工程热力学基本概念模板(10篇)

时间:2024-01-25 14:52:48

导言:作为写作爱好者,不可错过为您精心挑选的10篇工程热力学基本概念,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

工程热力学基本概念

篇1

作者简介:高蓬辉(1979-),男,山西兴县人,中国矿业大学力学与建筑工程学院,副教授;张东海(1977-),男,江苏徐州人,中国矿业大学力学与建筑工程学院,副教授。(江苏 徐州 221116)

基金项目:本文系中国矿业大学青年教师教学改革资助项目(项目编号:2001207)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)22-0087-02

“工程热力学”为能源工程、机械工程、化学工程、材料工程以及航空航天工程等多门学科的发展奠定了基础,热工理论的研究与应用直接决定能源转化效率、节能技术及环境保护实施的成效,对于人类社会的可持续发展具有重大意义。因此,作为高校工科专业的重要基础课,加强“工程热力学”的教学效果就尤为重要。我国近两百所高校开设建筑环境与能源应用工程专业,全部将“工程热力学”课程设置为主干专业基础课之一。“工程热力学”课程不仅是后续专业课程学习的理论基础,同时直接为学生今后的科研和工作实践提供理论指导,具有重要的学习意义和实际应用价值。[1]

笔者根据自身在“工程热力学”课程教学过程中的切身体会和经验,指出应注重将基础数学、物理理论知识融会于“工程热力学”课程讲授过程中,促进学生对热力学中抽象概念和过程的深入理解,达到提高和改善教学效果的重要作用和目的。

一、基础数学物理知识在热力学理论中的体现

热力学的先修课程主要有高等数学和普通物理等课程,在教学中发现许多学生高等数学知识薄弱,需要在课堂教学中讲解大量的高等数学知识,才能使课堂教学质量得到保证,然而却浪费了“工程热力学”课程自身的教学时数,因此探索基础数学、物理知识体系与热力学之间合理的联系以及有机过渡的教学方法成为热力学教学中必须重视的问题之一。

热力学作为一门非常系统且抽象的学科,其科学性、严谨性主要是通过各个章节中贯穿其中的数学体系来构建而成的。如何科学、深入理解这些繁杂这些概念和数学结论,成为课堂教学活动中非常关键的一环。以下我们将例举热力学中非常重要的一些基于数理知识的基本概念和理论推导过程。

1.状态参数

在热力学的教学过程中,我们把系统中瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。[2]热力状态反映了工质大量分子热运动的平均特性,描述工质状态特性的各种物理量称为工质的状态参数。而状态参数是热力系统状态的单值函数,与热力过程无关,状态参数的这一特性的数学特征为点函数,表示为:

(1)

循环积分为:

(2)

在教学活动中,应将微分的理念融入到状态参数概念的讲解中,并通过全微分将热力系统状态参数为点函数的特性进一步阐述,使学生深入理解热力状态参数的特殊性。

2.微变量dh与变化量h的区别

在热力学第一定律的学习过程中,对于焓有两个非常相似的公式:

(3)

(4)

上式(3)和(4),从外形来看,非常相似,且学生在学习过程中,也容易忽视其细微差别。从数学角度来看,在教学过程中应对其进行区分。式(3)为焓的微分计算表达式,dh为焓的微变量值;式(4)为焓的改变量计算表达式,h为焓的变化量,即式(4)是通过对式(3)进行积分后得到的。这些细微概念上的差别,带来完全不同的热力学分析。通过上述的详细讲解和区别,可以加深学生对热力学中相关公式和计算过程的理解。

3.卡诺循环与极限的概念

卡诺循环解决了在一定的高温热源T1和低温热源T2间,热功转换最大效率的问题。由于卡诺循环是典型的可逆循环,在整个热力转换过程中,没有熵产,即没有不可逆因素所引起的做功能力的损失,因此,该循环热效率ηtc=1-T2/T1成为两热源T1、T2之间工作热机的最大循环热效率。

在课堂讲解中,联系实际工业生产和生活中的热力机械,指出实际热力机械的热功转换效率都低于卡诺循环热效率ηtc,原因在于卡诺循环作为可逆循环,是一理想热力循环,其热效率为实际生产、生活中热力循环效率的极限。[3]因此,实际生产和生活中的热力循环效率只能小于卡诺循环的热效率,不可能大于卡诺循环的热效率。这样从数学极限的角度也解释了为什么卡诺循环效率是一定高、低温热源间工作热机的最大效率的问题,使学生更加容易理解卡诺循环这节的相关概念和理论。

4.音速

研究流体在管道内流动时,我们提出了音速α,并且对定熵流动中音速用下面的公式进行计算:

(5)

在得到音速与温度之间的函数关系时,指出理想气体定熵过程方程式:

(6)

对式(6)进行变形,得到 (7)

在将式(7)代入式(5)时,遇到与是否等效的问题,从形式看,一为偏微分关系,另一为全微分关系。但从变量与因变量的角度来看,同样反映出变量与因变量间的函数变化关系,在课堂教学过程中,需要对这一细微差别进行讲解,以促进学生对物理过程以及数学关系的理解,不可一带而过,从而造成学生概念以及数学关系理解上的断层和缺失。

二、构筑基础数理知识与“工程热力学”课程有机结合的教学方法

“工程热力学”课程的一个重要特点是基本理论多,基本概念抽象。为此,在课堂教学中针对基本理论部分,把讲解重点放在基本理论和基本概念的深入理解上,如状态参数、可逆过程、热功转换、热力学第一、二定律、卡诺循环、卡诺定律、熵等,这些一定要详细讲解、分析透彻。特别是热力学第二定律的课堂教学中,因为该部分内容概念抽象、原理费解,又不能用实验来演示,所以学生学习非常困难,但热力学第二定律作为“工程热力学”课程的核心内容之一,非常重要。凡此种种,笔者作为“工程热力学”课程的讲授教师,在教学活动中,认为通过将基础数理知识与“工程热力学”课程有机结合的教学方法,可以提高和改善课堂教学效果,促进学生对“工程热力学”课程内容的掌握和理解。教学活动中可以采取以下的方法,以实现将基础数理知识与“工程热力学”课程结合的教学:

1.课程准备阶段

在“工程热力学”课程的备课阶段,先将本章节内容难以理解的概念、定理以及公式推导过程摘出来,同时考虑这些部分与哪些基础数学、物理知识相关,并将这部分数理知识作为课堂讲授内容的铺垫部分准备到“工程热力学”课程的课堂教学活动中,即将这部分基础数理知识写入课堂讲义、PPT教学幻灯片中。

2.课堂讲授阶段

在“工程热力学”课程的课堂讲授过程中,将热力学基本概念、原理和公式的推导与基础数理知识结合起来,在讲授过程中,实现热力学本身内容与基础数学、物理知识的互动讲解,从而达到改善教学效果、使学生易于理解和掌握的教学目的,实现学生对复杂、难懂内容的系统把握和理解。

3.课后反馈阶段

课后可以与学生围绕课程教学内容进行沟通,对课堂教学不足之处进行查漏补缺,一方面可以掌握学生的掌握情况,另一方面可以对教学方法不断改进,起到再次升华的作用。

三、结论

“工程热力学”作为能源、机械和化工等众多学科领域方面的一门基础专业课,其重要性不言而喻。如何改进已有的教学方法,改善和提高现有的课堂教学效果,成为各高校“工程热力学”课程教师所共同关注的关键问题之一。本文从笔者自身的教学体会出发,根据“工程热力学”课程内容的特点,提出将基础数理知识融入到“工程热力学”的教学活动中,并给出了实现将基础数理知识与“工程热力学”课程结合的教学方法和途径,为“工程热力学”课程的讲授提供了新的思路和方法,对其他课程的教学改革也有一定的借鉴意义。

参考文献:

篇2

热力学是一门具有专业技术的基础课程,但是它又包含了专业课程的特色,是进行后期深入研究学习的理论和基础,它还有很强的技术性和实用性。热力学相关的热力技术和节能环保问题日益凸显,所以需要在教学中深入教学创新,激发学生自主学习的热情。本文就如何在教学中引导学生掌握课本知识和应用作出了分析。

一、热力学的含义与其构架

热力学是研究热现象中物质系统在平衡时的性质与其建立能量的关系,以及物质状态发生变化时与外界相互作用(包括能量传递和转换)的一门学科。因为能量转变的普遍性,所以热力研究的成果被运用于各个领域之中。

从宏观角度来看,热力学在其的发展过程中,针对其内容可以分为两个不同的结构体系,首先可以从它的基础理论来进行讲学,其次可以结合所学从实际出发进行应用教学;如果从热力学的教学体系来划分,却可以将其教学划分为三大点,首先是它的概念,然后是它的运动规律,最后是对它的性质和实际操作进行划分。

在教学中教师要保证学生对其意义有一定的认知,引导学生掌握热力学的基本概念,帮助他们重建热力学的知识构架,要做到这一点就必须要从以下几个方面入手,进行知识的梳理。

(一)对热力学的概念进行分析,包括它的公式和运动规律(热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律等)

