时间:2024-01-12 14:53:21
导言:作为写作爱好者,不可错过为您精心挑选的10篇量子计算现状,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
中图分类号:TN918 文献标识码:A 文章编号:1009-914X(2016)09-0128-01
引言
随着科学技术的飞速发展,量子信息学逐渐得到人们的关注与重视,在近代物理学、计算机科学等领域都有所涉及。通过量子力学的基础,不断的发展与延伸。量子信息学,是量子力学与信息科学相结合的产物,是以量子力学的态叠加原理为基础,研究信息处理的一门新兴前沿科学。包括量子密码术、量子通信、量子计算机等几个方面。我们在这里,着重的了解一些量子通信。
一、 量子通信协议概念
1,量子通信协议定义
量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。其中隐形传送是指脱离实物的一种“完全”的信息传送。可以想象:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。实际上是一种对于通信地保密性的传输。是一种在理论上可以保证通信绝对安全的一种通信方式。由于量子力学中的不确定性原理,是不允许精确地提取原物的全部信息,因此长期以来,隐形传送不过是一种幻想而已。
2,量子通信与光通信的区别
量子通信与光通信的区别,在于在通信中用的光的强度是不同的。光通信一般采用是强光,包括无线电、微波、光缆、电缆等具体形式。通过偏振或相位等的调制方式来实现。量子通信讨论的是光子级别的很弱的光,通过对光子态的调制,但是主要利用了光子的特性,量子态不可克隆原理和海森堡不确定性关系。这也是区别于光通信的重点。
二、量子通信基本方式
量子通信在量子力学原理的基础上,通过量子态编码和携带信息进行加工处理,将信息进行传递。只要包括:量子隐形传态、量子密钥分发等,下面主要介绍这两个组成部分:
1,量子隐形传态
量子隐形传态,又称量子遥传、量子隐形传输。经由经典通道和EPR 通道传送未知量子态。利用分散量子缠结与一些物理讯息的转换来传送量子态至任意距离的位置的技术。它传输是量子态携带的量子信息。想要实现量子隐形传态,要求接收方和发送方拥有一对共享的EPR对,即BELL态(贝尔态)。发送方对他的一半EPR对与发送的信息所在的粒子进行结合,而接收方所有的另一半EPR对将在瞬间坍缩为另一状态。根据这条信息,接收方对自己所拥有的另一半EPR对做相应幺正变换即可恢复原本信息。到乙地,根据这些信息,在乙地构造出原量子态的全貌。量子隐形传态大致可以这样描述:准备一对纠缠光子对,一个光子发送给有原始量子态(即第三个光子)的甲方,另一个光子发送给要复制第三光子的量子态的乙方。甲方让收到的一个光子与第三光子相互干涉(“再纠缠”),再随机选取偏振片的方向测量干涉的结果,将测量方向与结果通过普通信道告诉乙方;乙方据此选择相应的测量方向测量他收到的光子,就能使该光子处于第三光子的量子态。
量子隐形传态作为量子通信中最简单的一种,是实现全球量子通信网络的可行性的前提研究。它的存在与应用,可以完全的保证用户的信息安全,通信保密,同时如果出现有人窃听的现象,将会及时的进行信息的改变,保证内容的“独一无二”。
2,量子密钥分发
量子密钥分发以量子物理与信息学为基础,是量子密码研究方向中不可缺少的重要部分。被认为是安全性最高的加密方式,实现绝对安全的密码体制。当然这只是理论上的内容,在现实生活中还是有一定的差距。只是理论上具有无条件的安全性。1969年提出用量子力学的理论知识进行加密信息处理。到了1984年,第一次提出量子密钥分发协议,即BB84协议。随后又提出B92协议。2007年,中国科学技术大学院士潘建伟小组在国际上首次实现百公里量级的诱骗态量子密钥分发,解决了非理想单光子源带来的安全漏洞。后又与美国斯坦福大学联合开发了国际上迄今为止最先进的室温通信波段单光子探测器――基于周期极化铌酸锂波导的上转换探测器。解决了现实环境中单光子探测系统易被黑客攻击的安全隐患。保证了非理想光源系统的安全性。生成量子密钥大致为:准备一批纠缠光子对,一个光子发送给发信方,另一个光子发送给收信方。测量光子极化方向的偏振片的方位约定好两种。两人每次测量一个光子时选择的方向都是随机的,但要记录下每次选择的方向,当然也要记录下每次测量的结果,有光子通过偏振片就记1,无光子通过则记0。通过普通信道两人交换测量方向的记录,那些测量方向不一致的测量结果的记录都舍去不要,剩下的那些测量方向相同所对应的测量结果,两人应一致,这一致的记录就可作为两人共同的密钥。
总结
经典通信较光量子通信相比,量子通信具有传统通信方式所不具备的绝对安全特性。具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。逐渐走进人们的日常生活。为了让量子通信从理论走到现实,从上世纪90年代开始,国内外科学家做了大量的研究工作。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会和国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个,日本邮政省把量子通信作为21世纪的战略项目。我国从上世纪80年代开始从事量子光学领域的研究,近几年来,中国科学技术大学的量子研究小组在量子通信方面取得了突出的成绩。
参考文献
[1]莫玲 - 基于专利分析的欧盟量子通信技术发展现状研究《淮北师范大学学报:自然科学版》 - 2015.
[2]徐兵杰,刘文林,毛钧庆,量子通信技术发展现状及面临的问题研究《通信技术》 - 2014.
[3]胡广军,王建 -量子通信技术发展现状及发展趋势研究 《中国新通信》 - 2014.
[4]肖玲玲,金成城 - 基于专利分析的量子通信技术发展研究《全球科技经济t望》 - 2015.
