重金属污染的影响模板(10篇)

时间:2024-01-26 14:53:03

导言:作为写作爱好者,不可错过为您精心挑选的10篇重金属污染的影响,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

重金属污染的影响

篇1

中图分类号:TE08文献标识码: A

重金属污染时指由重金属及其化合物引起的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害。

重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前中国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。对人体毒害最大的重金属有5种:铅、汞、砷、镉、铭。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。如日本的水俣病,就是因为烧碱制造工业排放的废水中含有汞,在经生物作用变成有机汞后造成的;又如痛痛病,是由炼锌工业和镉电镀工业所排放的镉所致。汽车尾气排放的铅经大气扩散等过程进入环境中,造成目前地表铅的浓度已有显著提高,致使近代人体内铅的吸收量比原始人增加了约100倍,损害了人体健康。

重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2010 年4月至6月,浙江省政协组织成立调研组,通过召集省有关单位负责人座谈,向社会公众征集意见建议,并赴杭州、台州及所辖的路桥、温岭等部分县(市、区)进行实地调研,全面了解食品药品安全情况。调研结果显示,在浙北、浙中、浙东沿海三个区域中,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。工业“三废”及城市生活污染物排放,引起重金属污染农田。调研组有关负责人表示,这些城郊重金属对土壤的污染,主要是近十多年造成的,主要是人为的污染,这会直接威胁到百姓的生命健康。2011年3月中旬,在浙江台州市路桥区峰江街道,一座建在居民区中央的“台州市速起蓄电池有限公司”(以下简称“速起蓄电池公司”)被曝出其引起的铅污染已致使当地168名村民血铅超标。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的治理。

篇2

中图分类号 X52 文献标识码 A 文章编号 1007-5739(2013)15-0247-01

重金属是指比重在4.0以上(大概60种)或比重在5.0以上(45种)的元素,而对于农田土壤中重金属污染,主要是指具有生物毒性且对农作物易造成污染的铅、镉、铜、锌、镍、铬等重金属[1-5]。一般情况下,重金属是以环境可适的浓度广泛分布于自然界中。但随着社会的发展以及人类活动的加剧,包括对采矿、废气排放、污水灌溉和使用重金属制品等活动的日益增多,造成铅、汞、镉、钴等生物毒性显著的重金属元素及其化合物进入大气、水、土壤中,随着时间的推移,在生物体中存留、积累和迁移,从而引起更严重的污染问题,对环境造成不可逆的危害[6-9]。

1 农作物污染来源

1.1 农业生产活动中农药及化肥的使用

农药及化肥的使用保证了农作物的产量,但与此同时也带来了环境污染的负面效果。其中由于农田长期、广泛地使用农药,已异化了害虫、草的耐药性,进而促使农药的药量不断加大,造成恶性循环,对环境、农作物以及人类都造成了更深层次的伤害。与此同时,为了追求更高的农作物产量,大量并且更加频繁地使用化肥,造成了重金属在农作物体内的富集,使得重金属含量不断攀升。如汞主要来自含汞的废水和不恰当的灌溉,镉、铅污染主要来自农用塑料薄膜中的热稳定剂等,铜、锌污染主要来源于有机肥、化肥和农药的使用。马耀华等人通过对上海地区菜园土的研究发现:经过一个种植期的施肥后,农作物体内的镉含量从0.10 mg/kg攀升至0.32 mg/kg。

1.2 工业污染

工业污染对于农作物的危害形式则体现在2个方面:一是工业、矿业废水以及弃渣的排放。工业污水和工业弃渣是重金属的重要载体。尤其是对于一些金属冶炼厂等高污染企业,废渣、废水中的重金属含量极高,若未经处理就随意堆放或直接混入土壤则会对生态环境造成非常大的危害。二是工矿企业排放的烟尘上吸附着大量的重金属,导致重金属以气溶胶的形式进入大气,经过大气的降水等形式的干湿沉降进入到土壤中去,从而对农作物造成污染。因此,在农业土壤中,工矿企业周围的土壤中重金属含量一般会较其他地区高很多,因而污染也严重很多。

1.3 大气污染

李其林等人通过研究表明:铅、镉、汞、砷与大气污染有直接的关系。如铅可来源于汽车含铅汽油燃烧后排放的尾气、轮胎中添加的锌以及发动机及车体零部件中的铜经过磨损后进入环境中等。Viard et al发现造成公路两侧表层土壤和植物发生重金属污染的主要途径是机动车释放的重金属微粒在近路侧发生沉降。Garcia et al通过对公路两侧土壤和植物中铅、镉、锌、铜等含量的测定,认为道路两侧重金属污染的主要来源是机动车,并提出在公路长期运营前提下路侧土壤会发生显著的重金属累积等观点。Nabul et al通过研究认定高速公路两侧土壤和叶菜类蔬菜中存在重金属累积和污染。刘廷良等研究发现,路两旁的土壤中锌的重要来源即为汽车轮胎添加剂中的锌。目前,我国城市化进程迅速推进,机动车等交通工具数量激增,因此其排放至大气中的污染物质也日益增加,从而导致重金属在道路附近的农业土壤中累积。生物毒性显著的重金属元素如铅、镉等,随着公路运营过程而长期存在,对人体健康安全存在着潜在影响。

2 重金属对农作物的危害机理

土壤酶是土壤中一种生物化学反应的生物催化剂。在多数情况下,土壤酶是以复合体的形式吸附在土壤胶体颗粒表面,只有部分会溶解于土壤的溶液中。在土壤中的各种生物化学反应过程都有土壤酶参加,如动植物残体和微生物残体的分解过程,腐殖质的分解及其合成有机化合物的水解与转化过程,还有某些无机化合物的还原、氧化反应等等。土壤酶的活性能够反映出某一种土壤在特定状况下生物化学过程的相对强度。因此,测定相应酶的活性,可以间接了解某种物质在土壤中的转化情况。

依据相关研究可知,土壤酶活性的大小与重金属的污染程度存在一定的相关性。土壤中的许多酶大部分是由微生物分泌的,并且它们和微生物共同参与土壤中物质与能量的循环。Kandeler et al通过对土壤中13种酶的研究发现,与土壤中碳循环有关的酶受到重金属的抑制较小,而与土壤氮、磷、硫循环有关的酶受到重金属抑制作用比较明显。同时,Kuperman et al的研究成果指出:随着重金属浓度的增加,几乎所有的土壤酶活性明显降低了10~50倍。生物酶一般为蛋白质,而重金属可与蛋白质发生络合反应,使得蛋白质变性沉淀,因而酶也就失去活性。有研究者将在金属冶炼厂及化工厂等高污染企业附近的受到重金属污染的土壤与未被污染的土壤相比,土壤中脱氢酶、蛋白酶、碱性磷酸酶及硫酸酯酶的活性均受到了明显的抑制。