(二)对热力学的中的基本热力(包括理想气体;实际气体;水蒸气;湿空气;制冷工质)性质进行研究分析。

(三)从热力学研究的实际操作过程中分析计算工质在设备中的数据变化,分析影响能量转换效率的因素,寻求转换效果更高的有效途径。

二、热力学教学方法

(一)结合实际教学

在教学中对日常生活中的一些热力学现象,用专业化的热力学知识进行分析,对其作出科学合理的解释。通过这样的教学让学生充分体会到课堂知识与平常的生活息息相关,促使他们对老师的教学产生浓厚的兴趣和学习热情,以此来达到提高教学效率的目的。如在教学中向学生提出与生活相关的问题:空调与冰箱的工作原理是否相同?等,在课堂上应该做到适时的穿插一些与生活有关的问题,培养学生自主思考的能力。还能在教学中介绍一些热力学在生活中应用的著名例子,如低温实验室的创始人卡末林・昂内斯利用范德华方程式创造出了液态气体,对人类科学的进步作出了巨大的推动,让学生在切身体会中感受化工热力学对实际生活中的指导作用。

(二)加强对基础理论的教学

热力学是一门非常严谨的课程,又可以说它是完美的学科,因为其理论和公式都是经过认真演算的,因此在教学中要着重对公式和理论进行论述,帮助学生掌握和理解热力学。

教师上课过程中对基本的概念、含义、公式中的相关数据要做出一定的分析和解释,让学生从根本上明白公式所要表达的意义,同时在引用理论和实际例子时,保证它的准确性和代表性,让学生对热力学的概念有一个清楚的认识。

公式的演算和推导也不需要将所有的数据都拿出来分析讲解,为了减少推导量,只需对影响推导结果的关键部分着重讲解就行,其他的推导过程可以简单略过,这样既保证了课堂进度还提高了课堂教学的效率。

学生必须具备合理运用热力学公式的能力,由上文可以看出,公式的运用对热力学的理解是密切联系的,因此教师在教学过程中一定要帮助学生深入理解公式内涵,引导他们在实践中应用。

(三)多样化教学

在教育中教师不仅仅是需要传授知识还需要引导他们自主去学习,“授人以鱼,不如授人以渔”就说明了这个道理,传统的教学多以“填鸭式”教育进行,仅仅依靠老师通过课本单方面的讲学已经无法满足现代教育的需求,学生在学习过程中需要有热情才有不断学习的内驱力,所以在教学中我们要充分的利用多媒体信息技术,做到在课堂外没有老师进行指导的情况下也能进行自主学习,根据自身的接受度选择热力学相关的资料进行学习,对课堂上老师讲授的知识进行一个扩充和完善,教师也能通过网络在线解答学生的问题,拉近师生之间的距离,在不是不觉中营造出了一种良好的教学氛围。

(四)结合实际教学

热力学虽然是一门具有很强理论性的专业性学科,但是在生活中,热力学其实离我们很近,因此教师在教授一些基本概念的时候,可以思考一下是否能举出与生活相结合的例子以此来帮助学生更好更快的理解和记忆,可以在介绍热力第二定律的时候,为了让学生明白热力传导的过程,举出生活中常见的例子,如高压锅,煮各种难以煮熟的食物的时候,通过加压的方法,让锅内温度超过100℃,加速高压锅的工作效率,还有热力过程具有方向性这一特点也能举出相关例子,如启动的汽车在没有外力的作用下,能将车胎转动的动能转换成热能停止下来,但反过来,汽车车轮不可能吸收空气中的热能将其转换成动能再旋转起来,通过这样的教学方式,在教授基本理论知识的同时又激发了学生的学习热情,促进学生的学习,通过实例帮助学生加深对热力学基本概念的掌握和应用。

(五)研讨式教学

确立学生为主体原则进行教学,充分了解学生原有的热力学知识基础水平,贴近生活的教学,在进行基本概念的讲说时,遵循由易到难、由简到繁的教学顺序,能够让学生更好的进入学习状态,充分调动他们的积极性,提高他们的学习兴趣,针对学生个体的差异,进行不同层次的教学。

热力学具有抽象性的特点,导致学生对其主要问题认识不够深刻,对它失去了学习的兴趣。

三、创新教学的具体内容

1、结合热点问题

在教学中教师应该结合当前热工领域的一些备受瞩目的问题进行讲学,如当前的热点,环境资源问题、降低能源消耗和日本核电站事故等问题,就此问题在课堂上开展讨论,充分调动学生的积极性。同时还能在课上给学生实验的机会,通过动手实验更深入的理解问题,分析问题,激励学生进行自我总结。

2、课堂活动与常规教学相结合

信息技术的飞速发展,教师也应该在现有知识的基础上不断完善自我,主动吸收新知识,上网搜集相关信息,在课堂上对书本上的知识进行扩充,对课本材料进行详细的阅读,对其内容进行合理科学的规划,根据最近信息整合调整,将老旧之后的成本知识优化,通过多媒体教学课件为学生提供一个多样化、多视角的教学信息。

同时对课本中的重点难点要构建相应的练习题型,让学生在写作业的时候自主回顾重难点,多布置一些与和生活有关的问题,引导学生自主学习,上课前通过课前提问对旧的知识进行回顾,再导入相关新知识。

3、培养学生解决问题的能力

当代教育要求学生不光要学会学习还要有自主分析、解决、总结问题,在教导热力学课程的时候,让学生把这门课程当成需要解决的问题去对待,形成良好的学习习惯。

四、结束语

综上所述,热力学在教学中作为一个理论性较强的科目,但是由于它又与实际紧密结合,所以老师在讲授知识的时候可以举出实例,让学生更为直观的理解教师所讲授的知识,这就要求教师在教学中不断改进教学方法,培养学生的学习兴趣,运用创新的教学方法,不仅有利于学生形成自主行动、思考、分析问题的能力,还有利于在教学中培养学生的认知能力,所以要在课堂教学中将基础理论结合实际进行教学,让热力学的教学变得更为轻松有效,这样的教学方法不仅仅对热力学教学具有重大的意义,还能帮助学生学习其他课程。

参考文献:

[1]冯国增,聂宇宏,夏莉等.“工程热力学”教学过程中大学生综合素质培养的研究和实践[J].制冷与空调(四川),2012(01)

[2]彭阳峰,施云海.浅谈化工热力学课程中“合理用能”章节的教学体会――以化工单元过程为教学案例的能量分析[J].化工高等教育,2012(06)

[3]尹海英,邓建梅,舒明勇.热力学第一定律在化工热力学教学中的应用[J].中国化工贸易,2012(04)

[4]冯新,陆小华,吉远辉等.化工热力学中从生活中来到生产中去的实例[J].化工高等教育,2009(01).

篇3

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)04-0097-02

一、前言

《工程热力学》是能源动力、化学工程、航空航天等众多工程类专业的一门重要专业基础课,是培养在涉及能源特别是与热能相关的各领域中具有创新能力人才的基础。该门课程学习的好坏将直接影响到后续专业课的学习效果,从而最终影响学生的专业综合水平。与其他课程相比较,《工程热力学》课程具有公式较多、逻辑性和理论性较强、概念多而抽象、应用条件较复杂等特点,因而很多学生反映这是一门较难学的课程。甚至有些学生在刚接触这门课时便感觉学习困难,产生了抵触情绪。

二、《工程热力学》课程的研究内容及目前教学现状

《工程热力学》主要研究与热能工程相关的热能和机械能相互转换的规律,它着重应用热力学两个基本定律分析热能过程中有关的各种热力过程及热力循环,从理论上研究提高热能和机械能转换有效程度的途径。其内容包括热力学的基本概念、热力学第一定律、理想气体的热力学能等基本参数的计算、理想气体的热力过程、热力学第二定律、气体的流动、压气机的压气过程、气体动力循环、制冷循环等,其主要特点是理论分析、实验研究和工程实际应用紧密结合,分析推理的结果具有高度的可靠性,条理清楚,逻辑性强[1]。《工程热力学》课程具有的特点使得学生反映难学,教师反映难教,最终导致教学效果不佳,学生对知识点掌握不够,考试不及格率较高。传统的教学以理论传授为主,但对于一些以应用型培养为定位的新建本科院校来说,更重要的是要培养工程背景下学生利用所学理论知识去分析、解决实际工程问题的能力,因此深入开展《工程热力学》的教学研究显得十分必要。

三、《工程热力学》课程的教学措施

1.上好绪论课。很多学生误认为绪论课中没有涉及到具体的、重要的知识点,而且也不属于课程的主要考试内容,因此觉得它不重要,上课也不认真听讲和记笔记。事实上,绪论课作为《工程热力学》课程的第一课,在教学中具有特殊的教学地位和重要意义[2]。绪论课中教师可以讲授热能动力工程的重要地位,介绍一些典型的能量转换装置工作过程(例如蒸气动力装置、内燃机、燃气轮机装置以及蒸气压缩制冷装置等)、《工程热力学》的研究对象及研究方法(宏观法和微观法)等内容。通过绪论课,教师不仅可以让学生初步建立起《工程热力学》的基本概念,使学生掌握本课程的思维方式和基本理论体系,而且能使学生明白本专业为什么要开设《工程热力学》、《工程热力学》的主要学习内容、学习方法以及学好这门课的注意事项,从而激发学生学习《工程热力学》课程的兴趣和爱好,坚定学习该门课程的决心。

2.充分调动学生的主动性和积极性。由于《工程热力学》课程公式多、概念多,计算复杂,学生学习起来有一定难度,有些学生在刚开始接触这门课时就有抵触情绪,这就需要充分调动学生的主动性和积极性。首先,必须要求教师课前充分备好课,合理组织教学过程,恰当运用有效的教学方法;做到教学内容精炼充实,重难点突出,逻辑严密,使学生易于接受讲解的知识点。学生只有在听懂课的前提下才会对课程产生兴趣,从而调动他们的主动性和积极性,激发他们的潜能。其次,在上课过程中可以适当引入一些生活中常见的实例,通过对这些实例进行分析,把枯燥乏味的理论知识运用到具体的实际问题中,并采用启发式教学培养学生独立思考问题的能力,提高他们学习的主动性。第三,教师应结合当前工程热力学领域的相关热点问题[3],如提高热机效率、节能降耗、低碳环保以及核电事故等,开展课堂讨论和专题研讨,通过这些热点问题培养他们对《工程热力学》的兴趣。

