时间:2022-04-30 16:27:03
导言:作为写作爱好者,不可错过为您精心挑选的10篇抗震设防论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
摘要;文章阐述了抗震设计方法的转变,并介绍了两种不同设计方法的优缺点,对能量分析方法在抗震结构计算中的应用进行了分析。
关键词:推覆分析方法;结构能量反应分析;地震动三要素;耗散能量
目前世界各国的抗震设计规范大多数都以保障生命安全为基本目标,即“小震不坏、中震可修、大震不倒”的设防水准,据此制定了各种设计规范和条例。依此设计思想设计的各种建筑物在地震中虽然基本保证了生命安全,却不能在大地震,甚至在中等大小的地震中有效的控制地震损失。特别是随着现代工业社会的发展,城市的数量和规模不断扩大,城市变成了人口高度密集、财富高度集中的地区,一般的地震和1995年的日本阪神地震,造成了巨.大的经济损失和人员伤亡。严重的震害引起工程界对现有抗震设计思想和方法上存在的不足进行深刻的反思,进一步探讨更完善的结构抗震设计思想和方法已成为迫切的需要。上个世纪九十年代,美国地震工程和结构工程专家经过深刻总结后,主张改进当前基于承载力的设计方法。加州大学伯克利分校的J.P.Moehlelll提出了基于位移的抗震设计理论;日本建设省建筑研究院根据建筑物的性能要求,提出了一个有关抗震和结构要求的框架,内容包括建议方案,性能目标,检验性能水准等:我国学者已认识到这一思潮的影响,并在各自研究领域加以引用和研究,如王亚勇、钱镓茹、方鄂华、吕西林分别发表了有关剪力墙、框架构件的变形容许值的研究成果,程耿东采用可靠度的表达形式,将结构构件层次的可靠度应用水平过渡到考虑不同功能要求的结构体系,王光远把这一理论引入到结构优化设计领域,提出基于功能的抗震优化设计概念。
我国现行的结构抗震设计,主要是以承载力为基础的设计,即用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。结构的计算分析方法基本上可以分为弹性方法和弹塑性方法。当前在建筑结构抗震设计和研究中广泛地采用底部剪力法和振型分解反应谱法等。这些方法没有考虑结构屈服之后的内力重分布。实际上结构在强震作用下往往处于非线性工作状态,弹性分析理论和设计方法不能精确地反映强震作用下结构的工作特性,让结构在强震作用下处在弹性工作状态下工作将造成材料的巨大浪费,是不经济的。随着人们认识的提高,结构的地震反应分析设计方法经过了两个文献的转变:(1)静力分析方法到动力分析方法的转变:(2)从线性分析方法到非线性分析方法的转变。其中动力分析方法就经过了从振型分解反应谱法到时程分析法、从线性分析到非线性分析、从确定性分析到非确定性分析的三个大的转变。作为一种简化实用近似方法,目前的推覆分析方法(Push—overAnalysis)受到众多学者的重视。它属于弹塑性静力分析,是进行结构在侧向力单调加载下的弹塑性分析。具体做法是在结构分析模型上施加按某种方式(研究中常用的有倒三角形、抛物线和均匀分布等侧向力分布方式)模拟地震水平惯性力作用的侧向力并逐步单调加大,使结构从弹性阶段开始,经历开裂、屈服直至达到预定的破坏状态甚至倒塌。这样可了解结构的内力、变形特性和能量耗散及其相互关系,塑性铰出现的顺序和位置,薄弱环节及可能的破坏机制。这种方法弥补了传统静力线性分析方法如底部剪力法、振型分解法等的不足并克服了动力时程分析方法过程中,计算工作量大的问题,仅用于近似评估结构抵御地震的能力。但是,传统的推覆分析方法基本上只适用于第一振型影响为主的多层规则结构,对于高层建筑或不规则的建筑,高阶振型的影响不容忽视,并且对于非对称结构,还必须考虑正、反侧反推覆的不同所带来的影响。此外推覆分析方法无法得知结构在特定强度地震作用下的结构反应和破坏情况,这限制了它在抗震性能设计中的使用地震动能量是刻画地震强弱的综合指标,它综合体现了地面最大加速度和地震持时两个反映地面运动特性的重要因素。结构地震反应的能量分析方法是一种能较好地反映结构在地震地面运动作用下的非线性性质及地震动三要素(幅值、频谱特性和持时)对结构抗震性能影响的方法。地震时,结构处于能量场中,地面与结构之间有连续的能量输入、转化与耗散。研究这种能量的输入与耗散,以估计结构的抗震能力,是结构抗震能量分析方法所关心的问题。结构在地震(反复交变荷载)作用下,每经过一个循环,加载时先是结构吸收或存储能量,卸载时释放能量,但两者不相等。两者之差为结构或构件在一个循环中的“耗散能量”(耗能),亦即一个滞回环内所含的面积。能量等于力与变形的乘积。一个结构(构件)所耗散的地震能量多,不仅因为它承担了较大的地震作用,还因为它产生了较大的变形。从这个意义上来看,耗能构件是用它自身某种程度破坏所作的牺牲,来维持整个结构的安全。所以,每次大的地震作用之后,人们看到那些没有其它途径耗散所吸收的地震作用的能量的结构,只有通过结构自身的破坏来释放所有的多余能量。因此,结构的抗震设计应当注意保证结构刚度、强度和变形能力的协调与统一,如结构的延性设计就是在传统的单一强度概念条件下进行的弹性抗震设计的基础上,充分考虑结构和构件的塑性变形能力,在设防烈度下允许结构出现可能修复的损坏,当地震作用超过设防烈度时,利用结构的弹塑性变形来存储和消耗巨大的地震能量,保证结构裂而不倒。
能量法在近半个世纪的研究中发现较快,但由于地震本身的复杂性能量与结构反应之间的关系仍需我们进行进一步的探索。
2侧向刚度比的合理确定
上部砌体的侧向刚度与底层侧向刚度K的比值应满足表1的要求。在确定上下层刚度比时应注意考虑以下因素。
2.1下部框架一剪力墙的侧向刚度
底部侧向刚度不能过大也不能太小'冈0度过大将吸收过多的地震作用,破坏严重同时会迫使薄弱层向上部砌体转移而出现脆性破坏;刚度过小则形成软弱层,地震时塑性变形过多集中在底部而发生较大破坏。底部框架一抗震墙砌体房屋自振周期一般在0.6—0.9左右,略大于场地土的特征周期,可以设计相对较小的侧向刚度,适当增大结构自振周期,使结构从整体上减小地震作用。同时不宜设计过柔的下部结构,下部侧向刚度过小导致结构在强烈地震下发生较大的塑性变形,同时为避免出现脆性剪切破坏,底部的地震剪力设计值应乘以增大系数,其值可取1.2~1.5,刚度越小,剪力增大系数越大。因此,上下层刚度比宜取接近下限值,底层宜尽量设置较多数量剪力墙,从而提供较大侧向刚度并且剪力增大系数不至于取太大。
2.2次梁转换的砌体墙段
对于有些工程在设计时出现次梁托上部砌体墙的情况,可能造成一些不利后果。图1为L一1上有砌体墙,两端支撑在KL一1上形成次梁转换的情况,次梁转换的受力如图2所示。重力荷载和地震作用下上部墙体传来轴力、弯矩及剪力。在弯矩作用下使支撑次梁的框架主梁产生附加集中力,由于程序未能很好的反映这部分作用,因此在设计中应尽量不采用次梁转换。如无法避免时,应采取以下措施:1)过渡层墙体另外采取加强措施(参《建筑抗震设计规范》7.5.2),同时支撑框梁应加强;2)次梁一端尽量与框柱或剪力墙相连以便将上部传递下来的弯矩转移给框柱或剪力墙;3)次梁转换的墙体不宜太长从而降低其向下传递的弯矩。—图1次梁转换图图2转换梁传力图
2.3过渡层构造柱及门窗
洞边小墙段在计算上部砌体侧向刚度时应该考虑构造柱的影响,因此在模型输入时应输入构造柱的布置。如果未输入构造柱可能造成下部结构侧向刚度偏柔的结果,且上下层刚度比接近下限时,就容易使下部结构形成柔软层而不利于抗震。《建筑抗震设计规范》7.2.3条规定,刚度的计算应计及高宽比的影响,高宽比大于4时,等效侧向刚度可取0.0(注:墙段的高宽比指层高与墙长之比,对门窗洞边的小墙段指洞净高与洞侧墙宽之比)。为此,在模型输人时应将高宽比大于4的墙段删去以尽量接近实际受力情况。反之,则结构侧向刚度偏大有可能造成下部结构设计过刚而迫使薄弱层转移至过渡层,发生脆性破坏。
3托墙梁的设计