3 重金属对农作物危害的表现形式

对于重金属元素含量超标的地区则会引起植物生理功能的紊乱、营养不均衡,最终使植物枯萎甚至死亡。此外,汞、砷能够有效地减弱和抑制土壤中硝化、氨化细菌活动,影响氮元素的供应。重金属在农田土壤系统中的污染过程具有隐蔽性、长期性和不可逆性的特点,不容易被人所发现,这样会使危害更加严重,农田重金属污染不仅会使土壤中的肥力下降,导致农作物的产量和质量减少,而且会通过食物链最终危害人类的健康。重金属还会对生殖障碍造成影响,影响胚胎的正常发育,威胁儿童和成人的身体健康等。

4 应对措施

4.1 化学方法

治理重金属污染的化学方法可归纳为2种。一是土壤解毒剂的研发与应用。土壤解毒剂是一种以凝灰岩为主要材料的合成硅,它除含有钙和硅这2种元素之外,还含有少量的铁、锰、镁及钾等,可对土壤中残留的农药进行无害化处理,同时农药在分解后的产物又能促进细菌的繁殖,对被重金属污染的土壤起到一个轻度进化的作用。二是柠檬酸的研制。美国能源部下属的Brookhaven National Laboratory的科学家发明了一种柠檬酸。该种酸能够有效地从土壤和垃圾中分离出生物毒性显著的重金属污染物,并随之将其转变成为有具有可利用价值的物质。该种新方法几乎可以清除土壤和垃圾中所有的具有显著生物毒性的重金属镉、铅、锌、铜以及放射性物质比如铀、铂、钻、艳、锶等。经过该种柠檬酸的处理后,土壤中具显著生物毒性的重金属可大大减少。

4.2 生物技术

利用生物方法净化土壤这一农作物的生长载体中的复合污染,在现如今对于土壤污染防治与修复,生物修复技术得到广泛的推崇。日本往原公司研制出利用生物技术迅速净化土壤复合污染的技木,即在污染的土壤中混入肥料和微量的无害酸,从而使受到污染而失去活性的土壤恢复固有的呼吸作用。然后通过迅速消耗土壤中的氧而形成强烈的还原效应,达到治理污染修复农作物生长环境的目的。

5 参考文献

[1] 环境保护部.GB15618-2008土壤环境质量标准[S].北京:中国标准出版社,2008.

[2] SANKAM,STRNADM,VONDRA J,et al.Sources of Soil and Plant Contamination in an Urban Environmentand Possible As sessment Me-thods[J].International Journal of Environmental Analytical Chemistry,1995(59):327-343.

[3] 徐庆.上海郊区农业地土壤重金属污染研究与溯源[D].上海:东华大学,2008.

[4] 李军辉,卢瑛,尹伟,等.佛山市某工业区周边蔬菜重金属富集特征的研究[J].华南农业大学学报,2008,29(4):17-20.

[5] NICHOLSON F A,CHAMBERS B J,JRWILLIAMS.Heavy Metals Con-tents if Livestock Feeds and Animal Manures in England and Wales[J].Bioresource Technology,1999(70):23-31.

[6] 杨国义,张天彬,万洪富,等.广东省典型区域农业土壤中重金属污染空间差异及原因分析[J].土壤,2007,39(3):387-392.

篇3

一、广西矿业的重金属污染现状

广西金属矿产禀赋性差,含矿多,富矿少,单一矿少,复杂难处理共伴生矿多,资源提取难度大。加之多为山区且岩溶发育,工程、水位地质复杂,矿区的开采活动极易造成重金属污染。目前,广西省已被列入《重金属污染综合防治“十二五”规划》中的重点治理省区,全区内主要的污染类型有镉、铬、砷、汞和铅污染五种,其中镉污染集中在广西的中西部及北部,高镉含量分布面积广;铬和砷污染主要分布在中部偏西区域;高汞集中在西北部;铅污染从全区范围内看,基本在质量标准以下。

二、广西重金属污染对矿业可持续发展的影响

(一)广西矿产资源形势严峻

1.矿产资源粗放利用,浪费严重。广西人口众多,人均资源占有量仅为全国的18%,明显不足。而现有优势资源如锡、锑、铅、锌等的采选冶综合回收率仅为30%左右,比国际水平低10至15个百分点。2.老矿山环境问题历史欠账多。许多老矿山未预留生态恢复治理资金,不少地方政府未及时有效地处理污染,履行好矿山环境管理职责。此外,矿山企业也未严格依照“谁开发,谁保护,谁破坏,谁恢复,谁引发,谁治理”的原则①,落实好责任。3.整治矿业开发秩序任务艰巨。随着广西工业化、城镇化进程加快,矿产资源供求矛盾突出,经济发展过度依赖矿产资源,矿产品价格居高不下。在追求短期经济利益的驱使下,矿企或个人非法开采矿产资源、破坏浪费以及重开发轻保护等现象普遍存在。

矿产资源不可再生,是矿业可持续发展的物质基础。而重金属污染日益严重,又反映出节约集约利用矿产资源的长效机制尚未形成,政府监控管理不到位等问题。因此,要使矿业可持续发展,必须使矿产资源可持续发展,解决好矿区内重金属污染问题。

(二)重金属造成的环境污染不容忽视

矿产资源在采选冶过程中会产生大量含重金属元素的废弃物,乱排乱放极易对矿区及周围的生态系统造成破坏。据资料,生成广西地区1995-2007年环境污染指数的变化趋势图②,见图一。

(1)对土地资源破坏大。不少矿山随意丢弃尾矿矿渣,挤占土地,破坏植被。重金属进入土壤环境后,易经食物链摄入人体,威胁健康。广西河池,南丹等地的废弃砷渣,导致矿区周围农作物的含砷量超过国家标准几百倍。且土壤重金属污染具有隐蔽性、滞后性和累积性,一旦污染形成,整治短期不能见效。目前,广西土地污染带职业病和重症疾病正呈高发、扩大态势。(2)水体污染严重。02年污染指数急升,易受突发事件及自然灾害影响。此外生产废水任意排放,也会造成区域性、流域性的重金属污染。据专家测算,河池市刁江沿岸选矿厂过去每天排入江中有毒废水3.5万吨,有毒废渣1200多吨,每年向刁江排放砷1770吨,占全国砷排放量的94.4%③。(3)矿山开采造成的大气污染甚为严重。这些气体会在低空造成空气中的有害物质严重超标,在中空对流层形成大范围的酸雨,在高空形成地球的温室效应。另外,还可通过大气沉降或大气降水落在地表,造成土壤污染。

广西矿区的总污染物排放基本得到控制。但重金属污染的毒副作用呈现不断积累、爆发的态势,当今生态环境仍在持续恶化,总体形势不容乐观。

(三)重金属污染抑制矿业经济发展

矿产资源的开采供给能给矿区经济的飞速发展以有力支撑。但同时,资源带动矿山经济发展的单一模式会造成发展瓶颈。特别是重金属污染的恶果,会给当地的农林牧渔行业造成沉重的打击,制约矿山可持续发展。