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)33-0033-02
随着计算机网络的不断发展与广泛应用,其已经成为了我国人民在日常生活中及工作中不可缺少的技术,它为人们的衣食住行提供了方面,也为我国社会经济的发展提供了基础。目前我国计算机网络正在朝着更大规模范围发展,在此过程中也暴露了计算机网络路由选择中的一系列问题。现如今的计算机网络路由选择已经满足不了人们及社会的发展需求,也对计算机网络的正常运行造成了一定的影响,所以对其的优化改进是目前最重要的内容。
1 浅析计算机网络路由选择
计算机网络路由选择中有多种方法,包括梯度法、列表寻优法、爬山法及模拟退算法等。由于这些方式具有局限性,收到多种条件的限制,导致本身的作用都得不到很好的发挥。计算机网络路由选择主要是在能够满足计算机网络通信容量、网络拓扑及网络节点需求的基础上,对计算机网络中的各节点路由进行选择,使计算机网络可以缩短到最小时延。一般计算机网络路由选择可以使用优化工作,比如:其一,如果计算机网络中节点内部具有较大容量的缓冲器,那么就不会溢出或者丢失其数据包;其二,如果能够以实际的指数分布为基础设置报文长度,就可以按照泊松到达;其三忽略计算机网络中节点处理报文的时延;计算机网络中报文传输服务都是一个等级。【1】
2 探析改进量子进化算法
实际上量子进化算法就是进化算法和量子计划相结合产生的,此事以态矢量为基础,以量子比特编码为染色体,其更新染色体要以量子旋转门和非门进行实现,从而才能优化计算机网络路由。量子进化算法中的染色体排列矩阵为:
一个量子染色体表示问题解的特性,其原理就是对量子染色体进行随机测量,以此得出结果和概率,使用二进制实现坍塌,在此过程中可以了解到量子染色体可以有效地解决问题。另外改进量子进化算法的实现是根据量子旋转门,通过搜索法使公式的解得到最佳,增加或者减少概率,以此保留或者删除结果,以此来改进量子进化算法。
上表中的xi表示第i个量子染色体的二进制解,bi表示第i个最优解。
量子进化算法的流程主要包括三个部分:其一,要对种群进行初始化,在此基础上对初始种种群进行测量,以此得到与个体相依状态的相关记录表;其二,在合适的状态下对记录进行针对性的评估,并且对最佳个体和个体的适应值进行相关记录;其三,在还没有完全结束的时候,进行其他操作。
对于量子进化算法来说,此过程是非常复杂的,用相关的符号表示事务,之后进行计算。比如可以使用M表示染色体长度,染色体可以维护解的多样性。这样才能使算法简单的表述。【2】
3计算机网络路由选择的改进量子进化算法研究
在计算机网络中,量子进化算法是非常值得热议的话题,在计算机网络路由选择中的量子进化算法,其主要问题就是量子进化算法是针对性对表格进行参照,以此来找出相应的解法。这种方法会造成旋转角之间没有较好的关联性,另外在搜索问题的时候会有跳跃性,对于计算机在日常运行工作的时候是非常不利的。为了能够通过量子进化算法解决计算机路由选择中的问题,就要对其进行创新和改进。首先优化其中的旋转角,使其值能够满足路由选择。优化后的旋转表式子可以写为:
?θi=0.001π*50fb-fx/fx
根据此式子可以了解到旋转角在不同的情况下会有不同的结果,简单来说就是不同的旋转角值具有不同的含义。如果旋转角的值越小,那么就说明个体与最优个体之间的距离就越小,就缩小了搜索网络。在此状况下搜索就可以达到最优;如果旋转角的值越大,就说明个体与最优个体之间的距离越大,就逐渐扩大了搜索网络。在此状况下就要使所搜速度加快,这样才能够使计算机网络路由选择更多方面。
另外就是优化调整其中的函数,可以使用组合优化的方式进行,要求函数达到最佳状态,这样才能够得出最优解。通过此方式可以了解到,个体基因之间并没有较强的关联性。所以就可以通过计算机网络路由选择,对量子进化算法中的函数调整并优化。如果处于归一化的基础上,实现对应的实属对,并且使他们与量子位一一对应。基于此就可以做量子进化算法的仿真实验,并且对其进行对比,是否有优势。实验结果表示,计算机网络路由选择中的性能能够了解量子进化算法优化后比传统更优秀,此结果可以见图1。
从图1可以了解到,在计算机网络路由选择中的改进量子进化算法中,不断是收敛速度、寻优能力还是其中的性能,都优于传统量子进化算法。在进行仿真测试时,能够使改进量子进化算法之后发挥自身的作用,也能够在计算机网络路由选择中完善自身的应用。在此情况下计算机路由选择面对问题能够很好地解决,并且能够及时发现其中的问题,有效地提高了工作人员的工作质量和效率,还使计算机在正常运行和工作的过程中保持一个良好的状态。【3】
4结束语
在目前计算机网络技术被广泛应用的基础上,要重视计算机网络路由的选择。同时,改进量子进化算法也是非常重要的,通过优化旋转角,以此提高搜索速率及范围。计算机网络技术自发展应用以来,量子进化算法都有着较好的应用和前景,那么优化量子进化算法有效地促进了计算机网络技术的进一步发展,使计算机网络技术可以为我国各行各业提供更好的服务,也有效促进我国经济的可持续发展。
参考文献:
近30年来,人们已提出了多种量子门,如Toffoli门[1],Fredkin门,Peres门等,并给出了量子门的代数特征。如何使用指定量子门库中的量子门自动生成量子代价较小的量子可逆逻辑电路,其本质就是量子可逆逻辑电路综合技巧问题。Shende将可逆电路综合转化为置换问题,并提出三量子可逆逻辑电路综合最优算法;Yang在此基础上利用GAP软件实现了三量子最小长度和最小代价可逆逻辑电路综合算法。然而目前大多数算法只是在综合三量子电路时效果很好,随着综合量子比特数的增加,综合量子可逆逻辑电路的时空复杂度将进一步增加。在综合四量子电路时,Yang等人利用广度优先搜索和双向综合技术,使用CNP量子门库可综合最长为12的四量子偶置换最优电路,这已是较好结果;李等人使用CNP量子门库,在广度优先搜索的基础上,巧妙构造哈希函数并利用线置换和向变换进行无损压缩可快速生成最大长度为16的最优四量子偶置换电路,这是目前已知的最好结果。目前人们还未设计出通用高效的多量子电路综合算法,这是量子电路设计中急需解决的重要问题之一,因为它的设计实现不仅可以降低制造量子电路的成本,而且能提高多量子可逆电路设计的效率。
目前比较有代表性的量子可逆电路构造方法有以下几种[2]。
穷举法、RM方法、群论分解方法、探索法,通过比较知穷举法综合结果好,能达到最优,但时间空间开销大;真值表和RM方法构造巧妙,综合速度快,但结果不尽理想,需要辅以优化;群论方法新颖高效,算法收敛迅速(有限步结束),但构造复杂,较为繁琐,需要的门库规模大;其他方法也均是在综合的效果和效率之间寻求一个平衡点,这个平衡点如何选取,则应该以实践中的具体需求情况为依据。
构建量子可逆逻辑电路主要有构造与优化两个过程,有些算法是先构造再优化,还有一些算法则是构造与优化同时进行。通常所得到的量子电路并不是最优电路,如何有效地优化电路,成为量子电路领域的另一个研究重点。Iwama、Maslov、Maslov等都对电路优化程度作出了杰出贡献。