底部框架一抗震墙砌体房屋的钢筋混凝土托墙梁计算地震组合内力时,应采用合适的计算简图。若考虑上部墙体与托墙梁的组合作用,应计入地震时墙体开裂对组合作用的不利影响,可调整有关的弯矩系数、轴力系数等计算参数。托墙梁弯矩计算时,设计中可按经验考虑墙梁上部作用的荷载折减,一般无洞口可取0.85,有洞口可取0.95,但四层以下应全部计入组合;托墙梁剪力计算时,由重力荷载产生的剪力不折减。
4底部框架一剪力墙的设计
剪力墙的布置应遵守对称、均匀、分散、周边的原则,且应使上部砌体的中线与抗震墙中线重合,具有良好的整体抗倾覆和抗扭转能力。底部抗震墙应承担地震作用下全部地震剪力设计值,且该地震剪力设计值应乘以增大系数。由于底框结构层数不高,底部抗震墙轴压比大都不大,一般不都超过0.3,因此剪力墙均按底部加强区的构造边缘构件设计,即根据《建筑抗震设计规范》7.1.9条确定抗震等级后按照《建筑抗震设计规范》表6.4.5-2进行边缘构件设计。由于全部承担地震剪力设计值,因此要根据计算结果对墙体配置足够的水平分布筋数量,以满足抗剪承载力要求。当建筑层数和平面尺寸确定之后,为满足底部抗剪承载力的要求,剪力墙的数量基本就能确定;然后再根据上下层刚度比的要求确定底层框架柱的数量和截面,柱截面宜小但应满足轴压比和截面配筋率的要求。布置柱时尚应考虑框架梁中心与上层墙体中线对齐的原则。
5过渡层的设计
过渡层设计的目的是使上部砌体具有良好的整体性,在地震作用下避免出现过渡层先于其他层倒塌、破坏的情况。为保证过渡层在地震作用下具有一定的整体性和传递水平地震力的刚度,规范要求过渡层底板为现浇混凝土板且厚度不应小于120mm,配筋双层双向,每个方向配筋率不小于0.25%。过渡层圈梁和构造柱的设置规范也给出了相应的规定。高度不宜小于240mm,构造柱截面不应小于240mm×240mm,截面配筋6,7度时不宜少于4+16。构造柱与墙体连接处的水平拉结筋,6,7度下部1/3楼层处应沿墙通长设置。总之,过渡层设计应严格遵循规范要求对其采取必不可少的构造加强措施,避免成为结构的软肋。
6基础设计及其他
底部框架一抗震墙砌体房屋的抗震墙应设置条形基础、筏形基础等整体性好的基础。当结构采用板式楼梯时,楼梯踏步板宜采用双层双向配筋。
单层砖柱厂房具有选价低廉、构造简单、施工方便等优点,在中小型工业厂肩中得到广泛应用。砖柱厂房是以砖柱(墙)做为承重和抗侧力构件,由于材料的脆性性质,其抗震性能比钢筋混凝土柱厂房差;由于砖往厂房内部空旷、横墙问距大,地震时的抗倒塌能力不如砌体结构的民用建筑。因此根据砖柱厂房的震害特点,找出杭震的薄弱环节,提出相应的抗震措施,提高其抗震能力是必要的。
1.地震震害及其特点:
地震震害表明:6、7度区单层砖柱厂房破坏较轻,少数砖柱出现弯曲水平裂缝:8度区出现倒塌或局部倒塌,主体结构产生破坏;9度区厂房出现较为严重的破坏,倒塌率较大。
从震害特点看,砖柱是厂房的薄弱环节,外纵墙的砖柱在窗台高度或厂房底部产主水平裂缝,内纵墙的砖柱在底部产生水平裂缝,砖柱的破坏是厂肩倒塌的主要原因。山墙在地震时产生以水平裂缝为代表的平面外弯曲破坏,山墙外倾、檩条拔出,严重时山墙倒塌,端开间屋盖塌落。屋盖形式对厂房抗震性能有一定的影响,重屋盖厂房的震害普遍重子轻屋盖厂房,楞摊瓦和稀铺望板的瓦木屋盖,其纵向水平刚度和空间作用较差,地震时屋盖易产生倾斜。
2.适用范围及结构布置
2.1单跨和等高多跨的单层砖柱厂房,当无吊车且跨度和柱顶标高均不大时,地震破坏较轻。不等高厂房由于高振型的影响,变截面柱的上柱震害严重又不易修复,容易造成屋架塌落。因此规定砖柱厂房的适用范围为单跨或等高多跨且无桥式吊车的中小型厂房,6-8度时厂房的跨度不大子15m且柱顶标高下大于6.6m,9度时跨度不大于12m且柱顶标高不大于4.5m。
2.2厂房的平立面应简单规则。平面宜为矩形,当平面为L、T形时,厂房阴角部位易产生震害,特别是平面刚度不对称,将产生应力集中。对于立面复杂的厂房,当屋面高低错落时,由于振动的不协调而发主碰撞,震害更为严重。
2.3当厂房体型复杂或有贴建的房屋(或构筑物)时,应设置防震缝将厂房与附属建筑分割成各自独立、体型简单的抗震单元,以避免地震时产主破坏。针对中小型厂房的特点,钢筋混凝上无檀屋盖的砖柱厂房应设置防震缝,而轻型屋盖的砖柱厂房可不设防震缝。防震缝处宜设置双柱或双墙,以保证结构的整体稳定性和刚度,防震缝的宽度应根据地震时最大弹塑性变形计算确定。一般可采用50~70mm。
3.结构体系
3.1地震时厂房破坏程度与屋盖类型有关,一般来说重型屋盖厂房震害重,轻型屋盖厂房震害轻,在高烈度区影响更为明显。因此要求6-8度时宜采用轻型屋盖,9度时应采用轻型屋盖。人之地震震害调查表明:6、7度时的单跨和等高多跨砖柱厂房基本完好或轻微破坏,8、9度时排架柱有一定的震害甚至倒塌。因此《建筑抗震设计规范》(G8Jll一89)规定:6、7度时可采用十字形截面的无筋砖柱,8度1、2类场地应采用组合砖柱,8度3、4类场地及9度时边柱宣采用组合砖柱,中柱直采用钢筋混凝土柱。经过地震震害分析发现:非抗震设计的单层砖柱厂房经过8度地震也有相当数量的厂房基本完好,所倒塌的厂肩大部份在设计和施工上也存在先天不足,因此正常设计正常施工和正常使用的无筋砖柱单层厂后,在8度区仍然具有一定的抗震能力。可见对8度区的单层砖柱厂房都配筋的要求是偏严的,在抗震规范的修订稿中将8度1、2类场地“应”采用组合砖往改为“宜”采用组合砖柱,允许设计人员根据不同情况对是否配筋有所选择。一般来说,当单层砖柱厂房符合砌体结构刚性方案条件,经抗震验算承载力满足要求时,可以采用无筋砖柱。
3.3对于单层砖柱厂房的纵向仍然要求具有足够的强度和刚度,单靠砖柱做为抗侧力构件是不够的,如果象钢筋混凝土柱厂房那样设置柱间支撑,会吸引相当大的地震剪力。使砖拄剪坏。为了增强厂房的纵向抗震承载力,在柱间砌筑与柱整体连接的纵向砖墙,以代替柱间支撑的作用,这是经济有效的方法。
3.4当厂房两端为非承重山墙时,山墙顶部与檩条或屋面板恨难连接,只能依靠屋架上弦与防风柱上端连接做为山墙顶部的支点,这不仅降低了房屋整体空间作用,对防止山墙的出平面破坏也不利,因此厂房两端均应设置承重山墙。
3.5厂房的纵横向内隔墙宣做成抗震墙,其目的充分利用培体的功能,避免主体结构的破坏。当内隔墙不能做成抗震墙时,最好采用轻质隔墙,以避免墙体对柱及柱与屋架连接节点产生不利影响,如果采用非轻质隔墙,则应考虑隔墙对柱及其与屋架节点产生的附加剪力。
3.6无窗架不应通至厂房单元的端开间,以免过份削弱屋盖的刚度。天窗架采用砖壁承重时,将产生严重的震害甚至倒塌,地震区应避免使用。
4抗震承载力计算
4.1横向抗震计算
单层砖往厂房横向抗震计算的计算简图,可按下列规定选取:(1)当厂房柱为无筋砖柱或边柱为组合砖柱、中柱为钢筋混凝土柱时,可采用下端为固接、上端为铰接的徘架结构模型;(2)当厂肩边柱为无筋砖柱、中柱为钢筋混凝士柱,在确定厂房自振周期时,砖柱下端按固接考虑,在计算水平地震作用时,砖柱下端按铰接考虑。这主要是考宅到在地震作用下,随着变形的不断增加,无筋砖柱下端开裂并退出工作,囚而全部横向地震作用由中部的钢筋混凝土柱承担。轻型屋盖单层砖柱厂房的横向抗震计算,可以忽略空间工作影响·采用平面排架进、厅计算。对于钢筋混凝上屋盖和密铺望板的瓦木屋盖厂肩,其空间作用不能忽略,应按空间分析的方法进行计算:但为了简化,对于一定条件下的厂房可以按平面排架进行计算,考虑到其空间工作影响,对计算的地震作用效应要进行调整。
4.2纵向抗震计算
对于钢筋混凝土屋盖的等高多跨砖柱厂房,当考虑屋盖为刚性时,纵向地震作用在各柱列之间的分配与柱列的侧移刚度成正比:当考虑屋盖的弹性进行空间分析时,侧移刚度较大柱列分配的地震作用比按刚性屋盖分配的地震作用小,而侧移刚度较小柱列分配的地震作用比按刚性屋盖分配的地震作用大。设计中为了利用刚性屋盖假定时纵向地震作用分配形式简单的优点,可以针对不同屋盖形式对柱列的侧移刚度乘以修正系数,做为纵向地震分配时的柱列刚度,并对所计算的厂房自振周期进行修正,以考虑屋盖的弹性影响。
对于纵墙对称布置的单跨厂房,在厂房纵向沿跨中切开,取一个柱列单独进行纵向计算与对厂房进行整体分析结果是相同的。对于轻型屋盖的多跨厂房虽然屋盖仍具有一定的水平刚度,考虑到屋盖与砖墙的弹性极限变形值相差较大,为了计算简便,仍可假定各纵向往列在地震时独立振动,按柱列法进行计算。