3.在知识难点上完善教学方法。以热力学第一定律为例[4],在学习该定律时,不少同学对热力学第一定律的两套符号的掌握有困难,经常混淆教材提供的两个公式。这种情况下,教师就应在课本的基础上,进一步完善教学方法。例如授课时可以在教材提供的知识点的基础上进一步延伸,将热力学第一定律在形式上概括总结成:体系内能的增加等于体系增加的能量(Q)减去体系消耗的能量(W)。当假设体系从环境吸入热量时,公式中的Q自然就为正;而当环境从体系吸入热量时,Q自然就为负;同理,体系对环境做功,W为正,环境对体系做功,W为负。关于Q和W数值的正负号选取时只要注意下列原则即可:实际发生的情况和定义一致则取正,和定义相反则取负。例如当W定义为环境对体系做功时,若环境确实是对体系做功,则W的数值取正,否则W取负值;Q在数值上的正负号取法同W。这样一来就避免了学生对公式中Q和W的正负号以及Q和W数值的正负号不能很好把握的问题,可以帮助学生更好地掌握并运用热力学第一定律。

4.正确对待公式的记忆与推导。《工程热力学》课程的公式比较多,学生反映记不住,而且有的公式在形式上相类似,很容易记混淆。其实要让学生记住所有的公式一是不现实,二是也没必要,这就需要在教学过程中理清哪些公式需要记忆,哪些可以根据记忆的公式现场推导。例如闭口系统能量方程的四个式子可以要求记忆,一是比较简单,二是这四个式子非常重要,讲解后面的知识点时需要用到。但理想气体的各种过程(包括定容、定压、定温)中比熵的变化就不需要记忆,完全可以根据比熵的原始定义再结合闭口系统能量方程直接推导而得到,如果同学对基本概念和基本公式的掌握足够熟练,对这些推导会形成条件反射,不需要借助草稿纸直接在脑海中就可完成整个推导过程。这样无形之中就减少了很多公式的记忆,但需要用到的时候又能立刻得到。

5.采用现代化教学手段。随着现代信息技术的发展,多媒体教学越来越广泛地应用于教学领域。利用多媒体教学中图像、动画、声音等元素的优势,既进一步丰富了教学内容,又使教学过程更加形象生动,加深学生对知识点的理解,便于学生接受。例如在讲解活塞式压气机的压气过程时,如果利用板书在黑板上讲解压气过程,学生会感觉比较抽象,但如果利用flash制作的动画来演示时,学生对压气机的压气过程就会一目了然,感觉更直观,更加便于理解和接受。另外在讲解压缩过程、平衡态等一些相对抽象的过程和概念时,如果借助于多媒体技术也会起到事半功倍的效果。

6.注重学生工程意识的培养。全日制大学生一般对工程常识较缺乏[5],针对这一特点,教师授课时可以以课程为载体,适时向学生介绍所学理论知识在实际热工设备中的应用。例如授课时可以多举一些例如锅炉、热水器、散热器、涡轮机、压气机、喷管等典型热工设备的例子,分析这些设备在实际工作工程中消耗的轴功、系统和外界交换的热量、能量转换关系等。通过分析这些实际工程设备的工作工程,能够使学生掌握不同设备的能量转换关系和特点,并了解在哪些情况下,可以将工程实际问题进行简化,从而建立他们的工程意识。

《工程热力学》作为众多工程类专业的一门重要专业基础课,学生接触较早,对他们后续学好其他专业课会产生一定的影响。如何上好这门课,是每一位《工程热力学》教师应仔细思考的问题。只有在教学实践中不断丰富和调整教学内容,不断改革和探索教学方法和教学手段,才能达到较好的教学效果。

参考文献:

[1]印洪浩.基于建构主义理论的工程热力学教学研究与实践[J].航海教育研究,2007,(2):53-55.

[2]王志军,高保彬,宋文婷.工程热力学绪论课的重要作用及其课堂教学设计[J].教育教学论坛,2012,(9):237-238.

[3]耿凡,王迎超.工程热力学课程的研讨式教学改革[J].中国电力教育,2013,(5):76-77.

篇4

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0039-02

“工程热力学”是能源与动力工程专业的一门重要专业基础课,其教学与研究的主要对象是热能与其他形式能之间的转换关系、转换规律及应用。它不仅是相关专业课的基础,而且是在涉及能源、化工和冶金等领域,特别是能源转换与利用的各领域中深入研究、开发和创新的基础。该课程的概念性比较强,涉及的理论也较为抽象,同时与生产实际又有十分密切的联系。在教学过程中,对该课程老师和学生都有“难教难学”的感受。如何提高“工程热力学”课程的课堂教学质量,一直是相关专业教师长期探索的目标。

案例教学法是由哈佛法学院院长朗代尔于1870年最先采用的,在法学教育中发挥了极大的作用,并被推广至医学、管理学等实践性和应用性较强的学科的教学中普遍应用。科研案例教学法在案例教学法的基础上,从分析课程特点及课程教学现状入手,在教学内容上尝试选用专业任课教师及课题组已完成的应用到该课程基础知识的科研项目,将其设计、组织并呈现于课堂,使学生在“工程热力学”课程中通过对具体科研案例的讨论、分析、表达等活动,让学生在具体的科研案例中牢固掌握该课程的理论知识,形成理论结合实际的教学方法。在此基础上促使学生积极思考,主动探索,提高自主学习能力、实践能力和创新能力,并能够将“工程热力学”这门课程灵活应用到今后的专业学习和实际工作中。

一、“工程热力学”教学改革研究现状

目前,“工程热力学”教学改革研究主要集中在以下几个方面:第一,教学内容的设置和优化,主要以课程的设置、教学内容的侧重点和更新点作为重点改革内容。[1]第二,实验课教学的改革,主要对实验课的比重、实验教学的方式、实验考核方式以及实验课与科研相结合的教学方式进行了探讨。[2]第三,新方法新技术在“工程热力学”教学中的应用。随着现代技术的发展,多媒体技术、网络技术、视频技术等也被引入“工程热力学”教学中,成为教学改革研究的方向之一。[3-5]

案例教学法在“工程热力学”教学中已有应用,[6,7]但科研案例教学法在工科生“工程热力学”教学中却鲜有报道。在“工程热力学”教学中,授课老师往往采用最多的是“举例”,“举例”虽然有助于理论知识的形象化,但其局限性是仅仅解决了某个独立的知识点,而对知识的整合性较差。而科研案例教学法不同于“举例”的最大区别在于侧重了知识面的涵盖,在具体应用时设定了比“举例”更为复杂的科研案例情境,应用专业术语将不同章节知识点加以整合,形成系统且相对完整的案例,贴近实际,应用性更强。科研案例教学法利用任课老师的科研课题,将已成熟的科研案例设计组织后呈现给学生,能够更好地为学生的专业学习和“工程热力学”课程培养目标服务。

二、科研案例教学法意义及应用价值

将科研案例教学法应用在工科生“工程热力学”课程教学中的意义主要有:一是通过具体的科研案例,增强学生对理论课程的兴趣,培养学生在思考中掌握此学科的基本概念和理论知识。二是通过科研案例教学,可在一定程度上代替部分实验教学,解决经费及设备不足造成的实验难以开展的问题。三是通过针对性强且典型的的科研案例,引导学生思考,加深对知识的理解和记忆,培养学生的自主学习能力、实践能力、创新能力、分析问题和解决问题的能力,为其获得终身学习的能力奠定基础。四是通过科研案例教学,使得科研为教学服务的同时,为学生进一步掌握专业技能和提高实践能力打下坚实基础。五是通过科研案例教学,引导和促进教学老师积累科研案例,从事科研工作,起到科研促进教学,教学促进科研的双重作用。六是通过科研案例教学法在工科生“工程热力学”课程中的应用,进一步完善了工科生“工程热力学”教学方法的改革。

三、科研案例教学法在工科生“工程热力学”课程教学中的应用

1.科研案例教学法在工科生“工程热力学”课程实践教学中的应用

“工程热力学”课程教学的目的就是培养学生掌握热力学基本概念及其基本定律,理想气体的热力性质(包括实际气体),研究热能与机械能之间的相互转换,分析各种热力循环过程、计算与应用热力循环,培养学生独立解决实际热力工程问题的能力。

例如在动力装置循环一章中,通过对蒸汽动力装置循环的过程及效率的学习,研究提高循环效率的方法。那如何让学生更有效地掌握这些方法呢?科研案例教学法应是一个较好的尝试。授课老师通过讲解课题组承担的电厂锅炉改造及其烟气余热回收利用的科研项目,将其问题提出,结合本章基础知识分析解决问题的方法,将完整过程呈现给学生,增强学生对本章知识点的兴趣,同时引导学生自己提出解决方法,教师加以点评,使之在思考中加深对基本概念和理论知识的理解,从而提高其分析问题和解决问题的能力,进而加强科研能力的培养,充分将教学和科研有机地结合起来。