目前对量子二值逻辑可逆电路综合算法的研究较多,但对于多值逻辑量子电路综合技术的研究较少[3]。其中的原因主要有:第一,人们已习惯于经典计算中的二值逻辑,利用多值逻辑进行计算不符合人们常规的思维和计算方式;第二,对于多值逻辑的理解与应用本身就是困难的,涉及多值逻辑理论及群、环、域等代数理论,量子可逆电路的设计又具有相当难度,规模较大,复杂性较高,其中又要解决量子的自然属性(如消相干现象等)对计算的负面影响。所以将多值逻辑应用于量子电路,设计具有相当复杂性的多值逻辑量子电路也是困难的。然而,量子具有多种可观测的属性,例如光子的偏振方向,电子的自旋方向,电子所处于的能级等,因而具有多个复杂的自由度,利用多能级描述量子位也更自然。由于量子实验物理的发展进步及测量技术的不断完善,对于量子在各个属性上的测量的精准度大大提高,使得量子高维基态(即多值逻辑量子态)的应用成为可能。另一方面,量子多值逻辑的应用能够极大提高量子并行计算的能力(理论上比二值逻辑更强大),并可在存储和处理量子信息时提供更大的灵活性,又可以无辅助位的方式用两位量子门和一位量子门建立多量子电路,使得多量子电路的物理实现成为可能。对多值量子可逆逻辑电路综合的研究正在兴起。
量子可逆电路本质上是置换电路[4],在此基础上可根据一些特定功能构造量子专用电路,专用电路的设计实现及应用可加速运行算法,并对量子寄存器或量子芯片等的设计作出一些贡献。目前已设计出量子全加器、量子全减器及受控集成量子加减电路,它们是构建量子计算机的基本单元。在量子纠错编码和容错计算中可根据纠错码的生成矩阵和校验矩阵,分别生成编码电路和解码电路。2005年何等人通过分解蝴蝶矩阵和转置矩阵独立实现了基于Haar小波多尺度分析的完整量子电路。2006年Cheng等人用Bitonic方法快速构造大规模的量子排序电路,给出的线路模型清晰地反映出算法消耗资源的情况。2007年Khan等人给出了利用三值逻辑Feynman和Toffoli门实现的三值逻辑全加器,基于此又实现了带有部分前瞻的三值逻辑并行加法器,并展示了将此电路用作并行减法器的方法。2008年Khan提出综合量子四值逻辑加法/减法器的递归电路。之后Khan又提出量子四值逻辑比较器,比较器是著名的Grover量子搜索算法的关键功能模块―Oracle的组成部分,也是基于比较的各种算法及控制器的基本模块。当然,由于量子电路设计的复杂性,目前综合出的专用电路还不多,并且给出的大多数的电路并非最简形式。
尽管对于量子可逆电路的研究已取得了一些成果,但目前对于构建量子可逆电路的量子门及通用门库的研究还不深入,对于量子可逆电路的生成方法和优化方法的研究还处于起步阶段。对其中的一些问题,如多值逻辑的嵌入与应用,电路优化策略,综合算法复杂性的深入分析与证明等,只是进行了初步的探索。虽出现了一些解决方案,但并不十分成熟,还有一些领域未曾涉及,所以需要进一步深入研究。
参考文献:
[1]李志强,陈汉武,徐宝文等.基于Hash表的量子可逆逻辑电路综合的快速算法[J].计算机研究与发展,2008,vol.45-2:2162-2171.
量子力学课程的学习要求学生具有良好的数学和物理基础,对学生的逻辑思维能力和空间想象能力等要求较高,因此要学好量子力学,在我们教学的过程中,需要充分发挥学生的学习主动性和积极性。同时,随着科学日新月异的发展,对量子力学课程的教学也不断提出新的要求。如何充分激发学生的学习兴趣,充分调动学生的学习主动性和能动性,切实提高量子力学课程的教学质量和教师的教学水平,已经成为摆在高校教师目前的一项重要课题。
该课程组在近几年的教学改革和教学实践中,本着高校应用型人才的培养需求,强调量子力学基本原理、基本思维方法的训练,结合物理学史,充分激发学生的学习积极性;充分利用熟知软件,理解物理图像,激发学生学习主动性;结合现代科学知识,强调理论在实践中的应用,取得了良好的教学效果。
1 当前的现状及存在的主要问题
目前工科电类专业普遍感觉量子力学课程难学,其主要原因在于:第一,量子力学它是一门全新的课程理论体系,其基本理论思想与解决问题的方法都没有经典的对应,而学习量子力学必须完全脱离以前在头脑中根深蒂固的“经典”的观念;第二,量子力学的概念与规律抽象,应用的数学知识比较多,公式推导复杂,计算困难;第三,虽然量子力学问题接近实际,但要学生理解和解决问题,还需要一个过程;由于上述问题的存在,使初学者都感到量子力学课程枯燥无味、晦涩难懂,而且随着学科知识的飞速发展,知识的更新周期空前缩短,在有限的课时情况下,如何使学生在掌握扎实的基础知识的同时,跟上时代的步伐,了解科学的前沿,以适应新世纪人才培养的需求,是摆在我们教育工作者面前的巨大挑战。
2 结合物理学史激发学生学习兴趣
兴趣是最好的老师,在大学物理中,谈到了19世纪末物理学所遇到的“两朵乌云”,光电效应和紫外灾难,1900年,普朗克提出了能量子的概念,解决了黑体辐射的问题;后来,爱因斯坦在普朗克的启发下,提出了光量子的概念,解释了光电效应,并提出了光的波粒二象性;德布罗意又在爱因斯坦的启发下,大胆的提出实物粒子也具有波粒二象性;对于物理学的第三朵乌云“原子的线状光谱,”玻尔提出了关于氢原子的量子假设,解释了氢原子的结构以及线状光谱的实验。后来还有薛定谔、海森堡、狄拉克等伟大的物理学家的努力,建立了一套崭新的理论体系-量子力学。在教学的过程中,适当穿插量子力学的发展历史以及伟大科学家的传记故事,避免了量子力学课程“全是数学的推导”的现状,这样激发学生的学习兴趣和学习热情,通过对伟大科学家的介绍,培养刻苦钻研的精神。实践表明,这样的教学模式大大提高了学生的学习主动性。
3 结合熟知软件化抽象为形象
量子力学内容抽象,对一些典型的结论,可以用软件模拟的方式实现物理图像的重现。很多软件如matlab、c语言等很多学生不是很熟练,而且编程较难,结合物理结论作图较为困难;Excell是学生常用的软件之一,简单易学却功能强大,几乎每位同学都非常熟练,我们充分利用这一点,将Excell软件应用到量子力学的教学过程中,取得了良好的效果。
如在一维无限深势阱中,我们用解析法严格求解得到了波函数和能级的方程。而波函数的模方表示几率密度。我们要求学生用Excell作图,这样得到粒子阱中的几率分布,通过与经典几率的比较(经典粒子在阱中各处出现的几率应该相等)和经典能级的比较(经典的能量分布应该是连续的函数),通过学生的自我参与,充分激发了学生的求知欲望;从简单的作图,学生深刻理解了微观粒子的运动状态的波函数;微观粒子的能量不再是连续的,而是量子化了的能级,当n趋于无穷大时微观趋向于经典的结果,即经典是量子的极限情况;通过学生熟知的软件,直观的再现了物理图像,学生会进一步来深刻思考这个结论的由来,传统的教学中,我们先讲薛定谔方程,然后再解这个方程,再利用边界条件和波函数的标准条件,一步一步推导下来,这样的教学模式有很多学生由于数学的基础较为薄弱,推导过程又比较繁琐,因此会逐步对课程失去了兴趣,这也直接影响了后面章节的学习,而通过学生亲自作图实现的物理图像,改变了传统的“填鸭式”教学,最大限度的使学生参与到课程中,这样的效果也将事半功倍了,大大提高了教学的效果。