5抗震构造措施
5.1单层砖柱厂房采用钢筋混凝上屋盖时的抗震构造措施可参照钢筋混凝土柱厂房的有关规定。采用瓦木屋盖时,设有满铺望板的抗震能力比无望板强得多,望板能起到阻止屋架倾斜的作用。地震震害表明,未设上弦及下弦水平支撑的楞摊瓦屋盖,屋架产主倾斜甚至倒塌的震害较多,因此要有足够的屋盖支撑系统,保证屋盖沿纵向有足够的刚度和稳定,以满足抗震的要求。
5.2圈梁对增强厂房的整体性起到了重要作用,但预制圈梁抗震性能差,地震时在连接外容易拉断,因此要求圈梁应现浇且在厂房柱顶标高处沿房屋外墙及承重内墙闭合。对于8、分度区还应沿墙高每隔3-4m增设一道圈梁,可提高砖墙的抗震性能,并能够限制地震时墙体裂缝的开展,减轻墙体破坏。当地基为软弱粘性土、液化土、新近填土或严重不均匀土层时,地震易出现裂缝,如果裂缝穿过厂房将使房屋撕裂,基础顶面应设置基础圈梁,以减轻地震灾害。当圈梁兼做门窗过梁或抵抗不均匀沉降影响时,圈梁的截面和配筋除满足抗震构造要求外,还应根据实际受力计算确定。采用钢筋混凝土无檩屋盖的砖柱厂房,地震时在屋盖处圈梁下一至四皮砖的砖墙上易出现水平裂缝,因此8、9度时,在墙顶沿墙长每隔1m左右埋设1根8竖向钢筋,并插入顶部圈梁内,以避免上述震害的产生。
5.3地震中屋架与砖柱连接不牢,柱头产主破坏甚至屋盖坍落的震例是较多的。为了加强屋架与砖柱的连接,柱顶垫块应与墙顶圈梁整体浇注,屋架与垫块的预埋件采用螺栓连接或焊接。当垫块厚度或配筋过小时。预埋件的锚固不能满足要求,垫块厚度丁应小于240mm,井配置两层直径不小于8间距不大于100mm的钢筋网。烈度较高时,屋盖承受的地震作用较大,与垫块整体浇注的圈粱受到较大的扭矩,垫块两侧各500mm范围内圈梁的箍筋应加密,其间距不应大子100mm。
中图分类号:TU352 文章编号:1009-2374(2015)03-0044-02 DOI:10.13535/ki.11-4406/n.2015.0214
我国是一个地震灾害比较严重的国家。随着科学技术的不断发展,我国的建筑结构抗震设计的方法随着结构试验、结构分析、地震学以及动力学的发展也在不断的进步,在不断学习国外经验的基础上,我国的震害调查、强震观察的方法在不断的成熟。但是,如何从我国的社会发展和地震环境的实际情况出发来提高建筑结构抗震性能,从而保持建筑物更加合理经济、安全可靠,是结构抗震设计中的一项重要的任务。
1 建筑结构抗震设计中的问题
1.1 选择建筑抗震场地的问题
如果施工的条件相同,不同工程地质条件下的建筑物在地震时会受到明显不同的破坏程度。所以,选择一个好的建筑场地是提高建筑物抗震性能的重要基础,在场地选择的过程中,要降低地震灾害,尽可能地避开工程地质不良的抗震场地(比如河岸、边坡边缘、高耸孤立的山丘、非岩质陡坡、湿陷性黄土区域、液化土区域),选择有利的建筑场地(比如中等风化、微风化的基岩,不含水的粘土层,密实的砂土层)。如果实在无法当避开不利区域的话,应该在场地采取抗震加强措施,应根据抗震设防类别、湿陷性黄土等级、地基液化,来采取措施提高地基的刚度和整体稳定性。比如,如果建筑地基的受力层范围处在严重不均匀土层、软弱粘性土层、新近填土时,要合理估计计算地基在地震时形成的不均匀沉降,从而采取加强上部结构和基础的处理措施或者加固地基、桩基的措施来加强地基的承
载力。
1.2 选取房屋结构抗震机制的问题
1.2.1 房屋结构机制应有科学恰当的强度与刚度,能够有力地规避房屋结构由于突然变化或者个别位置减弱构成薄弱位置,引发太大的应力聚集或者塑性产生变化聚集;对于或许形成的脆弱位置,应采用提升抗震水平的手段。
1.2.2 在房屋架构机制中应设计有科学的地震功能传送通道与确定清楚的核算简图。另外,设置纵向房屋构件时,应尽量保持在垂直重力负荷作用下纵向房屋构件的压应力多少平均;设置楼层盖梁机制时,尽量保证垂直重力负载能够通过距离最小的途径传送到纵向构件墙或者柱子上;设置转换架构机制时,尽量保证从上面架构纵向构件传过来的垂直重力负载能够通过转换层完成再次转换。
1.2.3 在选取房屋架构机制时,应重视防止由于一些构件或者架构的损坏而让总体房屋架构失去对重力负载的承受性能与抗震性能。房屋架构抗震设置的基本准则是架构应该具备内力再次分摊作用、优秀的变形性能、一定的赘余度等。进而在地震出现时,一些构件即便出现问题,其他构件仍然可以承载纵向负载,提升房屋架构的总体抗震稳固性。
1.3 房屋架构平面设置的规则性与对称性问题
房屋的平面与立体的设置应遵照抗震理论基本设置准则,通常运用规则的房屋架构设置方案。依照房屋结构抗震设置规范的标准,对平面不规则或纵向不规则,或者两者均不规则的房屋架构,应运用空间架构的核算模式;对楼板部分区域连接不畅或者表面凹凸不成规律时,应运用相对应的贴合楼层强度刚度变动的模型;脆弱位置应当注重相对应的内力加大系数,而且依照规范标准来对弹塑性形状改变加以剖析,脆弱位置应采用抗震构造手段。
在房屋架构的抗震中,对称性是不容忽视的。对称性包含房屋平面的对称、品质分布的对称及房屋架构抗侧刚度的对称三个部分。保证这三个方面的对称中心为同样的位置是最优的抗震设置方案。国内的房屋结构中,架构的对称性通常指的是抗侧力主要架构的对称。对称的房屋架构有框架架构、简体框架架构等。
房屋架构的规则性体现在以下四点:
1.3.1 在平面设置房屋抗侧力的主要架构时,应当保证周围结构与中心的刚度与强度平均分布,让房屋的主要架构维持较强的强度与抗扭刚度,很大程度上防止了房屋在风力较大或者地震的扭矩影响下而产生很大的形状改变造成非架构构件与架构构件的损坏。
1.3.2 在平面设置房屋抗侧力的主要架构时,还应当重视保证同一主轴方向的所有抗侧力架构刚度与强度位于平均形态。
1.3.3 建筑结构的抗侧力主体结构沿着构成变化和竖向断面也要保持均匀,避免出现突变。
1.3.4 建筑结构的抗侧力主体结构的两个主轴方向也要有比较接近的强度和刚度,还要有比较相近的变形特性。
总体来说,在建筑结构抗震设计中,一定要对建筑平、立面布置的规则性加以重视,在实际的工程中还应该对建筑结构抗震设计的规范规定给予高度的重视。
2 提高建筑结构抗震能力的改良方案
(1)对地震外力能量的吸收传递途径进行恰当合理的布局,保证支墙、梁、柱的轴线处于同一平面,形成一个构件双向抗侧力结构体系。在地震作用下构件呈现出弯剪性破坏,有效地使建筑结构的整体抗震能力得到提高。
(2)要按照抗震等级来对梁、柱、墙的节点采取抗震构造措施,保证在地震作用下建筑物结构可以达到三个水准的设防标准。按照“强节点弱构件”、“强剪弱弯”、“强柱弱梁”的原则,来合理选择柱截面的尺寸,注意构造配筋要求,控制柱的轴压比,确保结构在地震作用下具有足够的延性和承载力。
(3)进行多道抗震防线的设置。在一个抗震结构体系中,在地震作用下一部分延性好的构件可以担负起第一道抗震防线的作用,而在第一道抗震防线屈服后其他构件才逐次形成第二、第三或更多道抗震防线,有效提高建筑结构的抗震安全性。各地区要根据所处区域的地质特征,提高抗震设防标准。
(4)在可能发生破坏性比较强的地震区域,建设、地震、科技等部门要对建筑技术规范进行严格的规定,从施工保障、材料选用、规划设计、建房选址等方面来加强监督检查和技术指导,保证建筑设施能够符合抗震设防的基本要求。
(5)根据地震地区本身建筑物的特点来积极引用抗震减灾新材料、新工艺、新技术,并且借鉴发达国家的技术和经验,将其推广应用到建筑抗震设计中。
(6)建筑结构抗震设计的管理者以及实施者也对建筑的抗震能力起到很大的作用。所以,必须提高抗震设计工作人员的整体素质,提升整个建筑的抗震工程
质量。
3 结语
经过多年来对建筑结构中抗震设计的研究,我国的抗震设计方法已经逐渐趋于成熟,但是还有许多需要完善的地方。我们要在严格按照建筑抗震规范要求的基础上上,科学地合理地进行建筑抗震设计,保证建筑物的稳定性和可靠性,促进我国建筑结构抗震设计向着高水平方向发展。
参考文献
[1] 方小丹,魏琏.关于建筑结构抗震设计若干问题的讨论[J].建筑结构学报,2011,(12).
