2007,12(4):137-14.