2.科研案例教学法在工科生“工程热力学”课程理论教学中的应用

由于“工程热力学”课程基本概念及基本定律较多,对于学生来说,如此广泛的知识体系难以在短时间内掌握,学生对于“工程热力学”课程的理论知识感觉枯燥,导致教学效果不理想。所以设想在工科生“工程热力学”的教学过程中如果通过典型且含有问题的科研案例,使得抽象的理论变得生动具体,又与实践相结合,既提高了学生的积极性,又使得知识点容易被理解。在讲解热力学第二定律时,介绍了状态参数――熵。同学们对这个参数觉得很难理解,为此引入了课题组承担的住宅中节能技术应用的问题研究。介绍利用熵权理论来确定住宅节能技术评价中各个影响指标的权重,并在此基础上对方案进行优化,从而更直观准确地判断和选择住宅节能方案。因而科研案例不仅有助于实践教学,又有助于理论教学的实施。

3.科研案例教学法在工科生“工程热力学”课程其他方面的应用

此外,工科生“工程热力学”教育中还存在实验难以开展等问题。而科研案例教学法的开展将在很大程度上解决这些问题。科研案例教学中引入实际问题,存在实验过程和实验方案设计。该教学法突出了工科生“工程热力学”的专业特点,突破了教材的局限,使学生紧紧围绕教学重点,通过选择针对性强且典型的科研案例,突出工科生“工程热力学”的专业特点,还可解决因经费及设备不足等造成的工科生“工程热力学”实验难以开展等问题。

四、科研案例教学法在工科生“工程热力学”课程的实施

1.开课前问卷调查

设计课前问卷,问卷涉及项目可行性、案例选择的依据、案例选择侧重的专业方向、案例呈现的方式以及教学效果评价方法等等。

2.收集科研案例

教师收集教研室历年来承接或参与的科研项目,以及文献资料中可用于工科生“工程热力学”课程教学的科研案例(收集的科研案例其内容是公开的,或经课题负责人同意,可用于教学)。

3.科研案例的选择和组织

根据教学内容和学生的兴趣特点,对案例进行精心的概括、组织。案例的设计一是要紧扣教学大纲的知识点,将知识点融入到案例的呈现过程中;二是要具有代表性、针对性、可讨论性。授课章节需选择代表本章重点的科研案例,并针对专业特点做重点选择;三是要具有综合性,是指案例的设计可以在实例基础上进行加工或整合,较全面地向学生展现知识点。同时,案例的选择还需考虑学生的兴趣点,让学生在兴趣盎然的学习过程中,不仅掌握知识,还锻炼科研思维能力。

4.案例呈现和讨论

教师可以通过将文字描述、多媒体手段、图表等多种手段呈现案例,或者将几种手段相结合,引入教学案例。教师呈现案例后,要根据教学目标来一步步地、循序渐进地启发、引导学生积极思考,展开师生之间的对话,充分的沟通能够丰富学生的见识,开拓学生的视野。学生可以分小组合作对案例中的各种问题进行分析和讨论,碰撞思维的火花,发现和探索解决案例问题的方法,体验理论如何应用于实践,实践中如何提炼出理论。

5.案例总结

案例总结是科研案例教学中的最后一个环节,也是最重要的一个环节。在这个环节,教师要将讨论中碰撞出的各种观点和看法进行系统的总结,将案例背后蕴含的理论知识进行归纳。在对工科生“工程热力学”课程科研案例的总结中,不仅巩固了案例讨论的成果,也扩充了学生的实践知识和理论知识体系,加深了学生对于理论知识的理解,促进学生理论联系实际能力的发展。此外,教师还要对本次案例教学进行反思――对案例的有效性反思,对教学的过程反思,对教学的效果反思,不断完善对于科研案例教学法的掌握和运用。

6.教学效果评价

主要采用考试和问卷调查的形式进行教学效果评价。通过与以往教学方式后的考试成绩进行比较,同时,采用课前、课后问卷调查的形式共同分析学生学习效果和教师的教学效果。

工科生“工程热力学”课程一般由各工科院校能源与动力工程专业承担,因能源与动力工程专业每年承接或参与多项科研项目,其中大多是国家级和省级科研项目,具有较高的科研水平和参考价值。科研案例教学在工科生“工程热力学”教学中的应用,一定程度上完善了当前工科生“工程热力学”教学中存在的不足,将科研工作的积累服务于教学,使学生在学好这门课的同时,为其进一步掌握专业技能和提高实践能力打下坚实基础。同时还可提升教师的教学水平、科研能力和综合素质,做到真正意义上的教研相长。

教学有一定的规律,但没有固定的模式。合理采用多种教学手段,激发学生的学习热情,培养学生理论联系实际的作风和创新意识,将是工科生“工程热力学”教学改革的长远目标。

参考文献:

[1]代乾,王泽生,杨俊兰.能源与动力工程专业热工系列课程改革实践[J].中国电力教育,2013,(5):74-75.

[2]于兵川,吴红特.实验教学与科研有机结合培养学生创新意识和能力[J].实验室研究与探索,2010,29(2):76-78.

[3]高蓬辉,张东海,冯伟,等.将基础数学物理知识融入“工程热力学”教学中的探索[J].中国电力教育,2013,(22):87-88.

[4]蒋亚龙.工程热力学课程教学研究初探[J].教育教学论坛,2014,

(4):97-98.

篇5

1.热力学第一定律

热力学第一定律是工程热力学教学内容的重点,主要讲授闭口系统与稳流开口系的热力学第一定律能量方程式的表达式及应用。在本课程中,进一步强调热力学第一定律的一般表达式即:“进入系统的能量-离开系统的能量=系统总储存能的变化”的正确灵活应用,重点介绍如何分析、列出非稳态充、放气热力过程的能量方程式,帮助学生进一步增强利用第一定律进行能量分析的能力。同时,通过对节流、自由膨胀、混合、换热、可逆定温放热压缩等热力过程分析来帮助同学们对第一定律的局限性有更为深入的理解。

2.热力学第二定律熵分析法

热力学第二定律是工程热力学教学内容的重点与难点,主要讲授热力学第二定律的数学表达式,具体包括:卡诺循环+卡诺定理、克劳修斯积分不等式、闭口系及开口系统熵方程、孤立系统熵增原理。在本课程中,考虑到判断一个热力循环是否可行、可逆的数学判据容易理解而且是热力过程的特例,故重点讲述闭口系及开口系熵方程、孤立系统熵增原理。在该部分从以下四个方面进行介绍:对于状态参数熵的辨析:辨析熵是状态参数与过程无关,强调判断一个热力过程能否进行、可逆的参量不是过程熵变而是过程熵产,引出后面由熵方程及孤立系统熵增原理计算过程熵产的知识点;重点讲授熵方程的一般表达式,即:“进入系统的熵-离开系统的熵+过程熵产=系统熵变化”,通过典型例题帮助同学能够利用熵方程列出闭口及开口系熵方程,并求取过程熵产;重点解析孤立系统熵增原理的实质及解题特点,并通过典型例题帮助学生认识到孤立系统熵增原理与熵方程的一致性:孤立系统熵增即熵方程中的熵产;作功能力损失方面除了介绍计算公式、通过计算热力过程熵产及作功能力损失,还着重结合对节流、自由膨胀、混合、换热、可逆定温放热压缩等具体热力过程分析让学生体会第一定律与第二定律之间的联系及第二定律的独有贡献。

3.热力学第二定律分析法

由于学时有限并且概念抽象难以理解,分析法在工程热力学中属于选讲内容,即便讲授,也多是简要介绍。本课程中,分析法是授课重点,从以下四个方面进行讲授:第一,概念及计算公式,包括机械、热量(冷量)、内能、焓和化学。第二,重点讲授方程的一般表达式“进入系统的-离开系统的-过程损=系统变化”,通过典型例题帮助同学能够利用方程列出闭口及开口系方程,并求取过程损。同时,在分析典型例题时,引导学生同时用熵分析法来计算过程的作功能力损失,让学生自觉地认识到分析法中所得到的损失即熵分析法中计算的作功能力损失、体会两种分析法的一致性及分析法的优势。第三,效率、损系数的概念及公式,以及在典型热力设备、过程及热力循环中的计算。第四,针对本学科领域典型的火力发电装置、燃气轮机发电装置和低温制冷装置、LNG液化装置、天然气净化装置、油田联合站等,设置工程背景很强的案例,教师与同学们一起分析循环装置及各组成设备的效率、损失及损系数等,让同学们认识到分析法在进行系统能量分析时的重要性及提高利用该方法解决实际工程问题的能力。

4.新发展起来的能量系统分析与优化方法

介绍能级分析法、经济学、夹点技术、全生命周期分析法、能值理论等新发展起来的能量系统分析与优化方法的基本理论及应用,鼓励学生查阅相关文献获取更多知识。这部分内容与留给学生的学习报告紧密相关,将在下文介绍。目前还没有适合于本专业本科教学的系统节能方面的教材,本课程教学内容主要参考自沈维道等主编《工程热力学》、朱明善等编著《工程热力学》、傅秦生编著《能量系统的热力学分析方法》和冯霄编著《化工节能原理与技术》、何雅玲主编《工程热力学精要分析典型题解》等教材及专著,结合教学团队多年来收集整理的工程案例编写成讲义供教师及学生使用。

二、教学方式改革

教学中的主体是学生,调动学生学习主动性,提高其学习兴趣和学习效果是教学方式改革的目的。学生们对于国际上最新的、与未来工作紧密相关及实用性强的知识以及确实能提高自身素质与能力的教学环节更感兴趣。