引言
房屋的抗震性能最大程度上取决于房屋的抗震设防标准,抗震设防标准越高,房屋的抗震性能就越强。目前,已有数百位专家在研究讨论新的房屋抗震设防标准,以期修改沿用多年的房屋建造抗震标准,增强新建房屋的抗震能力。北京地区近日已率先将农房抗震要求提高到了能抵御8级地震的高标准。据测算,抗震设防标准每提高一级,建筑成本将随之提高8%-10%。 房屋的选址是房屋抗震性能的外部主要条件,初步总结四川地震的经验和教训可以发现,遭遇同等强度地震的不同位置的房屋,其抗震性能有所不同。位于地质断层附近的房屋比其他房屋更易被震塌。我国是一个地震多发国家,发生过破坏性地震的城市占全国城市总数的10%以上。因此,各地今后在房屋建筑设计与施工之前,必须充分重视房屋的选址应远离地质断层,防患于未然。 房屋结构设计与施工质量、房屋装修是决定房屋抗震性能中受人为影响最大的两个因素。在房屋结构设计中,一般而言,剪力墙结构的抗震性能优于框架结构,框架结构优于砖混结构。在施工质量中,建筑物必须严格根据抗震设计规范施工。 居住者在房屋装修时不得随意更改房屋结构,尤其是不可随意更改房屋承重墙等一些关键部位,更改结构时应得到专业人士的指导或相关许可,任何擅自改动都有可能降低房屋抗震性能,造成致命隐患。
1 建筑物的重要性决定了其不同程度上的抗震性能
不同结构型式是不同建筑物功能需求和性价比所决定的,不能单单片面的说地震来临时,哪种结构型式就一定好哪种结构型式就一定不好;因为按目前的抗震设防标准,它们有一个共同的设防目标:小震不坏 、中震可修 、大震不倒。
国家按建筑物发生灾害时对人民生命财产可能造成损失的程度,按建筑物分为甲乙丙丁四类。主要的、重要的水电站、医院、电力、通讯等生命救援保障和人员密集建筑被定为甲类或乙类,一般的住宅、办公等均定义为乙类,设防的目标也不同:丙类建筑在设计时按设防目标进行;甲乙类建筑设计时至少要提高1度,请注意,这里均指是烈度而不是震级,这也很好理解,好的地基要比差的地基抗震性能好,处在地震活动带的建筑自然发生地震的几率大,抗震性能也很难保证。
2 建筑物得抗震性能首先取决于建筑物的抗震设防标准
国家根据地震发生的可能性和震害的严重性确定各地区基本设防烈度,这是各地区抗震设计的基本参数,主要代表地面加速度的大小。设防烈度一般分6~9度,上海地区设防烈度主要为7度,崇明、金山为6度。对具体建筑物,需要结合建筑使用功能的重要性确定建筑的抗震设防标准,即确定设计烈度和抗震等级。对一般建筑,设计烈度就是本地区设防烈度。设计烈度愈高,抗震能力愈强,但建筑物造价也愈高。
2.1 房屋结构的抗震性能与合理的抗震设计密切相关。
抗震设计就是要选择合适的结构形式,确定合理的抗震措施,保证结构的抗震性能,确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。所谓中震,指设防烈度,小震比中震小约1.55度,而大震则比中震增加约1度。合理的抗震设计主要基于先进的抗震理念、系统的分析计算和恰当的抗震措施。既要注意控制抗震指标如轴压比、相对变形等,又要采取合适的抗震构造措施。
目前高层住宅主要采用现浇剪力墙结构、框架-核心筒或框架-剪力墙结构,具有较好的强度和变形能力,抗震性能相对较好。因此,无论板式住宅还是点式住宅,只要设计合理,都可满足抗震要求。多层住宅大部分采用砖混结构,目前多采用现浇楼板,并采取设构造柱和圈梁等抗震措施,或者采用框架结构,大大增强了抗震能力。部分建筑外形怪异,平立面不规则,传力体系复杂甚至需要多次结构转换,这既增加了建筑物造价,也影响了建筑物的抗震性能。
2.2 房屋抗震性能还与施工质量等其他因素有关。因此加强施工质量监督,规范既有建筑的使用管理是十分必要的。
3 建筑物抵抗地震的能力不确定性
为了搞好抗震结构的施工,首先要了解地震力对建筑物可能引起的破坏作用。因为地震时不确定性和复杂性,我们很难用“数值设计”来有效控制结构的抗震性能,因此不能完全依赖于计算。根据目前对地震规律的认识,抗震设计的指导思想是:房屋在使用期间,对不同强度的地震应具有不同的抵抗能力,一般小震发生的可能性较大,因此,要求做到结构不损坏,这在技术上,经济上是可以做到的。近几年台湾发生三次地震,福建沿海受其余震波影响,没有造成建筑物严重损坏。如果要求结构遭受大震时不损坏,这在经济上是不合理的,因此可以允许结构破坏。但是在任何情况下,不应导致建筑物倒塌,概括起来说,抗震设防的一般目标就是要做到“小震不坏,大震不倒”。从另一方面看,一个地区的基本地震烈度也是难以准确估计的,要根据当地的地址,地形和历史地震情况等确定,因此房屋抗震能力很难确定。那就要在结构强度上和构造上下功夫,才能做到建筑物裂而不倒。这种危中脱险的工作主要依赖于良好的结构设计和施工质量。
4 施工质量和房屋抗震性能的关系
在强烈地震的作用下,要使建筑物裂而不倒,关键在施工过程的控制,以保证结构本身具有足够的强度和各部件间有可靠的连接。对混合结构来说,一是砌体强度,也就是砖块本身和砂浆标号。二是内外砖墙的咬槎以及构造柱,圈梁和墙体的连接构造。对钢筋混凝土结构来说一是混凝土和钢筋本身的强度。二是节点间的连接构造,两者都和施工的质量密切相关,强度和构造连接的施工质量好,建筑就能抵抗地震,否则建筑物就要遭到严重破坏,以致倒塌,人民生命财产遭到严重损失。
5 目前影响建筑物抗震的施工质量问题
对于砖混结构的建筑物,在材料选用、施工质量上应当引起足够重视。砌体强度不足,砂浆不饱满,砂浆标号低,砌筑前砖块不湿润,冬季施工不浇水都会降低砂浆的粘结力和砌体的抗剪强度;加之砌体结构通常采用单块的材料和砂浆砌筑,抗拉压力低,且主要以手工操作,容易丧失承载能力。圈梁和构造柱的配筋不合理:圈梁和构造柱依靠其中的钢筋将建筑上下各层,各片墙体连在一起,哪里连接不好,哪里就容易出问题。我们在施工现场经常发现钢筋搭接长度不够,钢筋接头该错开的不错开,该弯钩的不弯钩,钢筋位置偏差大等等,都会直接影响到结构整体连接。 构造柱与墙体拉接筋放置不准确,构造柱混凝土振捣不密实,都直接影响构造柱的抗震能力,关系到砖混结构建筑物能否满足抗震要求。
对于混凝土结构的建筑物,当前钢筋混凝土结构的施工存在问题比较多,对结构的抗震性能极为不利。首先混凝土强度问题,混凝土水泥用量,水灰比和含砂率控制不严,对混凝土湿润养护不重视,振捣不密实,柱头施工缝遗留木屑、焊渣等造成柱的断层,这些都是削弱结构支撑竖向荷载能力的重要因素,严重影响房屋抗震能力。
6 总结
前面谈到影响房屋抗震的施工质量问题,这些都不是很难做到,只要我们在施工过程中认真负责,引起重视,发现问题及时整改,严格按照施工规程操作,控制好每一个分项、分部工程,绝不片面追求施工速度不顾工程质量,对人民的生命财产要有高度负责的态度。只有这样,才能使建筑物的抗震安全性能得到进一步保证,人民生命财产免遭损失。
参考文献:
[1]杨佑发;邹银生 底部框剪砌体、房屋空间弹塑性地震反应分析 [期刊论文] -振动与冲击2003(01) .