4 结合科学发展前沿拓宽学生视野
引言:计算机技术、网络信息技术等在科学技术整体发展驱使下也获得了巨大的进步与发展,尤其是计算机应用技术已经具有了较高的质量与发展水平,可以在众多领域中进行科学应用,充分发挥出计算机应用技术的能力。但是,计算机应用技术还存在一些问题,需要我们进行解决。因此,我们需要对于计算机应用技术的现状、未来发展前景问题进行有效研究与分析工作,最终全面提高计算机应用技术的效率与安全,为我国经济的发展、社会的进步,更好的满足人们需求而服务。
一、计算机应用技术的现
1.1用户增加
随着时代的发展与社会的进步,尤其是人们需求的广泛性使得计算机的各种各样辅助设施越来越多,功能也越来越齐全,最终使得计算机具有了广泛的用户,现在已经进入到几乎每一个家庭中进行应用。科学技术的进步,市场竞争的加剧,使得计算机产品的更新换代也在加快,可以说是种类繁多、品牌聚集。计算机教育现在已经成为了我国各级教育中不可或缺的一门课程,有利于学生充分的进行其中知识的学习,基本操作用法的掌握。这些因素的共同作用,使得计算机的用户在不断增加。
1.2用途广泛
计算机的用途非常的广泛,可以说是在各个邻域中都可以见到计算机的身影。如:在教学中应用计算机产生出了网络多媒体、微课教学等多种新的教学模型。在工业邻域中应用计算机技术提高了工业生产的质量与安全,保障了生产的安全。在科学研究领域对于计算机进行有效化的应用,可以进行精细化的分析与研究。在众多的办公邻域中可以充分的发挥计算机的计算、打字、对于信息数据的分析、汇总、处理的能力等等。就百姓的日常生活而言,可以应用计算机进行影视剧的观看、网络游戏的娱乐、网络社交等等。总而言之,计算机已经渗透进我国的学习、工作、生活的方方面面[1]。
二、计算机应用技术未来发展前景
随着时代的发展与科学技术的进步,计算机在未来的发展中呈现的趋势为:智能化处理、超高速运行、超小型体积、平行化发展。其中,一个显著的变化是计算机中的核心CPU将持续保持性能的增长,计算机系统可以对用户的多命令进行执行,并且将多数据信息进行有效处理。就计算机的智能化发展而言,计算机系统中会具有最新的思辨能力、感知能力、判断能力。如:手写输入、虚拟现实技术的发展与进步,新型高抗干扰能力的存储器也将会出现,最终实现计算机的海量存储[2]。
1、光计算机。以光和电为载体的新型光计算机是未来一个重要的发展趋势。我们通过对于新型光计算机的有效应用,可以增强对于信息数据的保存与传输能力,凭借着较小的消耗最大程度上实现计算机的功能,更好满足人们的需求。
2、化学计算机。化学计算机也是计算机应用技术未来一个重要的发展趋势。这种技术以微观碳分子为重要的信息载体,有效的实现对于信息数据的科学传输与保存。这种计算机之所以具有这样的应用效果,与其功能与紧密的关系。比如:具有微小的体积、具有超高速运算的能力,并且进行高效化的计算数据分析,具有巨大的应用前景,可以在众多领域中进行应用,充分实现计算机技术所创造的经济效益与社会价值[3]。
3、神经网络计算机。在未来的计算机发展中,神经网络计算机是一个重要方向。这种类型的计算机就是将人大脑中的神经网络进行有效处理,形成类似于人脑的重组类型的计算机,通过对人脑中神经元结构的有效模拟,在神经元网络结构之间进行数据信息存储。这种计算机主要以分布式网络类型来进行应用。
4、量子计算机。量子计算机是计算机未来重要的发展趋势。其重要的原理是通过对于量子力学一般规律的有效应用,通过超强逻辑与高速数学进行有效的运算储备或者是对于量子类型的物理设备进行处理。在具体的应用中,量子计算机通过对于链状分子集合物特征的开关状态表示,利用激光脉冲对于分子结构进行有效改变,使得数据信息沿着集合物进行有效移动,最终使得其运算的功能实现。此种类型的计算机可以在量子研究等领域进行科学化应用,并且会发挥出巨大的功能与价值,有效的促进科学研究事业的发展[4]。
结论:对于计算机应用技术现状及前景问题进行分析,有利于我们对于计算机的发展现状与未来发展有比较清晰的了解,通过在实际工作中进行有效的分析、研究、应用,可以更好的促进计算机技术的进步与发展。
参 考 文 献
[1]王洋. 论计算机应用技术的现状与未来发展[J]. 中外企业家,2015,(36):266.
摘要:本文以目前中药信息素材的现状为出发点,分析和研究了国内外现有中药信息及相关信息数据库系统,探讨了如何对中药信息素材进行“量子化”处理,以及对中药量子信息素材数据库系统进行系统设计与实现。关键词:中药量子信息素材;数据库系统;系统设计;页面实现doi: 10.3969/j.issn.2095-5707.2014.02.002The Design and Implementation of Traditional Chinese Medicine Quantum Information Material Database SystemXiao Fenfen, Zhang Xinyou*, Luo Shanshui, Li Weiwei(Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi 330004, China)Abstract: Based on the current situation of Traditional Chinese Medicine (TCM) information materials, this article analyzed and researched the existing domestic and foreign Chinese medicine information and related information database system, discussed the Quantization of TCM information materials, designed and implemented TCM quantum information materials database system.Key words: TCM quantum information materials; database system; system design; page implementation 中医药学是我国宝贵的文化遗产,随着中医药在长期实践中的应用以及中药现代进程的不断推进,中药信息素材呈指数递增趋势。由于中药本身的复杂性和临床应用的广泛性,以及在中药现代化的进程中对中药信息的不断挖掘,发现其潜在的中药信息素材具有多学科的相互交融,这些现象均造成了中药信息素材存在着分散性和模糊不确定性,本研究是将这些海量的数据通过分析、整理、量子化处理、补充和完善,使原来内涵比较庞杂的中药信息解析成若干个具有独立概念的“量子”,并将这些所谓的“量子”中药信息存入特定的数据库系统,将先进的智能技术、计算机技术、网络技术与浩如烟海的中药信息有机地结合起来,按照科学研究、教学和决策等的需要,建成一套具有大量中药信息支持的中药量子信息计算机管理系统,这将对促进中医药信息资源的开发、利用基金项目:江西省卫生厅中医药科研计划项目(2010A008);江西省研究生创新专项资金项目(YC2012-S105);江西中医学院研究生教育创新计划立项项目(JZYC11B05)第一作者:肖芬芬,硕士研究生,研究方向:中药信息资源管理。