1.采用多媒体与板书有机结合的教学模式

充分利用多媒体教学信息量大,图像、视频生动形象的特点,同时结合传统板书讲解复杂推导更容易被学生掌握的优点以提升教学效果。这种授课方式既可以增大授课信息量、有效吸引学生注意力,同时又能使学生通过与老师一起板书推导对所学重点、难点有更为深刻的认知。

2.提高课堂教学吸引力

通过针对每一个重要概念及知识点设计的系列典型例题、思考题吸引学生注意力,激发学生学习兴趣,引导其积极参与到教学中来。而且教学团队经过多年的教学和科研积累,收集并提炼出与石化工程紧密关联的工程案例,通过案例的讨论和分析,增强学生学习理论知识的兴趣,提升课堂教学的互动效果,增强学生运用理论知识分析并解决工程实际问题的能力。

3.布置作业形式灵活多样

对于重要的基本概念,以读书笔记的作业形式激发学生学习兴趣。本课程涉及众多抽象概念和公式,追溯热量、温度、熵、热力学第二定律、等重要基本概念的由来、发展历程,可使学生在搜集资料的过程中对这些概念有一个直接的感性认知,同时也有助于学生认识到这些知识在本学科发展中的重要作用。要求学生组成2~3人的学习小组,除常规课下作业外,课上作业以小组为单位完成。课上作业为教师针对每次课的重点和难点内容设计的多为填空、选择和问答形式的练习题,课前打印好分发给每个学习小组。在讲课过程中,留出适合时间让学生及时完成。教学实践表明课上作业非常利于学生把握住和消化吸收重难点知识,且能提高学生学习的注意力,达到良好的教学效果。

篇6

一、师资队伍建设

教师是完成教学的根本,因此建立一支稳定、有较高教学和学术水平的教师队伍是课程建设的关键。针对青年教师较多的实际情况,充分发挥骨干教师和具有丰富教学经验老教师的“传、帮、带”作用,让青年教师和老教师“师徒结对”。为了让“师徒”间的交流落到实处,学院专门出台了相关文件,对“师傅”和“徒弟”进行双向考核,促进青年教师的成长,提高他们的业务水平。在青年教师正式走上讲台前,还需要过“试讲关”。通过老教师和同行听课,对青年教师进行现场指导,进一步促进他们的成长。通过这些措施的实行,目前工程热力学教学团队共有5名成员,其中教授1人,副教授2人,讲师2人,成员中具有硕士学位的教师占100%,博士学位的教师占80%。教学团队所上的工程热力学课程受到同行和学生的一致好评。

二、教材的选择

工程热力学作为一门历史悠久的能源动力类专业基础课,教材的选择面较宽。目前可选用的教材有面向“二十一世纪”系列课程教材、“十一五”国家级规划教材等。面对众多的教材,如何选用适合教学对象的教材,是课程建设的重要内容。经过几十年的发展,目前可选用的教材有沈维道等人编写的《工程热力学》(第四版)“十一五”国家规划教材,曾丹苓等人编写的面向21世纪《工程热力学》课程教材、陶文铨等人编写的《工程热力学》面向21世纪课程教材、廉乐明等人编写《工程热力学》“十一五”国家规划教材、、鄂加强编写的《工程热力学》21世纪高等学校精品规划教材等。由于各种教材的侧重点不同,因此要根据各专业的不同的培养目标,选择适合学习对象的教材。热能动力工程和油气储运工程属于能源动力类专业,根据其培养目标,选择了沈维道等人编写的《工程热力学》作为其授课教材。建筑环境与设备工程属于土木与建筑学科,选择了中国建筑工业出版社出版、廉乐明等人编写的《工程热力学》作为教学用书。过程装备与控制工程和材料成型及控制工程专业属于机械类,选择了陶文铨等人编写的《工程热力学》作为其教学用书。

三、教学内容与教学手段

1.教学内容。确定好教材后,教学内容的选择成为课程建设的重要内容。根据各个专业特点,在保证教学内容基本完整的前提下,还需要对教学内容进行简化和补充。工程热力学内容可以分为两大部分。一部分是基本理论和基本概念,包括热力过程和热力参数,还有一部分是与实际相联系的综合应用。热能与动力工程的相当一部分学生毕业以后从事有关内燃机、燃气轮机的工作,还有部分学生在火力发电厂工作。因此在教学中要加强气体与蒸汽的流动、压气机的热力过程、气体动力循环和蒸汽动力循环等部分的教学,而对制冷循环、湿空气等内容可适当简化。但对于建筑环境与设备工程的学生情况就不同了,该专业毕业的学生大部分从事采暖、通风、制冷和空气调节等方面的工作,在教学中要加强制冷循环、湿空气及气体流动等部分的教学,而对于动力循环的内容可作适当简化。

2.教学手段。工程热力学是一个有机的整体,在工程热力学的教学过程中要抓住热力学第一定律和第二定律这两条主线,把它们贯彻到实际应用中去。(1)在教学中,要采用“启发式”的教学手段。启发式提问,重在“善诱”,贵在启发学生心志,培养其思维,既不能“一语道破天机”,也不能让人“望尘莫及”,所以还要讲究合理设问[2]。如热力学第二定律的开尔文说法和理想气体定温膨胀的区别,还有“耗散掉的功”和“做功能力损失”这两个概念的区别。引导学生综合利用所学的概念和原理,对所提问题展开思辨。所提问题既不过于简单,也不太难,给予学生一点思考的空间。另外,再如:“定熵过程和可逆绝热过程是否等价呢?”在实际教学中笔者发现有相当一部分的同学认为两者等价,即定熵一定是可逆绝热,可逆绝热也一定为定熵。事实上,定熵和可逆绝热这两个概念并不等价。可逆绝热一定为定熵,这个说法是正确的。因为绝热意味着系统与外界的换热量为零,可逆过程保证能取等号,那么把绝热过程的带入等式可得熵变为零,即等熵过程。但定熵一定是可逆绝热这个说法是错误的,闭口系统熵方程中熵变主要由两个因素决定,其一为熵流,它与系统是否吸、放热有关,热力学中规定吸热熵流为正,放热熵流为负,绝热熵流为零。其二为熵产,熵产是由于不可逆过程中,由于耗散效应把一部分机械能耗散成为热,该热又被工质吸收,引起熵的增加。因此,熵产是非负的。当过程是可逆时,熵产取为零。只要系统放热,使熵产正好和负的熵流相加为零,就可以是等熵过程,但由于有熵产,因此不是可逆绝热过程。在提出问题后,让学生讨论,教师最后作总结,给出正确答案。(2)工程热力学中概念相当多,也比较抽象,还可以利用对比启发式的教学手段。以内燃机、燃气轮机和蒸汽动力装置为例,尽管它们构造不同,工作特性不同,但吸热、膨胀做功、排热对任何一种热能动力装置都是共同的,也是本质性的,这样就透过现象抓住了本质性的东西。还有“功”的比较。工程热力学中有体积变化功,技术功,内部功,流动功、推动功等。通过对比,不仅使教学由纵向向横向展开而纵横交错,还可增强教学的关联性和生动性。如熵增原理与孤立系统的熵增原理比较。熵增原理的知名度很高,但是要注意,热力学中熵不一定是增加的。在一个闭口系统中,总熵变为熵流加熵产。系统只要向外界多放热,使得负熵流大于熵产,那么这时总熵变就是负的,熵变小了。只有加上的定语“孤立系统”,熵才是增加的,孤立系统中系统与外界的换热量为零,也即熵流为零,熵产非负,当然总熵不可能变小。熵增原理和孤立系统的熵增原理是不相同的,故条件“孤立系统”非常重要。再如,把准静态过程和可逆过程这两个概念进行对比,它们的区别是什么?首先定义不同,准静态过程是一系列平衡态所组成的过程,而可逆过程是如果系统完成某一热力过程后,再沿原路径逆向进行时,能使系统和外界都返回原来状态而不留下任何变化的过程。其次,要求条件不同,可逆过程要求系统与外界随时保持力平衡和热平衡,且不存在任何耗散损失,在过程中没有任何能量的不可逆损失;静准态过程的条件仅限于系统内部的力平衡和热平衡,在进行中系统与外界可以有不平衡势差,也可能有耗散效应的发生,只要系统内部能及时恢复平衡,其状态变化还是准静态的。再次,可逆过程是针对过程中所引起的外部效果而言的,准静态过程是针对系统内部状态变化而言的,因此可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。实际过程总是在温差、压差作用下变化的,实际过程是偏离可逆过程的准静态过程。学生对概念必须全面理解,切不可断章取义,一知半解。(3)开展以“网络课堂”为补充的教学手段。由于学生个体的学习能力存在差异,部分“尖子生”希望老师的教学内容再深入一些,而部分基础较差的学生希望把基本内容再复习、巩固。利用网络课堂,不仅可以很好地兼顾各类学生的需要,而且可以在网络上跟老师进行交流。利用网络课堂可以方便地进行网上答疑,网上讨论。如“经过一不可逆循环后,熵变大还是变小?”,这个问题许多学生搞不清楚。教师在网上答疑时,要讲清楚两点:其一,循环的概念;其二,熵是状态参数。通过网上讲解,网络课堂架起了学生和老师沟通的“桥梁”。

四、实验教学

实验教学是课程建设的重要组成部分,是课堂教学的应用、补充和实践,同时它还有助于提高学生的动手能力。工程热力学课程有“二氧化碳P-V-T关系测定”和“气流通过喷管的实验”两个实验。通过实验,学生不仅锻炼了动手能力,而且加深理解了课堂所学知识。同时还建立了开放实验室。实验室对学生完全开放,学生可以在实验室做课程中规定的实验,也可以根据自己的想法去实施自己感兴趣的实验。