[2]杨佑发 底部框剪砌体房屋抗震及隔震性能研究 [学位论文] 1998 .
[3]杨佑发;魏建东 结构动力分析的非线性拟动力方程法 [期刊论文] -世界地震工程2002(02) .
中图分类号: TU761文献标识码:A 文章编号:
一、工程抗震及其意义
建筑工程抗震是指通过编制、实施抗震防灾规划,对建设工程进行抗震设防和抗震加固,最大限度地抵抗和防御地震灾害活动。建筑物的抗震能力取决于抗震设防烈度、抗震设计和施工质量三方面,其中抗震设防烈度是基础,抗震设计是保障,而施工质量是工程抗震的关键。实践证明,在地震发生时,建筑的整体质量是保证人民群众生命安全的最重要保障,是当前预防地震的最好办法。
地震设防烈度是一个地区抗震设防规划时所依据的地震烈度,由国家主管部门对建筑工程制定必须达到的抵御地震破坏的准则和技术指标。1976 年以前,唐山地区地震设防烈度为6度,而震后修改为8 度,同时期做出修改的还有北京由6 度调整为8 度,天津由6 度调整为7 度。地震防设烈度是人为规定的,需要综合考虑地质、环境、工程重要程度等因素,以达到安全目标和经济承受能力的平衡。
1976 年后,我国对地震灾害进行了大量研究,主要成果体现在文献[1][2][3]等标准与技术文件之中,其中《GB50011-2001 建筑抗震设计规范》对于我国抗震设计具有指导和规范双重意义,既是建筑工程抗震设计的依据,也是建筑抗震安全性的衡量标准,是建筑抗震必须坚决遵照的规范。建筑抗震设计中的标准可归纳为“小震不坏、中震可修、大震不倒”。抗震设计一般分为承载力验算和弹塑性变形验算两个阶段,承载力验算是为了保证满足对于小震和中震的要求,而弹塑性变形验算是对于重点薄弱部位进行检验,并依据检验结果提出应对地震的构造措施,实现对于大震的设防要求。
建筑施工质量是工程抗震的关键。汶川特大地震中,位于重灾区的北川六汉希望小学,创造了没有一座房屋倒塌、没有一人因地震遭遇不测的奇迹,而承建该希望小学的承建商,在受灾地区所建五栋希望小学全都不倒,足以体现工程质量在抗震中的重要作用。建筑施工中的质量问题对于抗震有重要意义,应予以特别重视。
二、抗震设防存在的问题
地震烈度是一个十分复杂、模糊和笼统的主观的概念。这一概念产生于人们尚无有效的测量地震动物理参数的工具的时候。当时的地震学者用它来描述和比较某次地震在相关地区产生的影响程度的大小。地震烈度的概念发展至今,地震烈度表是其目前最精细的使用参照。不可否认,地震烈度表仍然是非常粗略的。由于地震烈度包括人的感受、地震动引起的响动之类无法量化的多重指标,这就导致了每次强震过后,强震区的烈度划分总是存在争议。由于地震烈度具有多指标综合性,在多个指标评定结果相差较多时,如何综合评定,这往往就取决于个人主观决定。不仅如此,具体到衡量地震烈度的每个指标的应用同样带有较大的随意性。目前的地震工程领域已经认识到包括结构类型,场地条件,震源机制在内的诸多因素对地震作用的影响。在实际的结构抗震工程中,认识较为成熟的影响因素已经考虑到结构抗震设计之中。地震烈度为设防指标显然没有区分种种因素造成的差异,从而也说明,在一定程度上地震烈度是一个落后的概念。总而言之,地震烈度是个十分粗略的概念,在建筑结构抗震设计中使用这一概念作为抗震设防指标是不恰当的。地震作为一个极为复杂的自然现象,地震动参数之间往往不存在明确的对应关系,事实上地震烈度和任一地震动参数之间的
对应关系更加模糊。自从20世纪30年代一50年代,人们逐渐积累了不少的地震记录,并依靠这些资料试图建立地震烈度与某个地震动参数的对应关系。最后的结论是:寻求地震动的任一单项参数与烈度的对应关系是徒劳的。这一事实的存在也就导致了在抗震工程中无法以地震烈度为出发点,直接合理的得到建筑结构的抗震设防参数,也无法经由合理的计算方法,将结构抗震验算的结果回归至地震烈度并依据三水准的设防目标来检验。考虑到地震烈度与地震动参数的对应关系极不明确,可以设想地震烈度与结构抗震概念设计要求和构造要求的对应关系更加不明确。很显然,地震烈度不是目前建筑结构抗震设防技术水准可以直接把握的概念,而在本质上,地震烈度在实际抗震设计中已经在很大程度上被绕开了。以地震烈度作为抗震设防标准的指标存在着建筑结构的抗震设计与抗震设防目标的脱节现象。
三、加强建筑工程抗震设防的措施
要适度提高建筑设防等级、提高建筑设计水平和确保工程质量等方面做到有效结合。主要措施有:
(1)建筑抗震设防,确定合理的设防等级。加固旧建筑的抗震等级。确保工程质量需适度提高设防等级的.主要是地处地震带、发生过大地震和设防级别明显偏低的地区。对于新建建筑则有必要、有可能大面积地提高抗震能力。对原有未设防的房屋,也要普遍进行抗震鉴定和抗震加固。抗震加固不仅在地震时能大大减轻房屋的破坏、保障人员的安全,就是没有发生地震,也在增加建筑物的安全、延长建筑物的使用年限、抗御其他灾害等方面具有明显的经济效益、环境效益和社会效益。
(2)完善进行抗震设防的法律依据。近年来国家为了规范抗震管理工作,建立健全建筑工程抗震设防法规体系,制定完善建筑工程抗震考核配套规章。认真做好施工单位管理规范和建筑工程抗震施工管理规范等国家标准和行业标准的制定修订工作。各地要结合
本地实际.制定和完善地方抗震设防管理审批法规规定.尽快形成国家和地方相互呼应、互为补充、比较完善的建筑工程抗震设防新体系。
(3)选择合理的地震安全性评价标准。地震安全性评价是抗震设计的一部分。它要求所设计的工程在使用期内可能遇到几次小的地震,工程基本无损,无需修理即可继续使用;在难得一遇的中震下.经修理后仍可继续使用;而在不大可能遭遇的特大地震下,可以容许工程破坏,但仍不倒塌,以保证人身安全。地震安全性评价主要包括地震危险性分析和土层地震反映,直接提供不同年限、不同概率水准的基岩与地振动工程参数。建筑工程首先要确定设防标准、设防标准定低了,工程设施安全度降低,地震时起不到抗震的效果。设防标准定高了,增加不必要的浪费,甚至工程项目因资金不足而缓建或停建。
(4)在工程建设的整个过程中抗震设防措施不容忽视。要使建筑工程真正达到能够减轻以至避免地震灾害,必须把抗震防灾工作贯穿始终,就是说在选址时选择地震危险性较小的地段作为建设场地。在抗震设计上,一定要严格按“二阶段”的设计步骤和“三个水准”的设防目标进行设计,不得马虎。在施工的各个环节上要全面贯彻抗震规范要求,充分体现抗震设计意图,使建筑物防御地震的能力得到保障,从而减轻地震灾害给人民生命财产带来的损失。
(5)加大科技投入,建立工程抗震设防管理信息化平台随着科学技术的发展。传统的管理手段已经不能满足建筑工程抗震设防的需要,迫切需要地震管理部门和建筑工程部门及建筑业业务主体三方联合起来加快建筑工程抗震设防信息化平台的构建。应用现代的通讯设备和电子计算机技术,建立健全建筑工程场地的数据库,逐步实现施工现场管理和监控的现代化.减少工程建设方因资金因素而降低工程抗震性能。可以通过工程抗震管理信息系统进行现代抗震设防管理和职能监督工作,确保建筑物在工程建设中抗震系数的真实性。
【参考文献】
[1]李国强.建筑结构抗震设计[M].北京:中国建筑工业出版社,2005.