1.经济负担沉重。矿产资源对矿业经济的发展是双刃剑,一旦造成严重的重金属污染事故,整治十分困难。目前的修复方法在实施过程易受局限性与可行性影响,且恢复治理资金庞大。如环江县,全县80%以上的工业产值,60%以上的财政收入都来自矿产资源,01年万亩土地遭砷污染,利用“实惠”的蜈蚣草修复,至少也需几千万元。2.破坏其他经济形式。重金属污染会通过食物链的循环,产生乘数效应,危害激增。可以想象,当水质恶劣、动植物不能食用、农田荒漠化成不毛之地,农林牧渔行业瘫痪之时,更不用说发展矿业经济了,这样的后果无疑是可怕的。

(四)矿业重金属污染影响社会维和智力维的可持续性

重金属污染还会带来一系列社会问题,如居民生活质量差及生存的安全感缺乏保障等。广西2011年与2005年相比,重金属污染造成的病变人数近4倍④,近年龙江河镉污染、阳朔县思的村“镉米”、以及“癌症村”等健康危机事件更是敲响了警钟,如此恶性发展将造成社会的不稳定。由于矿产资源开发的有限性,重金属污染对矿山经济发展的抑制,矿区收益也会遭受不同程度的损失。而矿业的技术更新、引进及推广离不开资金的充足支持,人才队伍的建设供应。可见,矿业可持续发展系统的5要素相互影响关联,牵一发而动全身,重金属污染更是制约发展的一大隐患。矿山环境的保护必须防治结合,从源头抓起,以免矿业陷入发展的死圈。

三、广西矿业可持续发展的对策研究

(一)重视矿山法制管理与政策激励

提高矿权市场准入门槛,使新建矿企每一步都遵循法律法规和可持续发展原则。同时,加强对已开采矿山的环境保护监管力度,云南曲靖发生的铬渣非法转移倾倒事件更是暴露出部分矿企责任严重缺位,监管部门监管失察等问题。环保部门必须建立危险废物污染防治情况日常检查制度,并从重从快处罚违规企业。地方政府也需解决好老化矿山的环境遗留问题。

我国可充分吸收国际经验,施行环境税、矿地恢复保证金等税收制度规范矿业生产,利用对矿企的耗竭补贴,鼓励经营者积极勘探新资源或开发可替代资源,并通过资源税将企业的外部环境成本内部化,完善我国环境税收体系的建设,从而更好地防治重金属污染。

(二)健全体系,提高信息透明度

各级政府需逐步制定重金属污染防治体系、事故应急体系和环境与健康风险评估体系,加强项目管理和督促检查,有序推进防控、整治各项工作。此外政府及矿企还需及时、公正、准确、客观地向社会公布环境安全信息,提高公众的环境参与权、知情权,增加信息的透明度,使全社会一同督促与关注矿业的可持续发展,减少重金属污染的发生。

(三)加大科技投入,完整产业链

矿冶工业是国民经济发展的支柱产业。要使资源利用最大化,成本投入最小化,杜绝环境污染,必须加大先进科学技术的研发与投入力度,优化勘探、开采、选冶炼一系列环节,实现清洁生产、减少有毒废弃物的产生。并通过技术升级和改造,加强研发工作,提高产品的附加值,建设高新产业群带,建立从资源提取到深加工产品开发的完整产业链,实现从资源消耗型向低耗、高效益型的转变。

(四)构建矿冶工业生态系统

矿冶工业生态系统遵循循环经济的生产理念,通过废物交换、循环利用、清洁生产等手段,形成企业共生和代谢的生态网络,促进不同企业之间横向耦合和资源共享,物质、能量的多级利用、高效产出与持续利用。一方面从根源上减少废料产出,实现资源节约型、环境友好型生产,提高生产效率。另一方面将废料再次资源化,将矿山废料作为内部资源被重新循环利用⑤,获取最大的经济效益。它有着传统矿冶生产模式无法比拟的优越性,能更大程度地解决矿山环境污染问题,百色铝生态工业园及一些重点循环工业试点示范工程取得的成就很好地说明了这一点,是矿业实现可持续发展的有效途径。

参考文献:

[1]张勇.陕西省矿山生态环境现状与恢复治理对策[J].资源与产业.2009(04):99-103.

[2]中国科学院可持续发展战略研究.2010中国可持续发展战略报告---绿色发展与创新[M].北京:科学出版社,337-339.

[3]广西有色金属矿产资源综合利用问题研究[J].广西壮族自治区人民政府发展研究中心简报,2007(2).

篇4

中图分类号:Q945 文献标识码:A 文章编号:0439-8114(2016)19-4952-04

DOI:10.14088/ki.issn0439-8114.2016.19.013

Abstract:Nourishing Grass 1 is a new type of lawn grass bred in 2012. The method of pot experiment,effects of heavy metal cadmium in soil on physiological and biochemical indexes of Nourishing Grass 1 were studied. The results showed that,with the increase of the concentration of heavy metal cadmium solution,free proline content and chlorophyll content of Nourishing Grass 1 were increased first and then decreased,but the vitality of root system was gradually decreased,cell membrane permeability was gradually increased.

Key words:Nourishing Grass 1;cadmium stress;physiological and biochemical indexes

润草1号是一种新型的草坪草品种,于2012年由江苏农林职业技术学院培育而成。润草1号属于低矮型草种,坪用性状优良。润草1号具有较强的耐荫、耐热性能,抗倒伏和抗病能力强,适宜南方地区露地栽培,是中国草坪绿化常用的草坪植物之一,主要用于观赏草坪的建植,对于降低环境污染、城市绿化及美化起着非常重要的作用。

重金属镉不是植物生长所必需的营养元素,对环境造成的污染和危害大。越来越多的重金属镉,随着工业和交通不断地发展,被释放到了人们赖以生存的环境中,并大量地积累在土壤中。土壤被重金属镉污染后,不仅会造成土壤的质量下降、使土壤丧失正常的功能,还会毒害生长的植物,进而给人类身体健康带来危害。在南方地区的土壤中,重金属镉是最常见的污染元素,其含量在土壤中已超过正常值的3~4倍[1]。土壤中重金属镉污染可以利用草坪来修复,不仅净化了土壤,而且对人类的生产、生活条件和环境条件都产生了有益的影响。本试验通过研究土壤中不同浓度重金属镉对润草1号生理生化指标的影响,以期为重金属污染地区的土壤中重金属含量标准的制定、草坪绿地建设规划提供有利的参考。

1 材料与方法

1.1 供试材料

试验所用的材料为润草1号,由江苏农林职业技术学院提供。盆栽土壤取自江苏农林职业技术学院花房土质较好的表层土壤,测得pH为7.2,土壤重金属镉含量为0.056 g/kg。重金属镉添加形式为3CdSO4・8H2O,分析纯。

1.2 试验设计

于2014年9月15日,将供试土壤充分粉碎后过0.5 cm筛,再将作基肥的5%草炭按1∶3的体积比拌入供试土壤中,充分混合。将混合后的土壤称重5.5 kg,分别装入20只塑料花盆中,其中所用花盆的上口直径、下口直径和高分别为25.8、16.3、22.5 cm。试验时以不使用重金属镉的处理作为对照,重金属镉的胁迫浓度分别设定为5、20、50、100 mg/kg(不含背景值,重金属镉的胁迫浓度以Cd2+计),每次处理重复4次。