E-mail: *通讯作者:章新友,教授,研究方向:计算机应用与中药信息资源管理。E-mail: xinyouzhang@ 和共享,加快中医药信息化的建设,实现中医药现代化等具有十分重要的现实意义。1 国内外中药数据库的现状分析中药数据库是现代信息技术在医药领域中的应用,在当前的信息化建设中,将中药信息进行科学系统的管理,使用户能更高效地掌握或者搜索自己所需要的知识。也就是说管理信息系统(Management Information Systems,MIS)正深入到医药行业中,它为信息化的建设提供了有力的理论和技术支持。至20世纪末以来,国内外相继建立了大量的中药信息数据库以及天然产物的数据库。在国内建立的中药数据库有中国中医科学院中医药信息研究所的中国中药数据库、中国中药化学成分数据库、民族医药(包括藏药、蒙药、维吾尔药、苗药、傣药、瑶药)数据库等,中国中医科学院中药研究所的中草药数据库、中医药成果数据库、全国中药材资源普查资料数据库等[1-2]。还有近期的维吾尔医常用药材及新疆特有植物化合物样品数据库,它收集和整理了众多维医药现代和古秘方文献,以数字化形式系统地记载了常用维药药材的特征、不同部位的提取物制备方法。在国外,有美国化学文摘数据库、美国伊利诺伊大学的植物药化学库、韩国汉城大学的天然药物数据库等[3]。以上数据库均可在网络上检索使用。还有很多都是自建自用的,其联合建库的少,专题数据库比较多,缺乏一定的统一性、规范性、兼容性[4-6]。本课题将以2010年版《中华人民共和国药典》(以下简称《中国药典》)为蓝本,以国内外权威著作为数据源,利用计算机技术将原始数据进行“量子化”分析处理,提高信息获取效率,有助于从中挖掘出有用信息和未曾被人发现的隐含信息。通过对现有数据库进行整理,对中药信息素材数据库进行系统设计。2 中药信息素材的“量子化”处理方法数据库是知识发现的基础工程,要获得高信息含量、有用的知识,必须要更好地处理数据,理想情况是原始数据为不含噪音的数据。建立良好的中药量子信息素材数据库系统,实现数字化、智能化的科学管理,要求我们首先将中药信息素材进行“量子化”处理。中药信息素材“量子化”是指通过合理地分析、整理,将中药信息素材原始数据细化成由若干汉字或者数字组成的不可再行细分的、并且具有相对独立内涵及排他作用的最小信息单位[7-10]。中药的“五味”经“量子化”后被解析为甘、辛、咸、淡、涩、苦、微苦、酸、微酸9个“量子”。在中药炮制中,根据不同中药饮片所采用的炮制方法,进行分类与分析,分为清炒、麸炒、米炒、土炒、砂炒、蛤粉炒、滑石粉炒、炒炭、酒炙、醋炙、盐炙、姜炙、蜜炙、油炙、煅炭、明煅、淬煅、蒸、煮、炖、煨21个“量子”。通过将原始数据进行“量子化”处理,不仅使中药信息素材具有独立性、排他性,更是为中药数据的挖掘奠定良好的基础。这些不可再分的数据经处理后,可转换成一组可供计算机识别、计算的代码即“数字”后,计算机即可对这些“量子”进行“数字化”处理[7]。3 系统整体设计和开发工具的选择在系统设计中,我们选用了比较先进的系统开发工具,来适应对系统需求关系的梳理、细化与分割,达到条理清晰、易于编程、便于检测、方便扩充功能等要求。本系统是在微软Windows 8操作系统下,采用Microsoft SQL Sever 2012并应用Dephi和Visual Basic(VB)进行开发的。Microsoft Visual Studio 2012是目前比较流行、全面高效的专业开发系统,针对不同的开发人员,它提供了不同的版本,旨在帮助软件开发人员更好地应对一些比较复杂的挑战,并且创建新的解决方案,可以减少在关键任务环境中的平静修复时间(MTTR),增加团队生产力。Visual Studio的目的是改进开发流程,帮助人们更轻松地实现突破、获得更令人满意的结果,它能够提高工作效率,从单一集成开发环境(Integrated Develop- ment Environment,简称IDE)中的高效代码编辑器、IntelliSense、向导和多种编码语言,到Microsoft®; Visual Studio®; Team System中的高端应用程序生命周期管理 (Application Lifecycle Management,简称ALM)产品。
数据库则采用SQL Server 2012,可帮助处理每年大量数据的增长,相对于其它版本,它具备可伸缩性、更加可靠以及前所未有的高性能,可提供一个非常便于使用的数据库平台,并且能使应用的部署和维护、数据的管理和备份得到简化,这样管理数据及用户访问更加容易。4 系统设计与实现4.1 系统网络架构设计本系统采用了分布式多层结构。第一层是客户层,客户通过使用Graphical User Interface(GUI)可以与应用程序进行交互;第二层是中间层,通常由一个或多个应用服务器组成,应用服务器处理客户的请求,然后将结果返回客户层;第三层为数据层,是维护、更新、驻留业务数据的地方,在处理业务数据时,可以通过中间层访问数据层。通过采用多层结构,将数据库操作和事务管理转移到中间层中处理,可以避免在WEB应用程序中进行直接操作和事务管理。 系统结构如图1所示。本系统运行在Windows平台环境中,选用Component Object Model/Microsoft Distributed Component Object Model(COM/DCOM)为实现系统的标准。采用Microsoft的COM/DCOM标准设计系统时,我们不需要考虑兼容性问题,而且系统会很稳定。把多数据库系统与COM/DCOM结合起来,将分布式组件对象技术引入多数据库系统中,一定程度上提高系统的可管理性、可维护性、可伸缩性和可集成性等,使中药量子信息素材数据库系统的开发、使用和维护都变得简单。4.2 系统模块组成与功能4.2.1 系统总功能的设计 中药量子信息素材数据库系统主要由八个模块组成,包括中药基本信息模块、中药鉴定模块、中药炮制模块、配伍应用模块、中药现代研究模块、中医药文献模块、中药市场模块、留言本模块,如图2所示。图2 中药量子信息素材数据库系统总体功能模块图4.2.2 系统模块详细功能 8个系统模块功能各异。①中药基本信息模块。本模块提供中药的基本信息,包括中药的名称、拉丁名称、别名、药性、药效、主治功能等信息;与中药治病本源有关的信息素材,如药理、临床、专家论述等信息。以《中国药典》为蓝本,中医药典籍为依据,对由多个汉字组合而成的大文本复杂数据或图片进行量子化处理,有利于将纷繁复杂的中药信息处理成简洁、有效的信息单位,在一定程度上解决了信息量大、数据复杂不易处理的困境,提高了中药数据库的智能化水平。