工程热力学课程建设是一项综合性工程,需要持之以恒,不断探索。它涉及到师资队伍建设、教材的选择、教学内容和教学手段的选择、实验教学等方方面面。对于不同的专业,工程热力学教学的侧重点不同。我们将始终以提高教学质量为目标,把握好课程特点,进行针对性的探索,以期望把工程热力学的课程建设提高到更高水平。

篇7

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)33-0069-02

随着我国本科教学水平的不断提高和国际化交流与合作的广泛开展,就业市场对本科毕业生的知识结构和外语应用能力有了新的要求,专业外语应用能力成为21世纪国际化专业人才的必备专业素养,直接影响本科毕业生的就业趋向和未来发展。[1-4]我国教育部对本科生的双语课程教学十分重视,2001年教育部在《关于加强高等学校本科教学工作,提高教学质量的若干意见》中提出,要采用英语等外语进行公共课和专业课教学,要求各高校在三年内开设5%~10%的本科双语课程。[5]2005年,教育部在《关于进一步加强高等学校本科教学工作的若干意见》中又指出:要提高双语教学课程的质量,继续增加双语教学课程的数量。2007年,教育部在《关于进一步深化本科教学改革,全面提高教学质量的若干意见》中指出,要鼓励开展双语教学工作。教育部2004年8月开始试行的《普通高等学校本科教学工作水平评估方案》中,双语教学被列为主要评估点之一。双语教学的水平已经成为衡量高等学校办学水平的一项重要指标。我国高校在本科生课程双语教学的实践过程中,近年来取得了实质性的进展,也突显了课程体系构建不合理、重点内容设置不当、教材建设相对滞后、双语教学师资不足、双语学习氛围较差、课程考核评价方法有待改革等问题。为了使“工程热力学”在校级精品课程的基础上进行双语教学,需要对“工程热力学”双语教学的课程体系进行合理构建和重点内容进行设置,以期把该课程建设成为高质量的双语教学课程,为提高本科毕业生的整体质量和英语应用能力奠定良好的基础,以适应国家化人才市场的需要。

一、“工程热力学”双语教学的课程体系构建与实施

“工程热力学”作为能源、环境、机械、化工等大类工科专业的专业基础课,兼有理论性、实践性和工程性,它起到承上启下、从基础课程到专业课程的桥梁作用,是本科生专业课程体系中不可或缺的骨干专业基础课,在上述专业本科生的培养过程中具有重要的核心地位。“工程热力学”课程内容具有概念多、基本理论抽象、富含哲学思维和理念、工程应用领域广泛等特点,要实现该课程的高质量双语教学就要对该课程体系进行合理构建,为保证教学效果奠定良好的基础。该课程经过多年的建设、教学改革和教学经验的积累,已成为校级精品课程,在教师团队建设、师资英语水平、多媒体课件及相关网络资源、课堂教学方法及课程评价方法等方面均具有良好的条件,为“工程热力学”双语教学课程体系的合理构建做了较为充分的准备。“工程热力学”课程教学团队认真研究了国内高校开设双语课程的案例,确定了“工程热力学”双语教学课程体系主要由教学模式、教学团队、教学内容(如课程大纲、授课计划)、多媒体课件、课堂教学实施、多层次启发式教学方法、网络资源、课程成绩评价方法等内容组成,认为教学模式、教学团队和教学团队是保证“工程热力学”双语教学质量的关键因素。

双语教学模式对课程体系的构建起到关键性影响,首先要确定双语教学模式。近年来我国高校开展的双语教学模式主要可概括为全外语型、混合型和部分外语型三种。

(1)全外语型。采用外文教材,直接用外文授课。这种模式要求师生均应具有较高的外语水平。

(2)混合型。采用外文教材,混合外文与汉语授课。与全外语型相比,学生较易掌握课程内容,适合学生接触双语教学的初级阶段,也适合多数任课教师的外语水平。

(3)部分外语型。采用外文教材,用汉语讲授。这种模式适合外语知识和接受能力较弱的生源。结合“工程热力学”课程多年的教学实践,结合现有的师资英语水平和学生的实际英语水平,建议对“工程热力学”采用混合型双语教学模式。

教学团队是实施“工程热力学”课程体系的人力资源保证,教学团队的建设是关键。经过多年的建设,“工程热力学”课程已形成了年龄结构、学历层次、学缘结构等较为合理的教学团队。老教师具有丰富的教学经验,青年教师具有较高的英语应用水平,为“工程热力学”双语教学的实施提供了良好的师资力量。

教学内容是一门课程知识面宽窄、程度深浅、系统性完善度的体现,也是体现课程整体质量的重要组成部分。“工程热力学”在建成校级精品课程的过程中,在教学大纲、教学计划、课程的重点和难点、多媒体课件制作和网络资源建设等方面积累了丰富的素材与资源,为“工程热力学”双语教学的教学内容规划与设置奠定了扎实的基础。

在上述条件下,“工程热力学”课程教学团队经过认真调查研究,并结合现有的师资条件、课程教学资源、学生的实际英语水平构建了“工程热力学”双语教学的“三段一改”课程教学方法,“三段”即课前阶段、课堂教学阶段、课后检验阶段;“一改”即改革课程考核和评价方法。现就“三段一改”课程教学方法的实施构想简要介绍如下:

(1)课前阶段。课前阶段所做的工作重点是确定双语教学模式、选定中文教材和外文教材、编制中英文教学大纲和授课计划、确定课程的主要知识点和重点与难点内容、制作多媒体课件、建立习题与思考题库,并将教学大纲、授课计划、多媒体课件和习题与思考题库在学校的毕博网络平台开放,供学生结合各自的时间、兴趣和特点进行课前预习与课后复习。教师在课堂讲授前预习要求,以保证学生的预习效果。

(2)课堂教学阶段。课堂教学阶段是将课程内容传授给学生。授课语言采用中文和英文,英文讲授不低于50%。教学方法采用启发式、讨论式、课堂提问等方式激发学生的学习兴趣。多媒体课件分别有中文和英文版本,课程的重点内容有中英文对照。课堂教学针对不同英语水平的学生分为三个不同层次,即最高层次、平均层次和低层次。最高层次要求学生以英文教材和英文多媒体课件为主,作业用英文完成;平均层次要求学生以中文教材和英文多媒体课件为主,英文教材为辅,对课程的主要内容能用英文和中文同时掌握,作业以中文为主;低层次要求学生以中文教材和中文多媒体为主,英文教材和英文多媒体为辅,对课程的重点内容能用英文理解和掌握,作业可全部用中文完成。课堂教学的目标是以平均层次为主要教学对象,逐步积累经验后过渡到以高层次为主。

(3)课后检验阶段。课后检验阶段主要包括课程作业批改、网上答疑和讨论、课程实验等环节,不仅可以检验课堂教学效果,巩固课堂讲授的知识,还可以检验学生对知识点的掌握情况,积极征求学生对本课程教学的意见,及时发现教学过程中出现的问题,改进教学方法,提高教学质量。

(4)改革课程考核和评价方法。双语教学的课程考核和评价方法应考虑到双语教学的特点,把英语的应用能力作为课程成绩的重要组成部分,把学生的英语作业、课堂英语提问和交流纳入课程平时成绩,并加大平时成绩的权重,以引起学生对英语应用能力的重视,激发用英语思考和学习的主动性,保证双语教学质量。

因此,合理构建双语教学的课程体系,由任课教师在课堂教学中分层次加以有效实施,并提高学生的自主性和积极性,可确保双语教学取得较好的教学效果。

二、“工程热力学”双语教学重点内容的设置与教学要求

“工程热力学”双语教学重点内容的合理设置是保证“工程热力学”双语教学质量的重要组成部分,重点内容的设置应该基本与中文教学的内容相同,同时应吸纳经典英文教材中的新概念和工程应用,与国际先进水平接轨,满足人才市场的国际化要求。“工程热力学”的内容可分为基本概念和理论、工程应用、常用图表三大部分。结合该课程教学团队多年教学经验的积累,建议将如下内容作为“工程热力学”双语教学的重点内容:

在基本概念和理论方面,主要包括:热力系如闭口系、开口系、绝热系、孤立系;状态参数如压力、温度、比容、内能、焓、熵、火用;热力过程如可逆过程、准静态过程、不可逆过程;热力循环如正循环、逆循环;不可逆因素如温差传热、摩擦耗功、自由膨胀;热力学基本定律如热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律;不同形式的实际气体方程;热效率、制冷系数、火用的概念、常见形式能量的火用、火用效率、火用损失、生成焓、理论燃烧温度、平衡常数、相对湿度、含湿量、干球温度、湿球温度、露点温度、马赫数;卡诺定理、孤立系统熵增原理、克劳修斯不等式;卡诺循环热效率,一般热效率表达式等。[6, 7]

在工程应用方面,主要包括:实际应用案例,气体动力循环如狄塞尔循环、奥托循环;制冷循环如空气压缩制冷循环、蒸汽压缩制冷循环、喷射式制冷循环、吸收式制冷循环;蒸汽动力循环如郎肯循环、再热循环、回热循环;燃气-蒸汽联合循环;燃料电池;燃料电池-燃气-蒸汽联合循环等;湿空气的加热、冷却与干燥等。

在常用图表方面,主要包括:水蒸气表、水蒸气焓-熵图、常用制冷工质的热物性图表、湿空气的焓-含湿量图等。

上述内容是不同层次学生必须掌握的“工程热力学”课程内容基本知识点,对不同层次的学生,主要体现在英语应用能力的要求不同。最高层次同学能够熟练阅读英文原版教材和相关的英文资料,能在课堂上用英语与老师和同学进行流利口头交流,在课后能用英语完成作业,熟练地应用英文多媒体课件进行课后复习;平均层次同学能读懂上述内容相关的英文原版教材内容的相关内容,能用英语在课堂上与老师和同学进行交流,能用英语写作部分作业题,能用英文多媒体课件进行课后复习;对低层次同学,能基本看懂英文原版教材中上述相关课程内容,基本能用英语在课堂上与老师和同学进行沟通,掌握上述课程内容的英文词汇和表达方法,能看懂英文多媒体课件中的上述课程内容。在双语教学中要强调学科的专业性,绝不能把双语教学变成专业外语教学。

三、结论

合理构建“工程热力学”双语教学课程体系和设置课程内容知识点,采用“三段一改”的教学方法,改革课程考核与评价方法,对不同层次的学生提出不同的英语应用能力要求,把学科内容作为课程教学的重点,并在实际教学过程中不断总结经验,改革教学方法,有望使“工程热力学”双语教学的教学质量不断得到提高,把“工程热力学”建成高水平的双语教学示范课程。

参考文献:

[1]龙国智.我国高校双语教学的现状评析[J].改革与开放,2011,

(4):173-174.