按照设定的重金属镉的胁迫浓度,在每只花盆中添加4种不同浓度的重金属镉溶液各1 000 mL,每天喷施清水100 mL。平衡14 d后,播种用蒸馏水浸泡24 h的润草1号种子,播种量为每盆中300粒,保持土壤含水量为田间最大持水量的70%。种植1个月后,分别取样分析。

1.3 测定方法

生理生化指标的测定按照张治安[2]的方法,叶绿素采用95%乙醇提取,UV-2100型紫外/可见分光光度计测定;根系活力测定采用氯化三苯基四氮唑(TTC)法;细胞膜透性测定采用电导法,使用DDS-12AW型电导仪测定;游离脯氨酸采用磺基水杨酸提取法测定。

2 结果与分析

2.1 重金属镉胁迫对根系活力的影响

根系不仅是植物吸收水分、矿物质营养的主要器官,也是合成氨基酸、激素等物质的重要部位,同时合成并输送感受外界刺激的信息物质。根系的生长状况和活力对于地上部的营养、生长和最终产量的形成至关重要。根系活力是指植物根系自身具有的合成、吸收、还原及氧化能力等,可以用来衡量植物根系长势优劣和标示植物生长情况的重要生理指标。根系活力大小反映了植物根系代谢强度的大小。如果根系活力越大,则表明根系组织的代谢能力越强,根系长得越粗壮,这对整个植株的生长发育是十分有利的[3]。从图1可以看出,不同浓度重金属镉处理后,润草1号的根系活力低于对照组,随着重金属镉浓度的逐浙增大,根系活力表现为逐渐降低。当重金属镉浓度小于5 mg/kg时,根系活力是与对照组相近的,这说明该浓度对润草1号的影响很小。重金属镉胁迫使根系活力降低,可能是由于较强的呼吸代谢作用导致了润草1号过多地消耗了能量,进而抑制了润草1号的生长发育。

2.2 重金属镉胁迫对细胞膜透性的影响

生物体内的细胞膜是一种具有选择性的半透膜,对细胞内外物质的运输和交换起着重要的调节和控制作用。外界环境对细胞产生胁迫时最敏感的部位是细胞膜,细胞膜透性的改变或丧失都是因为细胞受到各种逆境伤害引起的。因此,在植物抗逆性研究中常把细胞膜透性作为重要的生理指标。从表1可以看出,不同浓度重金属镉处理后,润草1号的电导率都比对照有所增加。在5、20 mg/kg时细胞膜透性变化较小,对润草1号影响较小。当重金属镉浓度达到50 mg/kg时,细胞膜透性明显增大。由伤害率可以看出,随着重金属镉浓度增大,伤害率逐渐增加。重金属镉浓度为100 mg/kg时,对润草1号的伤害率最大,达到29.56%,对润草1号影响明显。

2.3 重金属镉胁迫对脯氨酸含量的影响

脯氨酸是一种水溶性最大的氨基酸,也是一种小分子渗透物质。脯氨酸可以调节植物细胞的渗透平衡,提高植物细胞结构的稳定性[4],并能有效地阻止植物细胞内氧自由基的产生,以缓解或修复逆境对其造成的伤害。因此,游离脯氨酸的含量可以作为润草1号对重金属镉胁迫的一个重要生理生化指标。从图2可以看出,不同浓度重金属镉处理后,润草1号的游离脯氨酸含量随重金属镉浓度增大呈先升高后降低的变化。重金属镉浓度为5 mg/kg时升高较小,对润草1号影响很小。重金属镉浓度为50 mg/kg时达到最大值,是对照组的3.02倍,因此对润草1号影响明显。

2.4 重金属镉胁迫对叶绿素含量的影响

植物体内的叶绿素是植物进行光合作用的重要物质基础,叶绿素含量和叶绿素a/b是衡量植物叶片长势如何的重要指标[4]。在逆境胁迫下,植物体内叶绿素含量的多少说明了植物抗逆境胁迫能力的大小,因此,叶绿素含量可以作为植物抗逆境胁迫程度的重要生理指标[5]。不同浓度的重金属镉处理后,润草1号叶片内所含的光合色素含量发生了明显变化。从表2中可以看出,润草1号的叶片内所含的叶绿素总量、叶绿素a/b、叶绿素a、叶绿素b以及类胡罗卜素均随着重金属镉浓度的增加而呈先升高后降低的变化趋势,且当浓度为20 mg/kg 时均达到了最大值。类胡萝卜素含量的增幅分别为各处理后对照组的13.79%、24.14%、-8.62%和 -17.24%,叶绿素总量的增幅分别为各处理后对照组的2.29%、11.43%、-3.71%和-10.29%,这说明不同浓度的重金属镉处理后,润草1号的适应机理存在显著差异,造成润草1号的类胡萝卜素含量和叶绿素总量的不同。

3 小结与讨论

植物根系是活跃的吸收器官和合成器官。当重金属污染土壤时,首先是植物的根系受到伤害,其主要表现为植物主动吸收能力的降低和根系活力的降低。本试验中,润草1号的根系活力随着重金属镉处理浓度的增大而逐渐下降,且重金属镉处理浓度越高根系活力下降程度越大。原因可能是在重金属镉胁迫下,润草1号自身抗氧化系统酶不能将产生的氧自由基及时清除掉,根系代谢中的琥珀酸脱氢酶就会受到多余的氧自由基的伤害,从而使根系活力下降[6]。此时润草1号要缓解镉胁迫对其造成的伤害,就要消耗大量的代谢产物,这样就会影响润草1号的生长发育。在试验过程中还发现,润草1号侧根的生成速率是随着重金属镉处理浓度的增大而减小,这恰好与润草1号根系生物量随浓度变化的情况相一致。

细胞膜系统是植物细胞和外界环境相联系的界面,也是植物细胞和外界环境进行物质交换和信息传递的屏障。植物细胞具有正常的生理功能是以细胞膜具有较高的稳定性为基础的[7]。在重金属镉胁迫下,润草1号的细胞膜受到了破坏,使其通透性增加。细胞膜的损伤不但会导致细胞内一系列生理生化过程的紊乱,而且会导致细胞膜上结合酶和细胞内酶失去平衡,使细胞内大量的可溶性物质外渗,进而造成润草1号的死亡[8]。在重金属镉的胁迫下,随着重金属镉处理浓度的增大,润草1号叶片组织外渗液的电导率逐渐升高,而且呈明显的正相关。究其原因可能是重金属镉进入润草1号叶片组织后,与细胞膜的蛋白质分子中的-SH或细胞膜的磷脂分子层中的磷脂类物质发生了化学反应,造成细胞膜蛋白和磷脂分子层的结构发生改变,进而使细胞膜的结构也发生了改变,这样细胞膜系统受到破坏,细胞膜的通透性增大,从而使细胞内的盐类或有机物出现不同程度的渗出,最终导致电导率的增大[9]。