②中药鉴定模块。本模块主要包括了中药的来源鉴定、性状鉴定、显微鉴定、理化鉴定以及其他方法。来源鉴定包含中药材原植物的图片、中药材植物形态、核对标本、核对文献;性状鉴定包含药材的性状、大小、颜色、表面特征、气味等;显微鉴定包括组织结构、细胞内含物、细胞壁性质等;理化鉴定包括一般常数的测定、一般的理化鉴别等信息素材。用户可以通过该模块辨别中药材的真伪。③中药炮制模块。该模块主要包含了中药炮制方法、炮制目的、炮制对中药化学成分的影响,以及炮制品的质量要求和药材的贮藏条件等信息。可以收录或提供药名、炮制品名、炮制历史、炮制方法、炮制意义、饮片性状、储藏方法、炮制研究等各个方面的数据。若暂无某项目的古今资料,待有新的发现后可随时增补。④配伍应用模块。用户在此模块可以查找到中成药、组方、处方来源、功能禁忌等。⑤中药现代研究模块。本模块包括生物技术、现代药理与毒性研究、引种栽培、中药化学成分分析及其图谱等。⑥中医药文献模块。本模块包括中文文献、外文文献两部分,用户可以通过此模块查询到有关中药的典籍及文献。⑦中药市场模块。本模块包括中药材市场、中成药市场、中医药法规三个部分,用户可以检索到中药、中成药的价格变化、生产地点和厂家、管理等信息。⑧留言本模块。本模块主要用于用户留言,提供用户与管理员之间的交流通道。进入此模块,必须进行注册。本数据库系统具有维护更新功能,系统管理人员可以随时对数据进行添加、更新、删除工作,以确保中药量子信息素材数据的准确性、完整性、新颖性。4.3 系统页面的设计与实现4.3.1 系统首页的设计与实现 在中药量子信息素材数据库系统首页及子系统界面颜色的设计中,为体现出我国中药的韵味,本系统主要采用了淡绿色、白色的搭配,图片上采用了银杏叶、人参花等中药原植物等素材,充分体现了本系统的主题是中药。系统前台页面的首页也就是一级页面,是每一个用户均可浏览查看的界面,主要包括:简单搜索栏、网站介绍、登录口、友情链接栏,通过首页上方的导航可分别进入中药基本信息、中药鉴定、中药炮制和中药现代研究等页面。系统前台总页面如图3所示。 图3 中药量子信息素材数据库系统前台主页面 4.3.2 系统后台页面的设计与实现 针对中药量子信息素材数据库系统功能模块的设计,为了能够更好地实现系统管理,经过权限设定分为系统管理员和普通会员,普通会员经登录后可以实现查看信息及留言等功能。后台页面功能主要是针对系统管理员,系统管理员可以对普通会员、通知通告、中药信息数据库等进行新增、修改、删除等系列管理。系统后台功能逻辑如图4所示。图4 中药量子信息素材数据库系统后台功能逻辑图通过分析、整理中药量子信息素材数据库系统的整体功能,我们实现了系统后台管理,系统后台页面如图5所示。 图5 中药量子信息素材数据库系统后台管理页面5 总结中药信息素材的量子化处理,大大提高了计算机的处理效率,为中药的信息化、数字化做准备,加速了“数字化”进程,为知识发现奠定了基础。随着计算机技术的进步,中药数据库系统也在不断更新完善,并在科研中发挥重要的作用。本课题旨在建立与完善中药素材基本量子数据库系统,但是应该看到,这类数据库的建设水平也有待提高,中药数据库的设计思想也值得深入探讨。同时,伴随着中药信息素材数量的不断增长,将量子化技术应用于中药信息素材的分析、加工和整理,虽然可以使一些复杂的中药数据简洁化、精确化和规范化,但同时也带来了中药信息素材损失率增加的情况。将中药量子化技术与中药全文检索技术相结合,可在一定程度上解决该问题。我们相信,随着科学技术的不断进步和研究方法的日益创新,中药的现代化和国际化进程将逐步加快。最诚挚地感谢江西中医药大学研究生院柯瑜及其他老师们,在申报、开展创新课题及撰写论文期间,给予我耐心的指导和真诚的帮助;并定期组织座谈会及交流会,保证了更好地完成课题、论文。参考文献[1]万仁甫,徐伟亚.中药数据库的现状及发展趋势探讨[J].中国药房,2006,17(10):794-796.[2]彭勇,党毅,梁少伟,等.国内医药信息数据库简介[J].中国中医药信息杂志,1999,6(1):73-75.[3]陈峰,崔蒙.中药信息系统建立初探[J].中草药,2000, 31(11):81-83.[4]吴锦屏,简云江.中国自建医药数据库现状分析及对策探讨[J].卫生软科学,2001,15(6):52-56. [5]方晓阳,朱江,梅军,等.中药信息系统的设计与实现[J].中草药,2001,32(9):860-861.[6]顾东蕾.浅议网络环境下的中医药学古籍文献资源共
享[J].中国中医药信息杂志,2005,12(1):109-110.[7]章新友,吴园园,周敏.中药量子信息系统的研制[J].时珍国医国药,2010,21(12):3326-3328.[8]吴园园,章新友.中药信息量子化研究[J].江西中医学院学报,2008,20(2):56-57.[9]吴园园,章新友.我国中药信息系统存在的问题与对策[J].时珍国医国药,2009,21(10):2583-2584.[10]章新友,肖芬芬.中药材电子商务系统的需求分析与设 计[J].时珍国医国药,2012,23(10):2621-2623.(收稿日期:2013-11-01,编辑:李琳)
中图分类号:TP338 文献标识码:A 文章号:1007-9416(2017)01-0242-01
1 计算机技术的概述
1.1 计算机的发展过程
1946年,世界上诞生了第一代计算机,其中应用了18800个真空管,体积占有几个房间,它的出现在一定程度上改变了人类的思维和生活方式,为计算机技术的进一步发展打下了坚实的基础。计算机的发展过程主要包括四个阶段,第一代计算机主要由真空管组成,由于真空管体自身的特性,体积大、内存小,所以,第一代计算机不仅体积庞大,而且耗电量巨大。1954年,世界上第二代计算机诞生了,由美国科学家催迪克研制出来的晶体管计算机。信息产业作为技术与知识密集型产业,为了能适应现代社会建设的需要,第四代计算机应运而生。第四代计算机的出现直接促进了计算机的大量生产,计算机开始出现在人们的日常生活中。
1.2 我国计算机技术的发展现状
随着计算机的迅速发展,我们已进入到了计算机信息技术时代,我们可以直接从网上获取信息资源,这也使我们的生活有了很大的改变。不少发达国家的政治、经济、及文化开始过度依赖于计算机信息技术的基础设施,而同时又出现了强大的黑客攻击,信息技术犹如新型的作战技术,在当前的形式下,计算机技术的安全问题成为了各国面临的巨大挑战,因此,还需进一步加强对计算机技术的安全风险管理[1]。
2 我国计算机技术的发展趋势
如今,计算机信息技术已成为大家关注的一大焦点,连续创造活动的出现、稳定的选择机制使得我国计算机技术有了迅速的发展。由于计算机信息技术的发展给我们的日常生活带来了诸多便利,有效满足了大家的日常及工作需求,不仅提升了个人的工作效率,还保障了整个社会的工作效率,这样才能确保其为我国提供更好的信息服务。我国的计算机技术已成为了社会发展的主要潮流之一,有着广阔的发展前景。
2.1 生物计算机