引言
新的《混凝土异型柱技术规程》(JGJl49—2006)(简称异型柱规程)于2006年8月颁布,改变了异型柱设计只有地方性规定而没有国标的历。随之而来就是我们对规范的理解可能没有比较深入的研究,另外《异型柱规程》有些规定比《建筑抗震设计规范》(GB50011-2~1)(简称抗震规范)严格。现就规范的几点规定,谈谈个人的一点看法:
(1)异型柱结构最大适应高度
由于异型柱是一种新型的结构形式,只经过十余年的实践。综合考虑现有的理论研究、实验研究成果及设计施工经验,其房屋适用的最大高度较一般的钢筋混凝土结构有所降低。现就《异型柱规程》与《抗震规范》对比见下表:
沈阳市抗震设防烈度为7度,设计基本加速度值为0.10g,超过40米的结构,建议采用短肢剪力墙结构。
(2)异型柱的抗震等级
由于异型柱结构的抗震性能相对于普通混凝土房屋较弱,异型柱结构的抗震等级相对于普通混凝土房屋也应较严格。由于异型柱结构的适用范围较普通混凝土结构小,相应《异型柱规程》的抗震等级分类较《抗震规范》详细。对于丙类建筑抗震设计的房屋,《异型柱规程》给出了抗震等级的确定方法,现就《异型柱规程》与《抗震规范》的异《抗震规范》现浇钢筋混凝土房屋的抗震等级
《异型柱规程》中表3.3—1注3,当为7度(0.15g)时,建于Ⅲ、Ⅳ类声地的异形柱框架结构和框架一剪力墙结构情形时,也按8度(O.20g)采取抗震构造措施,但于括号内所示的抗震等级形式来具体表达,需注意的是《异型柱规程》采取了“应”按表中括号所示的抗震等级采取抗震构造措施,比《抗震规范》的上述对应部分规定(“宜”按……)有所加严
(3)不规则异型柱结构的抗震设计应符合下列要求
1.当异型柱结构楼层竖向构件的最大水
平位移(或层间位移)与该楼层层两端弹性水平位移(或层间位移)平均值之比大于1.20时,根据《抗震规范》有关规性,可界定为平面不规则的“扭转不规则类型”,但《异型柱规程》规性此时控制该比值不应大于1.45(第3.2.5条第1款),较《抗震规范》相应规定“不大于1.5”有所加严,目的是为了为严格控制异型柱结构平面的不规则性,避免过大的扭转
效应而导致严重的震害。
2.当异型柱结构的层间受剪承载力小于上一楼层的80%时,根据《抗震规范》有关规性,可界定为竖向不规则中的“楼层承载力突变类型”,并规定其薄弱层的受剪承载力不应小于上一层的65%,但《异型柱规程》规性此时乘以1.20的增大系数(第3.2.5条第2款),较《抗震规范》相应规定乘以增大系数1.15有所加严。
(4)异型柱的抗震作用计算规则
1.《抗震规范》第3.1.4条规定:“抗震设防为6度时,除本规范规定外,对乙、丙、丁类建筑可不进行地震作用计算”及第5.1.6条规定:“6度时的建筑(建造于Ⅳ类场地上较高的高层建筑除外),以及生土房屋及木结构房屋,应允许不进行截面抗震验算。”但《异型柱规程》第4.2.3条则以强制性条文方式规定:“抗震设防为6度、7度(0.1Og、0.15g)及8度(0.20g)的异型柱结构应进行地震作用计算及结构抗震验算。”本条是基于异型柱结构的抗震性能特点而制定的,6度设防时设计者应注意此条。
2.异型柱的双向偏压正截面承载力随荷载(作用)方向不同而有较大的差异,在L形、T形和十字形三种异型柱中,以L形柱的差异最为显著(设计者应着重加强L形柱的构造)。如根据《抗震规范》5.1.1条第一款(一般情况下(所有烈度),应允许在建筑结构的两个主轴方向分别计算地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担),则可能在某些情况下造成结构的不安全性,所以《异型柱规程》4.2.4条第一款规定, 7度(0.15g)及8度(0.20g)时尚应对与主轴成45°方向进行补充计算。
(5)异型柱的抗震变形验算
由于异型柱结构的特殊性,《异型柱规程》对异型柱结构的弹性层间位移角限值也较《抗震规范》严格,现比较如下:
考虑到异型柱结构的特殊性,本人建议进行异型柱设计时弹性层间位移角应从严控制:框架结构【】应小于l,800,框架一剪力墙结构【]应小于1/I100。
1引言
地震是一种突发性和毁灭性的自然灾害,它对人类社会的危害首先是引起建筑物的破坏或倒塌,导致严重的人身伤亡和财产损失;其次是引起火灾、水灾等次生灾害,破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。近十年来,地壳运动进入活跃期,世界各地都爆发了不同程度的地震,而我国更是世界上大陆地震最多的国家之一,20世纪以来,全球发生7级以上地震1200余次,其中十分之一在我国。例如,1976年7月28日的唐山7.8级地震,2008年5月12日的汶川8.0级地震,2010年4月14日的玉树地震,都给人们的生命财产安全带来巨大的损失。同时,由于地震破坏的后果严重,我国抗震规范在2008年与2010年都进行了不同程度的修正,目的是加强建筑结构的安全性。因此,为保障地震作用下人们的生命财产损失降至最低,有必要对建筑物的抗震设计进行研究,本文就高层结构的一些常用抗震设计方法进行了讨论。
2结构抗震设计方法的发展
结构抗震设计方法的发展历史是人们对地震作用和结构抗震设计能力认识不断深化的过程,对结构抗震设计方法发展历史进行回顾,有助于对结构抗震设计原理的认识,
结构抗震设计方法经历了静力法、反应谱法、延性设计法、能力设计法、给予能量平衡的极限设计方法、基于损伤设计方法和近年来正在发疹的基于性能/位移设计法几个阶段[1]。这些抗震设计方法在发展阶段相互交错与渗透,对齐进行系统化整理,结构抗震设计方法可以分为以下几类[2]:
基于承载力设计方法
基于承载力和构造保证延性设计方法
基于损伤和能量设计方法
能力设计法
基于性能/位移设计方法
根据清华大学叶列平教授的研究,第(5)种方法在结构抗震设计中较前几种方法优点更为突出,并且在各国规范中应用最广泛。
3高层抗震设计的设防目标
长期的地震观测表明,在同一地区不同强度地震的重现期是不同的。强度小的地震重现期,一般10~50年左右发生一次,即所谓频遇地震或“小震”;强度较大的地震,重现期较长,一般100~500年发生一次,即所谓偶遇地震或“中震”;而强度特别大的强烈地震,重现期一般为数千年,即所谓罕遇地震或“大震”。
高层建筑的使用寿命一般为50~100年,高层住宅的寿命更短,因此要求结构在“大震”作用下不破坏显然四不合适和不经济的。这就提出了对于不同强度地震的重现期,结构应具有不同的抗震性能,即所谓抗震设防目标。目前国际上公认的较为合理的抗震设防目标是:
(1)在频遇地震作用下,结构地震反应应处于弹性阶段,结构无损坏或轻微破坏,且结构变形很小,不会导致非结构构件的破坏,震后可无条件继续使用;
(2)在偶遇地震作用下,结构和非结构构件损伤在一定限度内,震后经修复可继续使用;
(3)在罕遇地震作用下,结构不产生倒塌,非结构构件无脱落或落下,保证人身安全,
上述抗震设防目标与我国抗震设计规范中的“三水准”即“小震不坏,中震可修,大震不倒”是一个含义。现在的问题是这种单一的抗震设防目标已不能适应现代工程结构对抗震性能的需求。许多重要建筑对大震作用下的性能要求也不再是不倒塌,而是应满足一定性能指标要求,以保证其仍具有一定的建筑功能和使用功能,这即是基于性能抗震设计方法研究的目的。
高层抗震设计方法的几点讨论
4.1遵循建筑抗震设计规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然收抗震有关科学理论的引导,向技术经验合理性的方向发展,但它更是具有坚定的工程实践基础,把建筑工程的安全性放在首位。正是基于这种认识,现代规范的条文有的被列为强制性条文,有的条文中应用了“严禁、不得、不许、不宜”等体现不同程度限制性和“必须、应该、宜于、可以”等体现不同程度灵活性的用词。任何结构的抗震设计都必须以抗震规范为基础,按其规定条文执行。
4.2高层建筑抗震设计应注意的问题
高层建筑结构应根据房屋高度和高宽比、抗震设防类型、抗震设防烈度、场地类别、结构材料和施工技术条件等因素考虑其适宜的结构体系,高层建筑的高宽比是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制,在设计过程中应注意以下几点:
应当注意抗震缝的设计,必须留有足够的防震缝宽度;
平面形状和刚度不对称,会是建筑物产生显著的扭转、震害严重,设计中应避免这种情况,不能避免时应对抗震薄弱处进行加强;
凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重,设计中加以注意;
高层部分和底层部分之间的连接构造是否合理;
框架柱截面太小、箍筋不足、柱子的延性和抗震能力不够等容易导致剪切破坏或柱头压碎;
沿竖向楼层质量与刚度变化太大容易导致楼层变形过分集中而产生破坏;
地基的稳定性尤为重要;
伸缩缝和沉降缝宽度过小(W昂王与防震缝一切三缝合一)使得碰撞破坏很多;
不应在建筑物端部设置楼梯间,楼板有大洞口会因刚度不均匀而产生扭转;
中间部分楼层柱子截面和材料改变或取消部分剪力墙,都会产生刚度或承载力的突变,形成结构薄弱层。
4.3采用纤维增强混凝土
对于高层建筑,混凝土材料由于其自身缺陷,地震作用下易于发生脆性破坏,引起结构损伤,因此从建筑材料角度分析,可以在某些关键部位采用韧性材料代替混凝土提高整体结构的吸收能量能力与抗震能力。抗震建筑材料必须具备轻质、高强、高韧性特征,例如,木材、轻钢、型钢、钢筋混凝土、复合材料等都可以从某些方面达到抗震目的。而在我国,森林覆盖面积少,人居木材占有量少,而钢材成本较高,这些材料的使用都有相当的局限性。而在钢筋混凝土结构的关键部位采用一些韧性较高、延性较好、抗性强度高的纤维增强混凝土对提高结构的抗震性能具有非常明显的作用[3]。目前,我国的纤维增强混凝土种类繁多,例如,钢纤维混凝土、聚丙烯增强混凝土、聚合物增强砂浆、超高韧性水泥基复合材料等,这些材料的研究与发展对高层结构的抗震也起着重要作用。
结束语
本文在回顾结构抗震设计方法发展历史的基础上,探究了高层结构的抗震设防标准,并讨论文高层抗震设计中应该注意的问题。高层抗震是个很复杂的课题,涉及的考虑因素众多,由于笔者参加工作时间较短,相关工程经验较少,本文仅提供一般性的参考,如有不到之处,敬请指正。
参考文献
白绍良. 对新西兰、欧共体、美国、日本和中国规范钢筋混凝土结构抗震条文的初步对比分析. 重庆大学, 2000.