植物体内的脯氨酸是重要的渗透调节物质,其至作用是维持植物细胞的渗透压,当外界不良环境对植物胁迫时能起到很好的指示作用[10]。润草1号叶片内游离脯氨酸含量,随着重金属镉处理浓度的增加而增大,当胁迫浓度为50 mg/kg时达到最大值,这是受到重金属镉胁迫时,润草1号表现出的正常生理反应。当受到重金属镉胁迫时,润草1号叶片组织内物质的代谢路径会发生相应的改变,使脯氨酸的氧化过程受到抑制,从而减慢蛋白质的合成速度,造成细胞内脯氨酸含量的升高。细胞内存在的大量脯氨酸能维持润草1号叶片内的水分平衡,保持细胞内原生质与外界环境的渗透平衡,增大细胞内各种蛋白质的溶解性,也使各种生物大分子的结构与稳定性受到保护[4]。

绿色植物进行光合作用的主要色素是叶绿素,植物光合作用的强弱直接受到叶绿素含量的影响,植物同化物质能力的大小可以通过叶绿素含量的多少来反映。叶绿素受到外界环境影响时其含量发生变化,叶绿素含量的变化又会引起植物光合性能的改变,甚至影响植物正常的新陈代谢[11]。本试验中,在低浓度重金属镉胁迫下,润草1号叶片中叶绿素的含量缓慢地增大,这是润草1号叶片中叶绿素合成系统主动表现出的应激性反应。当重金属镉胁迫浓度大于20 mg/kg时,润草1号叶片中叶绿素含量开始明显地减小,其原因可能是过量重金属镉破坏了润草1号叶片的细胞膜,使细胞膜受到损伤而透性增大,从而造成叶绿素分子大量地渗漏出来;也可能是催化叶绿素合成所需要的3种蛋白酶(胆色素原脱氨酶、原叶绿素脂还原酶和氨基乙酰丙酸合成酶)与重金属镉结合,使蛋白酶的结构发生了改变,这样就降低了蛋白酶的活性,从而影响了叶绿素的合成;还可能是重金属镉破坏了润草1号叶片细胞中线粒体的结构,导致叶绿素降解而使其含量降低,抑制了光合作用,使润草1号代谢产生紊乱,造成润草1号的抗逆性降低[11]。

需要强调的是,衡量草坪植物应用价值的最重要指标是根系的生长与叶片的绿色度[12],而对润草1号根系生长起显著抑制作用的、对润草1号的建植及对污染地区润草1号的生产起重要限制作用的都是重金属镉。因此,在实际应用过程中,为了使润草1号的根系生长不受到影响,应该严格控制土壤中重金属镉的浓度小于20 mg/kg。由于重金属镉不是润草1号生长发育所必需的营养元素,且具有较大的毒性,所以更应该严格控制重金属镉的使用浓度。

参考文献:

[1] 廖自基.环境中微量重金属的污染危害与迁移转化[M].北京:北京科学技术出版社,1989.

[2] 张治安,陈展宇.植物生理学实验技术[M].长春:吉林大学出版社,2008.

[3] 吴泽富,周运超,张 静,等.粗壮女贞(苦丁茶)生理特性对pH胁迫的响应[J].贵州农业科学,2012,40(1):47-50.

[4] 郭艳丽,台培东,韩艳萍,等.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296.

[5] 唐 迪,徐晓燕,李树炎,等.重金属镉对茶树生理特性的影响[J].湖北农业科学,2013,52(12):2839-2843.

[6] 努扎艾提・艾比布,刘云国,宋华晓,等.重金属Zn、Cu对香根草生理生化指标的影响及其积累特性研究[J].农业环境科学学报,2010,29(1):54-59.

[7] 畅世勇,王 方,晰建春.重金属对值物的毒害及值物的耐性机制[J].环境科学报,2004(1):71-72.

[8] 刘万玲.重金属污染及其对植物生长发育的影响[J].安徽农业科学,2006,34(16):4026-4027,4030.

[9] 刘俊祥,孙振元,韩 蕾,等.草坪草对重金属胁迫响应的研究现状[J].中国农学通报,2009,25(13):142-145.

篇5

引言:污染问题是各国经济发展中都要面临的难题。近些年,随着我国工业化进程的加快,使得土壤重金属污染日益加剧,许多耕地因重金属污染受到破坏,这使得我国耕地面积大幅度减少。想要使农作物正常生长就要保障土壤正常状态,土壤影响着农产品质量,若土壤受到重金属污染,不仅农产品会受到污染,这些被污染的农产品更会影响人们身体健康,土壤重金属污染治理具有重要意义。

一、重金属污染的概念

重金属是指比重大于5的金属,重金属在人体中累积达到一定程度,会造成慢性中毒。对环境造成污染的重金属包括:汞、镉、铅、铬以及类金属砷等生物毒性显著的重元素。重金属不能被生物降解,被重金属污染的食物进入人体后,重金属在体内沉淀,便很难排除体外,还会与体内蛋白质及酶发生强烈作用,使之失去活性,重金属对人体危害非常大[1]。铬会造成四肢麻木,精神异常;锡进入身体凝结成块后,甚至会致人死亡;钒会对人的内脏造成破坏。采矿、废弃排放、工业排放、污水排放等会造成重金属污染,导致环境质量恶化。日本就曾经因汞污染引发水俣病,造成许多婴儿中枢神经造成破坏。近些年,随着我国工业化进程的不断加快,重金属污染问题日益严重,已开始严重影响人们身体健康,全国各地都因重金属污染出现了癌症村,我国必须对重金属污染提高重视。

二、土壤重金属污染

我国经济发展中面临着严重的重金属污染,其中土壤重金属污染尤为突出,几乎全国各地多处耕地存在重金属污染问题,土壤重金属污染已成为“公害”[2]。目前我国土壤重金属污染主要污染物有:汞、镉、铅、铬、砷等生物毒性重金属元素,以及有毒元素锌、铜、镍等。这些主要重金属污染元素多来自:农药、废水、污泥和大气沉降等方面。如,砷就经常被作为除草剂、杀虫剂等农药,大量农药使用后便很容易造成砷污染;汞则来自含汞废水。汞、砷都能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。土壤中镉含量超标时,作物叶绿素结构将受到破坏,吸收水、阳光的能力大幅度下降,农作物生长、发育、产量、品质都将受到影响。土壤中铅超标时,植物光合能力、氧化能力、代谢强度都将被降低,作物成活率会大大被降低。重金属有着移动性差、滞留时间长、不能被微生物降解等特性。农作物生长在被污染的土壤中被人类食用,这些重金属将直接作用于人体,在身体里沉淀。如,镉污染土壤环境中的作物被人类食用后,将引发高血压、肾功能失调、心脑血管等疾病。汞则会沉入肝脏,破坏神经系统和大脑[3]。土壤重金属污染已严重威胁了人类生存与发展,加强土壤重金属土壤治理势在必行。

三、土壤重金属污染治理措施

通过前文分析,不难看出土壤重金属污染的危害性,土壤重金属污染已成为了制约我国农业发展的主要原因。我国必须提高对土壤重金属污染的重视,加强治理,采用相应治理措施。下面通过几点来土壤重金属治理措施:

(一)化学治理措施

化学治理措施见效快,简单易行,操作简单,效果明显,但若操作不当极有可能造成化学污染。化学治理措施是通过向土壤中投入化学改良剂的方式,来达到降低土壤中重金属含量的目的。不同化学改良剂,效果有所不同,针对污染情况也不同。其原理是将重金属吸附、氧化还原。常用化学改良剂有:磷酸盐、硅酸盐、碳酸钙、沸石等。在实施中为了避免对土壤造成二次污染,一定要控制好改良剂用量。

(二)生物治理措施

生物治理措施易于操作,效果好,且不会造成二次污染,这种方式是通过生物削弱、净化土壤,来降低土壤重金属含量。例如,利用自然界原有植物或人工培育植物,通过植物吸收方式解决重金属污染。目前已经发现能够吸收重金属的植物多达七百余种。这些重金属元素被植物吸收后,将被转化为气态物质,挥发到空气中;除植物外,微生物也能够降低土壤重金属含量,改善土壤微环境。微生物治理技术主要是应用:动胶菌、蓝细菌、藻菌、原菌、硫酸菌等,通过胞外聚合物与重金属离子结合成络合物,达到降低重金属含量和重金属毒性的目的。

(三)农业治理措施

农业治理指的是通过改变耕作管理制度的方式,降低土壤重金属污染。该措施实施中要因地制宜,科学结合当地农业发展实际情况。农业治理措施主要有:控制土壤水分调节土壤氧化还原电位,降低重金属污染。另外,还可通过肥料选择和控制的方式,减少化肥应用,增施有机肥,降低化肥对土壤造成的重金属污染。此外,种作物选择时应选择具有抗污染的植物,避免重金属进入食物链。镉污染土壤环境中可种芝麻,实践证明种植五年芝麻后,土壤镉含量降低百分之三十四左右,不同植物对改善不同污染有着很好的效果,做好作物选择至关重要。

四、结束语

农业是国家经济发展建设的基础,而农业的基础是土壤,离开土壤农业发展无从谈起。土壤重金属污染现如今已严重影响到了农业发展,威胁到了人们身体健康,加强土壤重金属治理势在必行。

参考文献:

篇6

0引言

所谓土壤重金属污染是指由于人类活动,使重金属含量明显高于原有含量,并造成环境质量恶化的现象。面对土壤重金属污染的加剧,迫切需要监测和防治重金属污染的有效措施。近几年兴起的微生物修复,引起人们越来越多的关注。

1重金属对土壤微生物生物量的影响

土壤微生物生物量在一定程度上能代表参与调控土壤中能量和养分循环以及有机质转化的对应微生物的数量。Dar研究指出砂壤土、壤土和粘土中施用0.75%的污泥,土壤微生物生物量碳增加7%-18%左右,砂壤土中增加较明显,壤土和粘土中则较少。Khan等试验研究了镉和铅对红壤中微生物的影响,当其浓度分别为30 ng/g和150 ag/g时导致生物量显著下降。

2重金属对微生物活性的影响

2.1重金属污染对土壤基础呼吸的影响

土壤呼吸是土壤与大气交换CO2的过程,是土壤碳素同化和异化平衡的结果。Fliebbach等报道在土壤中施人含低浓度重金属和高浓度重金属的淤泥时,其土壤呼吸强度会随着重金属浓度的增加而上升。Chander等研究认为,含高浓度重金属的土壤中微生物利用有机碳更多地作为能量代谢,以CO2的形式释放,而低浓度重金属的土壤中微生物能更有效地利用有机碳转化为生物量碳。

2.2重金属污染对土壤酶的影响

酶是一种生物催化剂,土壤中进行的各种生物化学过程,都是在酶的参与下实现的。Marzador等研究指出,在Pb污染土壤中脱氢酶活性的大小明显地受土壤水分含量的影响,但土壤水分变化对磷酸酶活性的影响不十分明显。因此,磷酸酶活性被认为是评价Pb污染土壤的一种较为合适的指标。

2.3重金属污染对土壤生化作用过程的影响

通常把土壤生化作用强度作为土壤微生物活性的综合指标之一。Wilke研究了几种重金属和非重金属污染物(如Cd、Cr、Pb)如对氮素转化的长期影响,发现除Se和Sn外,其它污染物均能抑制有机氮素的矿化作用。重金属污染引起微生物体内代谢过程的紊乱,也影响微生物的代谢功能,而微生物生理生化反应必然影响到土壤的生化过程,改变了土壤的质量状况。

3土壤重金属污染的微生物修复

微生物本身及其产物都能吸附和转化重金属。微生物还可以通过直接、间接的代谢活动溶解重金属离子。代谢产生的有机酸和氨基酸可溶解重金属及含重金属的矿物,也可以加速重金属元素从风化壳中的释放。

鉴于土壤微生物本身对重金属的吸附和转化,国内外已经开展了对微生物的金属抗性和生物修复的可行性研究,并将此技术应用于实践。这必将缓解土壤重金属污染的严重局面,带来健康的环境。充分利用微生物在土壤修复方面的特性,加强微生物修复的综合技术的研究,是治理不同重金属污染土壤的有效措施。

参考文献:

[1]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1996.

[2]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000, 32,(3): 130-134.

[3]王嘉,王仁卿,郭卫华.重金属污染对土壤微生物学影响的研究进展[J].山东农业科学,2006,1:101-104.

[4]Dar G H. Impact of lead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization. Environmental Contamination Toxicology, 1997, 58: 234-240.

[5]Khan K S.Effect of cadmium, lead on size of microbial bio-mass [J].Pedosphere, 1998, 8:27-32.

[6]Fliebbach A., Martens R., Reber H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, 1994, 26: 1201-1205.

篇7

[2] 骆永明,腾应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505 - 508.

[3] 魏树和,周启星. 重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志,2004 ,23 (1) :65~72.

[4]Yao Z T, Li J H, Xie H H et al.Review on remediation technologies of soil contaminated by heavy metals Procedia Environmental Sciences.2012;16:722-729.

[5]Aresta M, Dibenedetto A, Fragale C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 2008; 70(6): 1052-1058.

[6]Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,2002;46(1)31-38.

[7]Li G D, Zhang Z W, Jing P, et al. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. [J]Transactions of the Chinese Society of Agricultural Engineering,2009;25(10)231-235.

[8]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.