生物计算机,也被称之为仿生计算机,主要是通过生物工程生产的蛋白质分子作为生物芯片来代替半导体的硅片。由于生物的遗传形状主要是由DNA决定的,DNA是具有基因编码的双链大分子,且蛋白质的结构等信息都储存在DNA的双链分子中,所以,生物计算机具有很强的信息储存能力[2]。另外,由于通过控制脱氧核糖核酸的状态可以有效控制DNA的信息,而且生物计算机具有很强的信息处理能力,这为生物计算机带来了很多优势,不仅表现在功率高体积小,而且存储和芯片也具有一定的可靠性。
2.2 量子计算机
在21世纪的信息社会中,先进的信息科技给人民的生活带来了深刻的变化。信息产业作为技术与知识密集型产业,为了能适应现代社会建设的需要,量子计算机应运而生。量子计算机在进行处理和存储数据时,会根据量子算法,采用一量子比特的形式进行储存数据,所以,量子计算机在数据处理的速度上有了很大的进步。目前,很多专家学者也在不断的研究量子计算机,所以,量子计算机一定会有很好的发展。
2.3 光子计算机
光子计算机主要是通过利用光信号进行信息处理和存储的新型计算机,其在进行数据存储时主要利用的是光子和光运算,而且当对数据处理错误时不会影响到最终的结果。光子计算机还具有很多优势,比如,不会受到电磁场的影响,超大规模的信息存储容量及低能量消耗、低发热量等。光子计算机的这些优势使光子可以任意传输,不会受到电磁场的影响,不需要导线也不会相互影响,而且是在很低的能量下就能正常工作。
2.4 纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机,体积约是人头发直径的千分之一,性能比传统的计算机强大很多,而且有着极强的导电性[3]。由于纳米技术开始研制成计算机内存芯片,而且其性能也亚远远超过传统计算机的性能,所以,未来的纳米技术将会走出实验室,纳米计算机也会取代芯片计算机。因此,纳米计算机能提供更加全面、客观、公正、高质量的信息与技术。
3 结语
计算机技术的发展改变了人民的生活,比较符合人类的需求,不仅方便了广大人民群众的日常生活,而且成为了提高我国综合国力竞争的重要组成部分,对于到我国信息安全产业的健康发展起到直接推动作用,推动了我国经济和现代文明的进步,所以,还需不断加强人们对计算机技术的认识。从计算机的发展过程及发展现状上来看,我国计算机技术未来的发展趋势将朝着智能化、专业化的方向发展,高性能计算机就是我国计算机科学与技术的主要发展方向。
由于笔者对现代计算机技术的发展方向与趋势只有初步的统整,所以研究还有部分不太严谨的地方,这也是笔者以后继续要努力、探索的方向。
参考文献
1计算机技术的应用现状
我国早在二十一世纪初期就已经实现了民用计算机的普及与推广,在短短十几年的发展时间里,我国民用计算机的使用范围和使用数量都出现了。爆炸式的增长。计算机最初传入我国时的应用范围比较狭窄,但是伴随着互联网技术的飞速发展,现代人的生活需求已经基本上可以通过计算机技术来满足。伴随着计算机技术一同出现的还有大数据技术、云计算技术等,这些技术的出现进一步的促进了我国经济发展,极大的提升了我国在世界舞台上的竞争力。
2当前计算机技术发展应用在存在的问题
2.1计算机的应用水平不够高
虽然当前我国已经实现了计算机技术的普遍应用,但是对于计算机的应用水平仍然比较低,特别是与发达国家之间的应用效率之间存在着较大的差距。我国居民都现代生活已经和计算机技术密不可分,但是在企业生产过程中往往还将计算机技术应用于一般办公数据处理工作,这就导致了对计算机技术的应用效率极为低下。计算机在我国更多的被用于消遣和娱乐工具来使用,其中所蕴含的深层次应用意义还尚未被完全发掘;如何提高计算机技术的应用效率已经成为了我国社会的共同追求。
2.2对于计算机技术的研究力度不足
近年来我国的计算机技术取得了很多进展,但是和发达国家相比首先我们的计算机技术发展速度要更慢,其次所取得的计算机技术创新也要弱于发达国家;利用计算机技术对社会发展的促进作用是有目共睹的,当前我国计算机技术的发展速度同社会发展的需求是不同步的。一方面,我国对于计算机研究的资金投入还和发达国家具有较高的区别,另一方面,我国对于计算机创新技术的应用重视性也存在着一定的缺陷,许多具有极高应用价值的计算机技术成果并没有受到充分的重视,以至于其价值并没有被充分发掘。面对这种情况我国政府应当积极发挥科技对于经济发展的驱动作用,增强对于计算机技术的研发资金投入,大力鼓励计算机技术创新成果。
3未来计算机发展趋势
3.1光计算机
光计算机将光作为信息传输的载体,光的传播速度是非常高速的,因此便可以极大的提高计算机信息传输的效率。在传统的计算机运行过程中使用者若想执行某一指令,必须开启许多应用程序,而利用光计算机技术这些步骤操作效率将会被极大的提升,从而提高计算机的整体运营速度。光的传输过程中受到其他外界因素的影响也要显著低于电传输;电传输过程中所传输的信息会受到电容和电阻等因素的影响,这不仅会导致信息传输的速率受到影响,还非常在传输过程中出现故障而导致信息缺失。利用光传播一方面可以极大的节约计算机的能量传输,另一方面也可以保证信息传输的稳定性;特别是在当今大数据技术应用越来越广的现实背景下,光计算机还可以提升对于数据运算的运算效率,由此将会成为未来计算机发展的主要方向之一。
3.2量子计算机
量子计算机同光计算机一样可以极大的提升数据处理的效率,在当前社会活动愈发频繁的现实背景下,提高计算机对于数据的处理速度是非常有必要的,因此应用量子计算机也是社会发展的必然需求之一。除此之外,量子计算机的最大优势在于可以将文件的特点进行记录,并复制一份副本,在办公的过程中如果出现数据误删或丢失的问题往往会对办公过程造成极大的困扰,而利用量子计算机工作人员就可以依据文件的特点寻找到复制文本,从而找回丢失的文件,量子计算机的这一优势,使得其可以更好的被应用于办公工作之中。
3.3计算机微型化发展
当前社会的生活节奏非常快,对于数据处理的便利性要求也非常高,人们对于计算机微型化的需求也越来越高。当前市场上的微型计算机出了笔记本、平板电脑等,还包括智能手表、智能手环等,计算机的微型化发展已经成为了未来计算机发展的必然趋势之一。对于企业生产来说,微型计算机还可以嵌入到其生产设备的内部,从而协调大型生产设备的整体工作,微型计算机对于企业生产的促进作用也是非比寻常的,计算机的微型化将会在未来的发展过程中得到进一步的扩展。
3.4计算机巨型化发展
计算机巨型化并不是回归到过往的大体积计算机形式,而是要让计算机的内部拥有更快的数据处理速率和数据存储空间。当前大数据技术对于社会生产发展的推动作用已经有目共睹,若想真正实现大数据技术在社会生活的方方面面的普及,就必须要研发出适合公众使用的配套巨型化计算机设备。我国对于巨型化计算机的研究还处于发展阶段,与西方发达国家仍然存在非常大的差距,但是计算机巨型化的研究仍然是我国计算机技术发展的必然趋势之一。值得注意的是,尽管近年来计算机开发投入不断增加,但在实际应用中仍存在一些不足之处。例如,在许多重要领域包括教育领域,与发达国家相比,信息化程度仍然相对落后。
4总结
计算机科学技术的未来发展趋势