小古俊介, 叶列平. 日本基于性能结构抗震设计方法的发展. 建筑结构, 2000年第6期.
0引言
地震灾害是人类面临的严重自然灾害之一。地震具有突发性特点,至今可预报性仍然很低。强烈地震常造成人身和财产的巨大损失。我国属地震多发国家,特别是近年来地震活动频繁,一些特大地震已经给人类社会带来了不可估量的损失,这就迫使工程人员不得不去深入研究土木工程结构的抗震设计理论和方法,最大限度地减少地震给人们带来的影响。
抗震加固是对未进行抗震设防或已进行抗震设防但达不到设防标准的建筑物,进行结构补强和提高其抗震力的措施。建筑结构加固方法随着经济水平、技术水平和人们观念的发展而发展,但有些构件加固方法(如加大截面法)将使结构和构件的刚度发生变化,从而引起结构动力特性、构件内力的变化以及刚度软弱层和强度薄弱层的出现,而这些变化对结构承载力及弹塑性变形能力带来的不利或有利影响,是目前的加固方法所没有考虑的。因此对钢筋混凝土结构抗震加固技术进行论述有着重要的意义。
1 钢筋混凝土抗震常规加固技术
混凝土结构抗震常规加固方法包括加大截面加固法、外包钢加固法、预应力加固法、改变结构传力途径加固法、受弯构件外部粘贴加固法以及其他加固方法等,每种加固方法各有其特点和适应范围,应根据具体条件加以选择。
1.1 加大截面加固法
加大截面加固法即采用增大混凝土结构或构筑物的截面面积,以提高其承载力和满足正常使用要求的一种加固方法,可广泛用于混凝土结构的梁、板、柱等构件和一般构筑物的加固。但由于截面尺寸加大,有时受使用上限制。
1.2 外包型钢加固法
外包钢加固法即在混凝土构件四周包以型钢的加固方法(分干式和湿式两种形式),适用于使用上不允许增大混凝土截面尺寸,而又需要大幅度地提高承载力的混凝土结构加固。当采用化学灌浆外包钢加固时,型钢表面温度不应高于60℃;当环境具有腐蚀性介质时,应有可靠的防护措施。
1.3预应力加固法
即采用外加预应力的钢拉杆(一般分水平拉杆、下撑式拉杆和组合式拉杆3种)或撑杆对结构进行加固的方法,适用于要求提高承载力、刚度和抗裂性及加固后占空间小的混凝土承重结构。此法不宜用于高温环境下的混凝土结构,也不适用于混凝土收缩徐变大的混凝土结构。
2 改变结构传力途径加固法
2.1增设支点法
该方法是以减少结构的计算跨度和变形,提高其承载力的加固方法。按支承结构的受力性质又分为刚性支点和弹性支点2种。毕业论文,加固方法。刚性支点法是通过支承构件的轴心受压将荷载直接传给基础或其它承重结构的一种加固方法。增设支点法适用于房屋净空不受限制的大跨度结构加固。
2.2托梁拔柱法
该法是在不拆或少拆上部结构的情况下拆除、更换、接长柱子的一种加固方法。按其施工方法的不同又分为有支撑托梁拔柱、无支撑托梁拔柱及双托梁反牛腿托梁柱等方案。适用于要求房屋使用功能改变、增大空间的老厂改造等结构加固。其中双托梁反牛腿托梁拔柱,则适用于保留上柱的型钢加固。
2.3 受弯构件外部粘贴钢板、碳纤维或其它抗拉强度较高的材料加固法
此法是用建筑结构胶将钢板等材料粘贴在钢筋混凝土受弯构件表面,具有良好的共同工作性能,所占空间小、加固施工周期短、消耗材料少,其加固部位、范围与强度可视设计构造需要而定,是近几年来新发展的加固技术。本加固法适用于承受静力作用的一般受弯构件,且环境温度不应超过60℃, 相对湿度不大于70%及无化学腐蚀的使用环境中。
3钢筋混凝土结构抗震加固新技术
3.1 结构基础隔震技术
基础隔震技术是在上部结构和基础之间设置隔震装置,阻隔地震能量向上部结构传递,从而减少结构地震反应的一种抗震技术。目前研究开发的基础隔震技术主要有:叠层橡胶垫隔震、摩擦滑移隔震、滚珠及滚轴隔震、支撑式摆动隔震和混合隔震等。其中,叠层橡胶隔震支座已被广泛应用,具有很好的应用前景。纵观隔震技术的发展,可以看出近年来隔震技术有以下特点:
(1)隔震技术的应用范围越来越广,数量越来越多。隔震技术不仅在新建工程中获得广泛应用,而且在现有建筑的加同工程中得到应用。
(2)隔震建筑的结构形式日趋多样化,已从早期主要应用于砌体结构、钢筋混凝土结构发展到钢结构、组合结构、木结构。
(3)可供选择的隔震装置越来越多,新的隔震方法不断提出,并且采用混合隔震技术已经成为发展趋势。
3.2消能隔震技术
传统的抗震设计方法是靠结构的延性来耗散地震能量。但问题在于结构受到1次强烈地震时,结构构件在利用自身的延性耗散地震能量的同时,也会受到严重的损伤。为了解决这个矛盾,在结构上附加各种阻尼器,通过阻尼器大量耗散地震输入到上部结构的能量,从而达到保护主体结构免遭破坏的目的。常用的阻尼器有金属屈服阻尼器(Metallic Yielding Damper)、摩擦阻尼器(Friction Damper)、黏弹性阻尼器(ViscoelasticDamper)、粘滞液体阻尼器(Viscous Fluid Damper)等。消能减震技术近年来被大量应用在已有建筑物的抗震加固上,与传统的加固技术相比主要优势有:
(1)施工现场无湿作业,基本不影响原建筑的正常使用功能;
(2)能在保持原建筑外貌不变的前提下,实现了提高抗震能力和改善使用功能的协调;
(3)消能效果明显,结构经过合理的设计,可以满足各种设防烈度下的抗震要求;
(4)可以有效地节约经费和缩短工期。
3.3 高性能钢丝网复合砂浆薄层(HPFL)加固技术
高性能钢筋网复合砂浆薄层(HPFL)加固混凝土结构,是指对混凝土构件进行表面处理后,铺设钢筋网,再粉抹或喷射上高性能复合砂浆,使加固层与原构件共同工作,达到提高构件工作性能的目的。
采用高性能水泥复合砂浆钢筋网薄层加固混凝土构件能有效提高构件的承载力、刚度、抗裂性和延性。毕业论文,加固方法。毕业论文,加固方法。该加固方法与碳纤维加固法相比具有施工简单,经济实用的优点,在结构工程加固中的应用前景十分广阔。毕业论文,加固方法。毕业论文,加固方法。
随着抗震技术理论的不断发展和完善,抗震加固方法已从传统的方法不断趋向多样化。毕业论文,加固方法。目前新发展起来的减震控制技术在工程应用上有明显优势,为建筑的抗震设计和抗震加固提供了一条崭新的途径,它克服了传统结构“硬碰硬”式的抗震设计方法,具有概念简单、减震机理明确、减震效果显著和安全可靠的特点。
参考文献:
[1]李科,魏延良.钢筋混凝土结构的抗震加固方法述评[J]. 地震工程与工程振动, 2005, 25 (4):126—129.
[2]郭健.钢筋混凝土结构加固改造方法的研究及工程应用[D]. 长沙:湖南大学2005.
[3]卫龙武,吕志涛.建筑物评估加固与改造[M]. 南京:江苏科学技术出版社,1992.
[4]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M]. 天津:天津大学出版社, 2001.
[5]吴英健.建筑物抗震加固[M]. 长春:长春出版社, 1991.