篇8

(二)重金属污染的主要特点。(1)来源复杂。重金属污染来源于自然界,来源于工业、农业、人们的生活,来源于城市和乡村。(2)主体多元化。人为造成重金属污染的主体众多,有政府、企业、公民。而且受害主体不特定化。(3)时间长,隐蔽性强。由于历史的积累以及对重金属污染防治的忽视,重金属污染的时期长,其造成的危害不会马上体现处理,不易为人们所重视。(4)影响深,危害大。“重金属污染的危害主要体现在两个方面:一是对环境的污染;二是对人体的伤害。”在环境污染方面,重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属很难在环境中降解。在开采、冶炼、加工及商业制造活动中排放的重金属污染物进入大气、水,造成大气污染和水污染,最终,大部分重金属停留在土壤和河流底泥中。当环境变化时,底泥中的重金属形态将发生转化并释放造成水污染。在对人体的伤害方面,重金属通过大气、水、食物链进入人体,在人体内和蛋白质及各种酶发生作用,使它们失去活性,并在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性或慢性中毒,具有致癌、致畸及致突变作用,对人体会造成很大的危害。(5)综合治理任务艰巨。重金属污染防治涉及多个部门、多个地区、甚至多个省份的协调与综合治理。湘江流域涉重金属的防治就涉及株洲、衡阳、郴州、湘潭、娄底5个市。需要发改、财政、国土、环保、工信、卫生、安全、科技等多部门的合力与协调。

二、重金属污染的形成机制对构建司法保护机制的主要影响

我们所说的重金属污染指的就是因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。从重金属污染形成机制和特点来探析其法律机制的主要问题,能更好的对症下药。

(一)来源的多样性突显我国重金属污染防治法律制度不完善。重金属污染存在于水体、大气和土壤等。对于重金属污染的防治,我国的《水污染防治法》、《固体废物污染环境防治法》、《土地管理法》、《危险化学品安全管理条例》等立法中均有涉及,但没有形成系统的重金属产过程中污染防治制度体系。原则性立法过多、可操作性差、基本法律制度没有建立起来。(二)主体的多元化导致责任机制不健全。政府的监督责任不健全甚至缺乏;污染企业的法律责任追究机制不健全;民众环保意识不足,法律救济途径存在缺陷。(三)治理的长期性与复杂性彰显出法律规定顾此失彼,不全面。我国重金属污染防治注重工业排放的治理,对农业和生活垃圾污染缺乏应有的关注。我国环境污染防治法注重工业生重金属的排放控制,忽视生活活动中重金属的污染物的排放,也忽视对生活环境中重金属污染物的监测、评价与管理。④而随着科学技术的高速发展,很多重金属应用到日常消费产品及农业用品中。由于这些含有重金属产品的使用日益广泛,回收困难且没有建立完整回收、处理系统,加上消费者对重金属的存在及其危害缺乏了解而容易轻视,易导致含有重金属产品在使用、丢弃、冲洗处理、掩埋中,扩散了重金属污染的范围,加重了污染的程度。(四)影响的深远与严重的危害性考量着国家司法的综合执行力。我国环境法学专家蔡守秋教授指出:“我国现行的污染防治法都存在一个最大的弊端:没有有效的执行手段和责任追究机制。”污染者因为处罚力度不够大,于是污染事件时常发生。但问题的关键是法律法规的责任追究机制不健全、处罚力度不够大。这已经成了解决土壤重金属污染问题的一大顽疾。(五)综合治理的艰巨性使得实践操作中综合治理与协调机制缺乏可操作性。整治重金属污染是一项长期、复杂、艰巨的任务,影响包括重金属污染防治在内的环境保护任务的实现,一是缺乏对政府及其有关部门环境保护责任及其监督的法律规定,环境管理体制有待改革和完善。二是需要加强环境信息公开、公民环境知情权的保障、公众参与环境决策和公众监督机制。三是一些重要的环境管理制度尚需建立和完善,一些环境制度可操作性不强,存在污染防治责任不明确、违法成本低、环境健康损害救济难、环境公益损害救济难等问题。

篇9

土壤重金属污染问题越来越引起人们的关注,它具有长期性、累积性、潜伏性和不可逆性等特点。土壤一旦遭受重金属污染,不仅危害大、治理成本高,而且较难以消除。 “十二五”期间,我国将元素铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和砷(As)列为重金属污染防控的重点元素。2014年4月,环保部和国土部联合的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,部分地区土壤污染严重。全国第二次土地调查结果显示,我国中重度污染耕地大约为5000万亩。

被重金属污染的土壤不仅对作物的生长发育、产量及品质有影响,而且会通过食物链放大富集进入人体,极低浓度就能破坏人体正常的生理活动,损害人体健康[1]。土壤污染影响到整个人类生存环境的质量。重金属污染已成为一个亟待解决的环境问题。

1、土壤中重金属的来源及危害

土壤中重金属的来源可分为天然来源和人为来源。天然来源是由于土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。人为来源主要是来自人类的工农业生产活动以及生活垃圾,工矿业废弃地土壤环境问题突出,黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、矿物制品、金属制品和电力等行业,重污染企业用地及周边土壤存在超标现象。

近年来,突发性的环境污染事件骤增,特别是重金属污染事件。突发的环境事件会导致重金属在短时间内高浓度地进入环境,产生严重的污染。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海等多起砷污染事件。2009年8月以来,又发生了陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染事件。2014年,湖南衡东县儿童血铅超标事件,300多名儿童被查出血铅含量超标。据美国学者统计表明,城市儿童血铅与城市土壤铅含量呈显著的指数关系[2]。据统计,我国约有3万多公倾土地受汞的污染,有1万多公倾土地受镉的污染,每年仅生产“镉米”就达5万t以上,而每年因污染而损失的粮食约1200万t,严重影响了我国的粮食生产和食品安全[3]。这些重金属污染事件有些是由于管理不当、交通事故等人为原因导致的,有些则是环境长期受到污染、污染物含量超过环境容量而突然爆发的结果。“砷毒”“血铅”“镉米”等重金属污染事件频发,让重金属污染成为最受关注的公共事件之一。重金属污染问题已日益严重,土壤重金属的治理和修复已迫在眉睫。

2.重金属土壤污染治理生物修复技术

目前,国内外较成熟的土壤重金属污染修复技术有物理修复法、化学修复法和生物修复法等,本文主要就土壤重金属修复领域的研究热点生物修复技术进行重点介绍。生物修复技术主要有植物修复技术、微生物修复技术、农业生产修复技术和组合修复技术。

2.1植物修复技术

根据Cunningham等人的定义,植物修复是利用绿色植物来转移、容纳或转化污染物,使其对环境无害[4]。根据机理的不同,土壤重金属污染的植物修复技术有3中类型:植物固定、植物挥发和植物提取。目前研究最多且最有发展前景的植物修复技术为植物提取。植物提取是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化处理)后即可将该重金属从土体中去除,达到治理污染与生态修复的目的,这种特定的植物被称为超积累植物。植物修复法成本低,可有效避免二次污染,对环境扰动小。目前,全球已发现的超积累植物大约500种,大部分是关于镍的超富集植物。在我国已经发现宝山堇菜、龙葵、马蔺、三叶鬼针草对Cd有富集作用,蜈蚣草[5]和大叶井口边草[6]对As有富集作用,圆锥南芥[7]属多重金属富集植物,对Pb、Zn、Cd均有富集作用。植物修复技术可同时修复土壤及周边水体;成本低;能够美化环境,可提高土壤的肥力。植物修复技术的缺点:超富集植物个体矮小,生长缓慢,修复周期很长;超富集植物对重金属具有较强的选择性和拮抗性;植物收割后,需要进行特殊处理,否则易造成二次污染;异地引种将对当地的生物多样性构成潜在威胁。适用于大面积农田土壤修复。