生物计算机随着生物技术的进步,一种基于脱氧核糖核酸的分子计算机正逐步变成现实,一部分科学家已经使用脱氧核糖核酸进行简易的数据计算和存储操作。它采用蛋白质分子构成的生物芯片作为集成电路板,因此比现在的电子元器件结构要小得多,且它自身具有立体的结构,其集成密度要比轨迹的集成电路高五个数量级,且它本身具有并行处理的能力,运算速度比现在最先进的计算机还要快上一万倍,其能量消耗却相当于普通计算机的十亿分之一,一旦出现故障,他们还可以进行自我修复,与人体相连,由细胞提供能量,成为人类身体的一部分。光子计算机光子计算机是一种以光信号进行逻辑运算的一种计算机,它的基本组成部分主要包括集成光路、激光器、透镜等,它与普通计算机相比,电子由于不带电荷,没有静止质量,因此不受电磁场的影响,耗能更低,速度更快,计算能力比电子计算机有了指数倍的增长。并且光存储的储量是普通存储的几万倍,随着光存储、光互连、光集成器等技术方面的突破性进展,使得光子计算机走进人们的生活现实已经不太远。量子计算机量子计算机是一种根据原子或者原子核的量子力学特性进行工作,它是基于量子效应构建起的一个完全以量子为基础的计算机。它可以利用链状分子聚合物的特性来表示0和1两种状态,通过激光来改变分子的状态,使信息沿着聚合物流动,在理论上,量子计算机并行计算可以达到每秒一万亿次。且量子计算机具有类似人类大脑的容错性,当系统一部分发生故障时,原始数据可以自动绕过出错部分,继续计算。量子计算机这种高速度、低功耗的特性,使得计算机向着更加微型化的方向发展成为可能。
建立虚拟训练室以满足计算机技术的发展需求
在这个信息化时代,计算机网络作为人们社会生活的重要部分,已经进入千家万户。人们不用出门就可以通过计算机了解国内外新闻、天气预报资讯、股市行情、世界地图、收发电子邮件、检索信息等;不用逛街就可以通过互联网中的购物网站买到喜欢的东西;通过计算机可以与相隔较远的朋友在线聊天、视频聊天等,加强人们之间的交流和沟通,促进友谊;人们可以通过计算机网络订购飞机票、火车票等,节省排队时间;教师可以通过计算机科学技术实现对学生的在线授课,更及时、更方便;动漫工作者可以使用计算机科学技术制作动漫;政府机关也可以通过计算机科学技术建立城市网站,及时了解市民反映的问题,通过计算机与各个行业的工作人员在线交流;很多企业使用计算机来处理大量数据和信息,代替传统的人工处理,提高工作效率。计算机科学技术潜移默化的影响着人们的生产、工作和学习。
1.2计算机科学技术更加智能化和专业化
计算机科学技术的快速发展和广泛应用,推动了集成电路、微电子和半导体晶体管的发展,计算机科学技术更加智能化和专业化。计算机能根据使用对象的不同个体需要进行改装、更新,对于有更高需求的用户可以专门定做计算机,用户可以根据使用环境的不同选择台式计算机、笔记本计算机、掌上电脑和平板电脑等。计算机科学技术在其他特殊领域也能发挥自己的优势,如智能化家用电器和智能手机,家庭式网络分布系统代替了传统的单机操作系统,满足人们的生活需求。
1.3计算机的微处理器和纳米技术
微处理器能提高计算机的使用性能,缩小传统处理器芯片中的晶体管线宽和尺寸。利用光刻技术,波长更短的曝光光源经过掩膜的曝光,将晶体管在硅片上制作的更精巧,将晶体管导线制作的更细小。计算机科学技术的快速发展使计算机运算速度更快,体积更微型,操作更智能,传统的电子元件不能适应计算机的发展。纳米技术是一种用分子射程物质和单个原子的毫微技术,可以研究0.1~100纳米范围内的材料应用和性质。计算机科学技术中利用纳米技术,可以使计算机尺寸变小,解决运算速度和集成度的问题。
2计算机科学技术的未来发展
现如今,计算机科学技术的应用越来越广,人们对计算机科学技术的要求越来越高,促使数学家和计算机学家们不断研究计算机科学技术,使计算机科学技术在各个领域、各个行业发挥更大的作用,满足人们的不同需求。下面从DNA生物计算机、光计算机和量子计算机三方面来探究计算机科学技术的发展前景。
2.1DNA生物计算机DNA生物计算机用生物蛋白质芯片代替传统的半导体硅芯片。1994年,美国科学家阿德勒曼率先提出关于生物计算机的设想。在计算机运算数据时,将生物DNA碱基序列作为信息编码载体,运用分子生物学技术和控制酶,改变DNA碱基序列,从而反映信息,处理数据。这一设想增加了计算机操作方式,改变了传统的、单一的物理操作性质,拓宽了人们对计算机的了解视野。DNA生物计算机元件密度比大脑神经元的密度高100万倍,信息数据的传递速度也比人脑思维快100万倍,生物计算机的蛋白质芯片存储量是传统计算机的10亿倍。2001年,以色列科学家研制出世界上第一台DNA生物计算机,体积较小,仅有一滴水的体积。2013年,英国生物信息研究院的科学家们使用DNA碱基序列对文学家莎士比亚154首作品的音乐文件格式和相关照片进行编制,增加了储存密度,使储存密度达到2.2PB/克(1024TB=1PB),提高了人们对信息储存的认识,这一重大突破使生物计算机的设想有望成为现实。
2.2光信号和光子计算机
光子计算机是一种由光子信号进行信息处理、信息存储、逻辑操作和数字运算的新型计算机。集成光路是光子计算机的基本构成部件,包括核镜、透镜和激光器。光子计算机和传统计算机相比较,有以下几点好处:
(1)光计算机的光子互联芯片集成密度更高。在高密度下,光子可以不受量子效应的影响,在自由空间将光子互联,就能提高芯片的集成密度。
(2)光子没有质量,不受介质干扰,可以在各种介质和真空中传播。
(3)光自身不带电荷,是一种电磁波,可以在自由空间中相互交叉传播,传播时各自不发生干扰。
(4)光子在导线中的传播速度更快,是电子传播速度的1000倍,光计算机的运算速度比传统计算机更快。20世纪50年代末,科学家提出光计算机的设想,即利用光速完成计算机运算和储存等工作。与芯片计算机相比较,光子计算机可以提高计算机运行速度。1896年,戴维•米勒首先研制出光开关,体型较小。1990年,贝尔实验室的光计算机工作计划正式开启。根据元器件的不同,光子计算机可以分为全光学型计算机和光电混合型计算机。全光学型计算机比光电混合型计算机运算速度快,还可以对手势、图形、语言等进行合成和识别。贝尔实验室已经成功研制出光电混合型计算机,采用的是混合型元器件。研发制作全光学型计算机的重要工作就是研制晶体管,这种晶体管与现存的光学“晶体管”不同,它能用一条光线控制另一条光线。现存的光学“晶体管”体积较大较笨拙,满足不了全光学型计算机的研发要求。
2.3量子理论计算机
量子计算机将处于量子状态的原子作为计算机CPU和内存,处于量子状态的原子在同一时间内能处于不同位置,根据这一特性可以提高计算机处理信息的精确度,提高处理数据的运算速度,有利于数据储存。量子计算机处理信息时的基本数据单元是量子比特,取代了传统的“1”和“0”,具有极强的运算能力,运算速度比传统计算机快10亿倍。中国和美国的科学家们在实验室里成功实现了同时对多个量子比特进行操作,为制造量子计算机提供了可能。相信在科学技术的不断发展和世界各国的科学家们共同努力下,量子计算机会成为现实。