[6]薛彦涛,范苏榕.传统抗震加固技术与抗震加固新技术的介绍[J]. 工程建设与设计, 2006, 38(8):19—22.
1 引言
地震给人类造成的最大危害是房屋倒塌,危度生命和财产安全。砖房在历次地震中的震害很严重,农村、城镇房屋建筑的主体为多层砌体结构。在地震力的作用下,砖结构易发生脆性的剪切破坏,从而导致房屋的破坏和倒塌。全国城镇民用建筑中,以砖砌体作为墙体材料的占90%以上,多层砌体(含底框砖房)所占(面积)比例达89%。抓好抗震设防地区建设工程的抗震设计,对减轻地震灾害有积极的作用。因此加强抗震地区合理的进行结构抗震设计是十分重要的工作。
2 农村房屋设计中存在的主要问题
(1)在建多层砌体住宅中,房屋出现超高现象。有些底层还出现店面屋
(2)有的房屋为设置大客厅,牺牲门间墙宽度,开大门洞,大门洞间墙宽仅有240mm,并将阳台做成大悬挑从而扩展客厅面积,当部分地方尺寸满足不了要求,也不注意采取措施,采用增大截面及配筋的构造柱替代砖墙肢,把布局改得乱七八糟的,不仅不美观,平面改成层次不齐,墙体沿竖向布置上下不连续。
(3)在房屋设计中没有对抗震承载力进行计算。
(4)房屋在抗震设计中,采取的抗震措施不到位。很多设计不完整,设置不足,细节不清楚,不管能实效不,就靠图纸来施行。
(5)在建多层楼房屋中,为了满足部分大空间需要,底层或顶层采用“混杂”结构体系的,在底层或顶层局部采用钢筋砼内框架结构,有的仅将构造柱和圈梁局部加大,当作结构的框架。
3.农村建筑抗震设计的基本原则
(1)选择对抗震有利的场地和地基,从地形地貌看,应选择地势平坦开阔的地方作为建筑场地。
(2)合理规划,避免地震时发生次生灾害。房屋不要建得太密,房屋的间距以不小于1~1.5倍房屋的高度为宜。
(3)抗震结构方案一般应采用矩形、方形、圆形的平面布置。要选择经济合理的设计方案
(4)保证结构的整体性,并使结构和联结部分具有较好的塑性。
(5)尽量不做建筑突出屋面的砖烟囱、女儿墙等,以免引起房屋破坏
(6)减轻建筑物的自重,降低它的重心位置。建筑物所受的地震荷载的大小和它的重量成正比。减轻建筑物的重量,是减少地震荷载最经济最有效措施。
(7)购置正规合格材料。材料强度应达到设计要求,按设计图纸施工,并严格按照施工规范施工。
4农村房屋抗震设计
4.1房屋坐落设计,布局要合理
房屋布局要紧凑,美观合理。尽量设计为正房,从而加大才光亮。区位选址要合理,建筑物与周围环境相协调,有足够的人均建筑面积,充分利用土地资源,使住宅具有足够的抵抗自然灾害能力。房间设备亮度足够,通风良好,南北朝向为佳,朝向的间距在净高1.5倍以上。房屋总高度与总宽度的最大比值,不能超过抗震规范要求。
4.2结构体系设计
首先应采用横墙承重或纵横墙共同承重的结构体系。纵横向应应具有合理的刚度和强度。对出现薄弱的地方应采取相应措施提高其抗震能力。墙体布置应满足地震作用有合理的传递途径。同一结构单元不应采用砖房与底框砖房或内框架砖房或框架结构等“混杂”的结构类型。应采用相同的结构类型。
4.2.1外墙维护设计。优先采用陶粒空心砌块、陶粒聚苯砌块作为外墙围护。
4.2.2窗户设计。要针对地区特点、窗的位置、朝向及室外遮挡等情况,进行合理的设计。农村住房可采用现行建筑设计规范中规定的窗地比。科技论文。窗应布置在房间或开间中部。这样可以使室内照明度均匀,窗台高度高度一般为900mm,不能过高或过低。科技论文。
4.2.3抗震设计。抗震性能好坏取决于建筑地点、地质条件;建筑物的设计是否符合抗震设计规范;施工质量的优劣。建造中适当配以构造柱、圈梁及拉结筋,以增强建筑物的抗震能力。
4.2.4平、立面布置。有的没抗震设计理念,为开大门洞,缩小门间墙宽度。建筑的平面布置和抗侧力结构的平面布置要对称,有规则。纵、横墙沿平面布置不能对齐的墙体较少,楼梯间不宜设在房屋的转角处,房屋转角处的门窗间墙承受双向侧向应力,其局部尺寸应不小于lm;其余外纵墙的门窗间墙局部尺寸部分不满足1m要求时,其限值可放宽到0.8m;内墙门间墙局部尺寸不满足要求时,可用设构造柱来满足。建筑的立面和竖向剖面力求规则,结构的侧向刚度宜均匀变化,墙体沿竖向布置上下应连续,避免刚度突变。当房屋的立面高差较大、错层较大,采用防震缝将结构分割成平面和体形规则的独立元。虽然砖砌体与构造柱和圈梁可以增加房屋的延性。但它们不能同时发挥作用。
4.3抗震计算
抗震计算是抗震设计中的重要内容,是保证满足抗震承载力的基础。对平面和竖向不规则的多层砖房采用考虑地震扭转影响的分析程序。多层砖房的抗震计算可采用底部剪力法。
4.4抗震措施
为保证房屋在地震中有良好的抗震能力,以下介绍了几点抗震措施内容。
4.4.1构造柱和圈梁的设置
现在农村很多房屋是多层砌体房屋。对横墙较多或较少的要采取不同设置,对横墙较少的应根据房屋增加一层或二层后的层数。对横墙较多应按要求设置构造柱。对横墙承重或纵横墙共同承重的装配式钢筋砼楼、木楼、屋盖应按抗震规范要求设置圈粱。圈梁的截面和配筋不能太大。
4.4.2构件间的连接措施
(1)构造柱与楼、屋盖连接:当为现浇楼、屋盖时,在楼、屋盖处设240mmx120mm拉梁与构造柱连接。为屋盖时.构造柱应与每层圈梁连接。
(2)构造柱与砖墙连接:构造柱与砖墙连接处应砌成马牙槎。并沿墙高每隔500mm设2Φ6拉结钢筋,每边伸入墙内不小于1m。
(3)墙与墙的连接:抗震设防烈度为7度时,层高超过3.6m或长度大于7.2m的大房间,外墙转角及内外墙交接处,当未设构造柱时,应沿墙高每隔500mm设2Φ6拉结钢筋,每边伸入墙内不小于lm。
(4)屋顶间的连接:突出屋面的楼梯间,构造柱应从下一层伸到屋项间顶部,并与顶部圈粱连接。
(5)后砌墙体的连接:应沿墙商每隔500mm设2Φ6拉结钢筋与承重墙连接。每边伸入墙内不小于0.5m。抗震设防烈度为8度到9度时。长度大于5.1m的后砌墙顶,应与楼、屋面板或梁连接。科技论文。
(6)栏板的连接:砖砌栏板应配水平钢筋,并且压项卧梁应与砼立柱相连。
(7)构造柱底端连接:构造柱可不单独设基础,但应伸入室外地面下500mm,或锚入室外地面下不小于300mm的地圈梁。
4.4.3悬臂构件的连接
(1)女儿墙的稳定措施:抗震设防烈度为6~7度时,240mm厚无锚固女儿墙(非出入口处)的高度不能超过0.5m,当超过时,女儿墙应按抗震构造图集要求采取措施。女儿墙的计算高度可从屋盖的圈梁顶面算起。当屋面板周边与女儿墙有钢筋拉结时。计算高度可从板面算起。
(2)悬挑构件:悬臂阳台挑梁的最大外挑长度不能大于1.8m.不应大于2m。并且不能采用墙中悬挑式踏步或竖肋插入墙体的楼梯。
5农村新建房屋的措施
新建房屋要从当地环境、设计方案、机构、材料、人员等方面进行控制,从而提高房屋的施工质量和房屋抗震水平。
对于当地的环境做一个系统的调查,做到因地制宜。合理采用设计方案,加强新型房屋结构的抗震能力的技术措施。在房屋建造区域建立地勘资料,为农民服务。作为地震行政主管部门应加强对农民地震知识的宣传,加强地震防范意识。对于建筑的用料要严格进行控制,防止使用不合格的建筑材料,以免建造质量低劣的房屋。无论是村民还是施工人员应具备一些基本的抗震知识。
6.结束语
随着我国农村经济水平的提高,农村住宅数量越来越多,越来越多的农民建新房,多层房屋,在建房中,应重视房屋抗震设计中的各个环节,将工程质量放在首位,严格按照施工规范要求施工,加强规划、设计、施工方面的管理,从而降低房屋的地震程度。
参考文献:
[1]柴旭辉.村镇民房抗震能力的现状及加强措施[J].山西建筑,2005,1(1):50―51.
[2]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2001.293―294.