2.2微生物修复技术

微生物修复技术是利用微生物(如藻类、细菌、真菌等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。微生物不能降解和破坏重金属,但可通过改变它们的化学或物理特性而影响金属在环境中的迁移与转化。研究证明,土壤中铬可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,以达到修复铬污染土壤的目的[8]。微生物修复效果好、投资小、费用低、易于管理与操作、不产生二次污染。但是微生物修复的专一性强,很难同时修复多种复合重金属污染土壤;应用难度大。

2.3农业生态修复技术

农业生态修复包括农艺修复和生态修复,前者是改变耕作制度,调节种植作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等来降低土壤重金属污染;后者调节土壤水分、养分、pH值和土壤氧化还原状况及气温、湿度等生态因素,调控污染物所处环境介质,但该技术修复周期长、效果不明显。农业生态修复技术环境友好,代价小。但需要大量的调研,基础研究,改变种植习惯。适用于大面积低污染农田土壤。

2.4组合修复技术

植物组合修复技术是将植物修复技术与其他土壤重金属污染治理方法(比如物理、化学等修复技术)综合利用形成的组合技术,与单一重金属治理技术相比,植物组合修复技术具有独特的优点。有代表的有螯合剂-植物组合修复技术,螯合剂与土壤中的重金属发生螯合作用,形成水溶性的金属―螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,强化植物对重金属的吸收。另外还有基因工程-植物组合修复技术及微生物-植物组合修复技术等。

3、展望

随着社会的发展进步,人们对土壤重金属污染的认识越来越深刻,越来越重视,如何防控和治理土壤重金属已成为人们关注的焦点。在今后的土壤重金属污染治理中,首先应以源头控制,即有效地降低重金属污染物的排放,这主要有赖于国家环境政策与法规的不断完善和工矿企业技术革新的落实。其次就是土壤的修复技术,针对土壤污染的复杂性、多样性及复合性,在修复时要综合考虑污染物的性质、土壤条件、投资成本等各方面的因素,从单一的修复技术向多数联合的修复技术、综合集成的工程修复技术发展,选择最适合的修复技术或组合, 达到高效、节约的双重效果。

参考文献

[1] 张许文琦.植物修复技术治理土壤重金属污染的研究进展[J].人民长江,2013,44(增刊):144-146.

[2] 蒋海燕,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,4(5):73-77.

[3] 陈怀满.土壤-植物系统中的重金属污染[M].北京: 科技出版社,1996.

[4] Cunningham SD.Remediation of contaminated soil with green plants: an overview[J].In Vitro. Cell Dev. Biol,1993,( 29) :207-212.

[5] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47( 3) : 207 - 210.

篇10

中图分类号 X56 文献标识码 A 文章编号 1007-5739(2016)13-0227-01

东莞市位于广东省中南部,属珠江、东江冲积平原,土地肥沃,有丰富的土地、森林资源,濒临南海,地处北回归线以南,属于南亚热带海洋性气候,年平均气温22.3 ℃,降水量1 780.4 mm,日照量1 780.4 h,具有良好的农业生产气候条件。蔬菜在东莞农业生产中占据了极其重要的地位,一直以来是我国供港蔬菜的生产和出口基地,2014年东莞蔬菜的播种面积保持在2万hm2左右,随着经济的发展,大量工厂产生的废气废水致使蔬菜中重金属检出率很高[1]。蔬菜重金属污染问题不仅影响了东莞市蔬菜出口和菜农收入,还影响消费者的健康。本文在综述东莞蔬菜重金属污染状况的基础上,提出生产过程中的多种防治措施。

1 蔬菜重金属污染现状

近年来,东莞城市化和工业化快速发展,大量工厂的出现,给农业土壤带来了严重的污染过,特别是土壤重金属污染。经过调查,珠江三角洲典型地区中山市与东莞市铅、镉的污染比较严重,平均有13.2%的蔬菜样品中铅与镉的含量超过国家卫生标准的允许量[2]。土壤中镉污染为5种重金属中最严重,平均污染指数超过警戒线4倍,为严重污染等级[1]。东莞市菜地土壤整体受到了轻度的重金属污染,以西北部污染较为严重,东北部污染最轻[3]。东莞市土壤中主要受到Cd和Hg污染,许多蔬菜对重金属都有积累能力,例如芥兰对汞和铬积累的能力较强,空心菜、白菜和油菜对铅、镉的积累能力强。

2 蔬菜重金属污染来源

2.1 大气污染

东莞市有一些大型的蔬菜基地位于交通繁忙地带或毗邻高速公路。大气污染主要来源于工业生产、汽车尾气排放。大量的有害气体和粉尘中含有重金属。气体中的重金属经过自然沉降和水沉降进入土壤。污染物以二氧化硫、烟尘和粉尘为主,其次还有氮氧化物、一氧化碳、硫化氢、氟、铅等。

2.2 水污染

东莞市的蔬菜用地环境受到周边企业工业“三废”、城镇生活垃圾和农业垃圾等涌入河道,使得河道里的水资源受到污染,污水中的重金属随着灌溉进入农田。

2.3 土壤污染

土壤污染表现在肥料元素积累过多、多种重金属污染严重、农药和有机物污染物残留量高等方面。过度施肥造成土壤酸化,导致土壤盐渍化,土壤中的污染物主要包括Hg、Cd、As、Zn、Pb等重金属。

3 防治措施

随着社会的不断发展,环境污染问题日益突出。蔬菜重金属污染具有潜伏性、地域性、长期性、难治理性等特点,其防治应坚持“预防为主,防治结合、综合治理”的基本方针。针对东莞蔬菜重金属污染提出几点防治措施。

3.1 合理规划蔬菜生产基地

随着社会工业经济的不断发展,城镇化水平不断提高,工业产区与农业生产区不断向郊区转移。蔬菜生产基地应该远离工业产区和城市生活污染区,选择环境较好的地区作为蔬菜生产基地。除此之外,对基地的环境要进行实时动态监测与评价。

3.2 隔绝污染源,控制重金属流入食物链

治理重金属污染问题,首先最重要的是从源头上做起,控制和消除污染源。在农业生产方面,减少化肥和农药的使用量,减少其在土壤中的残留。此外,对于用来灌溉的水源,要制定相应的标准,禁止使用污水进行灌溉。土壤中的重金属主要通过植物的吸收积累,进而通过食物链对人体造成危害。因此,控制植物对重金属的吸收,可减少其在植物可食部分的积累量。

3.3 根据不同蔬菜累积重金属的能力,合理布局

对于不同区域主要污染重金属,筛选出选择可食部分低累积重金属的蔬菜作物或对污染重金属有强抗性的蔬菜品种栽培,并合理安排茬口进行轮作。

3.4 改良土壤结构,提高土壤重金属污染的抵抗能力

从源头上改善土壤的组成与结构,从而减少土壤中的重金属,降低作物对重金属的吸收累积量。改变土壤中重金属的存在形态,如增加有机肥的使用量,可增加土壤胶体对重金属的吸附能力,使得重金属元素不易被作物吸收,也可促使土壤中某些重金属的形态发生变化,从而有效降低其毒性[4]。

4 参考文献

[1] 张冲.东莞蔬菜产区重金属污染调查评价及土壤环境因子相关性分析[D].武汉:华中农业大学,2008.