[2]马剑敏,施军琼,胡倩如.生物化学双语教学在我校的实践与思考[J].科技信息,2008,(26):590-591.

[3]栾晓明,姜,马惠珠.工科专业课程双语教学模式初探与实践[J].高教探索,2007,(6):169-172,190.

[4]曲燕.推进专业课双语教学的建设和设想[J].化工高等教育,

2010,(1):84-86.

[5]胡炜,蒋.高校双语教学实践初探[J].改革与开放,2010,(18):

篇8

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2015.04.039

Teaching of the First Law of Thermodynamics and

the Second Law of Thermodynamics

WU Hequan, XIE Wenhong

(College of Automative and Mechanical Engineering,

Changsha University of Science & Technology, Changsha, Hu'nan 410114)

Abstract Details of the emergence and development of the first law of thermodynamics, the second law of thermodynamics and the linkages between them. Further understanding of the process of teaching the knowledge of thermodynamics has played a good role in promoting, improving the quality of teaching.

Key words First Law of Thermodynamics; Second Law of Thermodynamics; Carnot theorem

0 引言

“工程热力学及传热学”课程是主要研究热能与机械能互相转换以及热量传递规律的一门学科。“工程热力学及传热学”围绕能量转换与传递这一主线,是对工程热力学及传热学两个研究方向的综合。其特点是涉及内容广,知识点多,主要包括热力学第一定律、热力学第二定律、热力过程计算、传热学的基本概念、换热器热计算等。它在社会生活中的应用是非常广泛的,在很多领域包括现代工业、农业、交通运输和国防建设等。虽然热机发展一百多年,已经非常完善,很多热力学理论已经在实践中得到了应用。但是在面对如今国际社会能源短缺、环境污染等问题中,推进热力学的研究,提高能源的利用效率是解决这些问题的一个关键。而热力学第一和第二定律是热力学基础,学好并掌握这些基本理论,才能更好地研究热能传递和转换的规律并把它转化成实际成果应用到社会生产生活之中。

1 热力学第一定律概述

热力学第一定律实质是能量守恒定律在热现象上的应用。能量守恒定律可以表示为:自然界的一切物质都具有能量,能量有多种不同的表现形式,可以从一种形式转化为另外一种形式,也可以从一个物体传递给另外的物体,在转化和传递过程能量保持不变。热力学第一定律则可以表述为:热可以变为功,功也可以变为热;当一定量的热消失时,必产生等量的功;消耗一定量的功时,必产生与之相应数量的热。表达式为: = +。热力学第一定律否认了能量的无中生有,正因为如此那种不需要任何动力和燃料就能持续做功的第一类永动机只能是幻想。

能量转换与守恒定律首先是从力学中以“活力守恒”的形式提出来的。系统吸热,内能应增加;外界对系统做功,内能也增加。若系统既吸热,外界又对系统做功,则内能增加等于这两者之和。热力学第一定律就是能量转化和守恒定律。十九世纪中期,在长期生产实践和大量科学实验的基础上,它才以科学定律的形式被确立起来。著名物理学笛卡尔在1644年就提出了“运动守恒”的概念,随后德国数学家莱布尼兹引入了“活力”的概念,意大利物理学家伽利略研究斜面问题和摆的运动,斯蒂芬研究杠杆定理。伯努利的流体运动方程实际上就是流体运动中的机械能守恒定律,1834年爱尔兰物理学家哈密顿《论动力学的普遍方法》,提出了哈密顿原理。至此能量守恒定律及其应用已经成为力学中的基本内容,为能量守恒定律的建立准备了条件。1841~1843年,德国科学家迈克尔和英文物理学家焦耳提出了热能与机械能相互转换的观点,为热力学第一定律的建立奠定了基础。

热力学第一定律的确立,突破了人们关于物质运动的机械观念的范围,从本质上表明了各种物质运动形式之间相互转换的可能性,说明运动形式相互转换的能力也是不灭的,是物质本身固有的。

2 热力学第二定律

热力学第一定律说明了热能是可以转换的,可以由热能转换成机械能,也可以由机械能转换成热能,而且能量不会消失。但是如果仅仅只是这样,那有很多现象是解释不了的。比如一辆小车给它一定动能,让它在路上行驶,走了一段路程后,由于小车和路面有摩擦,小车速度逐渐减小,最后停止。原来的动能全部转化为摩擦产生的热能,然而反过来,这些热能能还给小车,再重新让它动起来吗?再比如一个烧红了的锻件,放在空气中便会慢慢冷却。显然,热能从锻件散发到周围环境中了;周围环境获得的能量等于锻件放出的热量。反过来,这个已经冷却了的锻件能从周围环境中收回那部分散失的热量,重新赤热起来吗?这样的过程都不违反热力学第一定律。然而,经验告诉我们,这是不可能的。

所以在热能转换为机械能这一问题中,除了要遵循热力学第一定律,还要满足其它约束条件。这就是热力学第二定律的研究内容。热力学第二定律的实质就是指出了一切自然过程的不可逆性,也就是说自然界中的过程具有方向性。过程总是自发地朝着一定的方向进行。机械能总是自发地转变为热能;热量总是自发地从高温物体传向低温物体等等。这些自发过程的反向过程(称为非自发过程)是不会自发进行的。这种不可逆的过程可以用熵来描述。自然界的一切自发过程都是朝着熵增大的方向进行的。只有可逆过程,系统的熵保持不变。这就是熵增原理,这是热力学第二定律的其中一种表述方式。

在热力学第二定律告诉我们能量转化具有方向性。即机械能可以百分之百的转化为热能,但热能转化为机械能的效率不可能达到百分之百。那么热机的效率最高能达到多少呢?1824年,法国工程师卡诺提出了一种热效率最高的循环――卡诺循环。它包括两个等温过程和两个绝热过程。如果把高温热源的温度记为,低温热源的温度记为,通过热力学计算可以得到卡诺循环的热效率表达式 = /。当高温热源的温度足够高,而低温热源的温度足够低的时候,卡诺循环的热效率理论上可以无限的接近1,因此可以说卡诺循环的热效率最高。从中可以得出以下结论:(1)卡诺循环的热效率只决定于高温热源和低温热源的温度,也就是工质吸热和放热时的温度;(2)增大,减少,可以提高卡诺循环的热效率;(3)卡诺循环的热效率只能小于1,不能可能等于1。因高温热源的温度不能等于无穷大,低温热源的温度也不可能等于零。这就表明热能不可能全部转变为机械能;(4)当 = 时,卡诺循环的热效率为零。这表明,在没有温差存在的热力系统中,热能不可能转变为机械能。或者说,单热源的热机,即第二类永动机是不可能造成的。

在卡诺定理的基础上,人们总结出了热力学第二定律的两种主要表述方式。克劳修斯说法:热量不可能自发地、不付代价地从低温物体传至高温物体。开尔文说法:不可能从单一热源取热使之完全变成有用功而不产生其它任何他影响。它们都说明了自发过程的不可逆性,可以证明这两种表述方式是等价的。那种设想把海洋或空气当作单一热源,从中吸收热量并完全转化为有用功的第二类永动机是不可能实现的。

热力学第二定律的意义实际已经远远超出了热机热效率的范畴,它指出了自然过程进行的方向性,说明了能量品质的高低。

3 结语

热力学第一定律和热力学第二定律是人们在日常社会生产实践中总结出来的普遍规律,它们被许多实验和具体实践证明是正确的。热力学第一定律和热力学第二定律的建立,奠定了工程热力学与传热学的理论基础,也彻底了永动机的幻想。大学生在学习热力学第一定律和热力学第二定律时应该理解它的内容,实质,掌握它的重点和难点。了解热力学第一定律和热力学第二定律的发展过程,要学会自我归纳总结,做到独立思考。教师应该把精力放在提高热力学第一定律和热力学第二定律的教学深度以及加强实践应用上。热力学第一定律和热力学第二定律是自然界的普遍法则,蕴含了大道理,验证了辩证唯物主义思想,所以教师应该把事物发展的科学道理在这一章充分展现出来。热力学第一定律和热力学第二定律是“工程热力学及传热学”课程的重要内容,也是理工科学生必须掌握的基本知识,因此对它们进行深入研究有利于提高课程的教学质量。相信对热力学第一定律和热力学第二定律的研究一定会推动社会的进一步发展。

基金项目:长沙理工大学教改课题项目

参考文献

[1] 李岳林,刘志强,武和全.工程热力学与传热学[M].北京:人民交通出版社,2013.

篇9

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和教学方法进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在课前预习阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、平时作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

篇10

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2016)23-0076-02

1 引言

食品冷链物流(Food Cold Chain Logistics)是上海海洋大学食品科学与工程专业食品物流工程方向的专业特色。它是以制冷设施与技术作为手段,以食品冷冻冷藏工艺学作为基础的一项低温物流系统工程,过程要求易腐食品在生产、运输、贮藏、销售直至消费前的一系列环节中始终维持在食品规定的低温环境下,以减少食品损耗,保证食品质量。它是随着制冷技术的发展而建立起来的,热工学中有关热能和机械能之间相互转换的基本理论和热量传递规律,正是低温冷链物流实践应用的理论基础,而活学活用热工学的基本理论知识,对学好本专业起着至关重要的作用。

热工学是一门研究热能利用的基本原理和规律,以提高热能利用率为主要目的的课程,包括工程热力学、传热学和热工基础的应用等部分内容。其中,工程热力学和传热学构成热工学的理论基础,热能转换的基本概念、热力学两大基本定律、理想气体和蒸汽的热力性质与热力过程以及湿空气等内容属于工程热力学部分,而热传导、热对流和热辐射等3种热量传递方式的基本理论(包括导热的基本定律及稳态和非稳态导热、对流传热和辐射传热等)是传热学部分主要讲述的内容。目的是使学生掌握热能转换和利用的基本原理和规律,能够对有关热科学问题进行基本计算训练和获得解决相关工程问题的基本能力[1]。但是,学生在学习过程中反映感到困难最多的就是状态参数概念抽象、图表复杂、知识枯燥等。为此,笔者在教学实践中有以下几点体会和认识。

2 多角度分层次学习抽象概念――以熵为例

工程热力学中常用的状态参数有6个:压力、比体积、温度、熵、热力学能和焓。其中,熵的概念学生最难理解。熵是热力学第二定律导出的重要概念,在热学中得到广泛应用,近年来在经济学、生态学等其他学科中也逐渐得到重视和广泛应用[2]。

介绍“熵”这个字的历史由来 我国最初是没有“熵”这个字的,它是由Entropy这个单词根据意译而来的。1923年,德国物理学家普朗克来我国讲学时,我国物理学家胡刚复做翻译,根据Entropy的定义是热量除以温度所得到的商值,而且这个概念与火有关,于是就在商上另加火字旁,创造了一个新字――“熵”。

介绍熵这个概念的历史由来 熵的概念由德国物理学家鲁道夫・克劳修斯在1850年首次提出,用熵来表示能量分布在空间中的均匀程度,越集中的能量空间分布,系统的熵值就越小;而越均匀的能量分布,系统的熵值就越大,当能量完全均匀分布的系统,熵就达到最大值。

介绍熵的定义 熵是描述所有不可逆过程共同特性的热力学状态参数,它是不能再被转化做功的能量的量度。可逆过程中,δQ/T的积分值和热力过程的路径无关,因此可以断定可逆过程的δQ/T一定是某一状态参数的恰当微分,所以取名为熵(S),它的定义式为dS=δQ/T。

介绍熵的特点

1)熵是状态参数,同状态函数焓和热力学能一样,一般只计算状态参数的变化;

2)计算不可逆过程的熵变时,其值仅取决于给定的状态,与达到状态的过程无关;

3)δQ=TdS的量纲是能量,T是强度量参数,Q、S是广延量参数,计算时必须考虑体系的质量。

介绍熵的物理意义 可分为宏观和微观两个方面:从微观上讲,熵反映的是系统的无序度或混乱度;从宏观上

讲,一个热力系熵的变化,可以表示为熵流和熵产之和,对应选定的环境状态,系统熵的变化是系统无效能变化的量度。

重点介绍熵的本质 熵是一个反映自发过程不可逆性的状态参数,自然发展的情况下,系统各部分能量差总是倾向于均衡。在孤立系统中,实际发生的过程总是使整个系统的熵值增大,不能减少,极限的情况(可逆过程)保持不变,即孤立系的熵增原理[2]。摩擦生峋褪鞘挂徊糠只械能不可逆地转变为热,使熵增加;让一个热物体同一个冷物体相接触,热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。热量由高温物体传至低温物体,整个系统由高温物体和低温物体组成,高温物体的熵减少,低温物体的熵增加,熵总变化是它们的代数和,是增加的;每一次能量从一个较高水平(比如河水下落时,最初处于较高位置)转化到一个较低水平(比如河水落到坝底,处于较低位置),都意味着下一次能再做功的能力减少了。

介绍熵在其他学科上的应用 熵是热力学第二定律导出的重要概念,它不但在热学中得到广泛应用,而且在生命科学、哲学、经济学、系统科学、生态学、历史学、文学、艺术、语言学、宗教学等社会各个领域的应用也得到很多学者的日益重视。例如:探索将生态系统熵量化为能量输出或输入与经济收入或支出之比;以货币流为参数来计算城镇生态系统的熵变;以熵与焓的关系探讨地球的熵增;生物与环境综合为一个生态系统,生命体时刻与外界进行能量、物质、信息的交换,是一个开放的系统,任何真实的系统都不能脱离环境而存在,可以用“生命熵”来独立定义,用熵来分析一个生命体生长、发育、衰老、死亡的全过程。自然界所有的生物利用和环境的能量交换趋于多样、有序、熵减小,最终被环境选择,得以进化。

3 结合应用实例学习图表知识――以焓熵图为例

水蒸气的热力性质图表是热力过程计算中的重要依据。但是对这一部分内容,学生普遍反映图表太复杂,图中等参数线太多,表中数据参数太多,水和水蒸气状态又十分复杂,应用起来很不方便。

介绍水和水蒸气图表实际应用中的优缺点 水和水蒸气的热力性质表优点是数值的准确度高,缺点是数据不连续,需要用内插法计算近似值,使得查表工作十分烦琐。水和水蒸气的热力性质图的优点是查取方便,热力过程分析更直观、清晰和方便;缺点是数值误差较大,在工程应用容许范围内。优先选用的是水和水蒸气的热力性质图,其中,温―熵图(T-s图)和压―容图(p-v图)主要是对蒸汽热力过程进行定性分析使用,而焓―熵图(h-s图)主要用作对蒸汽热力过程的功量和热量进行定量计算,应用更加广泛。

介绍焓―熵图的基本特点 温熵图中以焓为纵坐标、以熵为横坐标,上下界线分别为饱和水和饱和蒸汽线,交点为临界点,饱和水的左侧区域为过冷水区,饱和蒸汽的右侧区域为过热蒸汽区,饱和水和饱和蒸汽线下方为湿蒸汽区域。此外,图中还包括等干度线簇、等压线簇、等容线簇和等温线簇等。在湿蒸汽区,等压线与等温线重合,是一组斜率不同的直线;在过热蒸汽区,等压线与等温线不同,等压线为向上倾斜的曲线,而等温线是弯曲然后趋于平坦;等容线比等压线在向上延伸方向上更抖些,为方便区别,实用的h-s图中,定容线常用红线或虚线标出。然后,让每位学生画出焓―熵图的草图,并标出上下界线、临界点、三种状态及等干度线簇、等容线簇、等压线簇和等温线簇等,使学生掌握焓熵图的基本要点。

结合应用实例练习查图方法和步骤 学生掌握焓熵图的基本曲线及分布规律后,结合实例用焓熵图查水蒸气的参数,并进一步在图中分析水蒸气的基本热力过程。例如:给出水的温度和焓值,查图求熵值;给出压力和温度,求焓值和熵值等。这就使学生能熟练通过查焓―熵图中定温线和定焓线或者定压线和定温线,直接确定水的状态和各参数的值。

同时,为了加深对比,之后又用同样的条件,查饱和水和饱和水蒸气热力性质表和未饱和水与过热蒸汽热力性质表进行求解,使学生通过查图和表,明显感觉到水和水蒸气的热力性质表的缺c:数据不连续,需要用内插法计算近似值,使得查表工作十分烦琐。而水和水蒸气的热力性质图就克服了此缺点,查取方便,热力过程分析更直观、清晰和方便,但缺点是需要个体肉眼观察,所以数值误差较大。水和水蒸气的热力性质表的优点是数值的准确度较高。

通过应用实例,使学生深刻认识到水和水蒸气的热力性质图表的优缺点和使用场合,在工程应用容许范围内,优先选用的是水和水蒸气的热力性质图,让学生在具体的案例中熟悉并牢固掌握本课程的理论知识要点,培养学生活学活用热工学的基本理论的能力。

4 结束语

教学没有固定的模式,一个教师不仅要有渊博的知识、丰富的实践经验,还要积极思考,探讨能让学生容易接受的教学方法。教师除了从事教学以外,一定要参加科研,把握相关的学科知识前沿以丰富自己的学识,提高自己的业务水平,这是搞好教学工作的重要前提。教学中注意采用多种合理教学手段和方法,在课堂上做到深入浅出,激发学生的学习兴趣和热情,使学生加深对课程的内容理解。同时应广泛借鉴国内外先进的教学经验,勇于尝试改革、积累经验,培养学生工程实践和创新意识,这是教学工作者值得不断探索的努力方向。