无线电技术论文模板(10篇)

时间:2022-04-22 13:57:25

导言:作为写作爱好者,不可错过为您精心挑选的10篇无线电技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

无线电技术论文

篇1

二、认知无线电与宽带无线通信系统的融合

认知无线电的关键技术有:频谱监测技术,自适应频谱资源分配技术、自适应调制解调技术等。宽带无线技术主要有正交频分复用技术(OFDM)、多输入多输出技术(MIMO)、HARQ技术和AMC技术等。认知无线电与宽带无线通信系统的融合最主要的就是自适应频谱资源分配技术和正交频分复用技术结合、并辅以其它相关技术。OFDM系统是目前公认的比较容易实现频谱资源控制的传输方式。该调制方式可以通过频率的组合或裁剪实现频谱资源的充分利用,其与自适应技术相结合,除了在传统的时间域上自适应外,还更容易利用多载波的频率域,可以灵活控制和分配频谱、时间、功率等资源,在结合MIMO系统的空间资源,根据用户在不同的位置的不同传输条件,感知环境并且适应环境,并不断地跟踪环境的变化,以合理利用资源、提高系统容量。自适应频谱资源分配的关键技术主要有:载波分配技术、子载波功率控制技术、多天线层资源分配算法和复合自适应传输技术。

(1)载波分配技术。CR具有感知无线环境的能力。子载波分配就是根据用户的业务和服务质量要求,分配一定数量的频率资源。检测到的宽带资源是不确定的,随时间、空间、移动速度等变化。OFDM系统具有裁剪功能,通过子载波的分配,即在频段内对于用户来说,信干噪比(SINR)较高的不规律和不连续子载波的频谱资源进行整合,按照一定的公平原则将频谱资源分配给不同的用户,确定每个子载波传输的比特数量,选取相应的调制方式,实现资源的合理分配和利用。

(2)子载波功率控制技术。由于分配给用户的功率和子载波数一般是成比例的,功率控制算法在经典的“注水”算法的基础上,有一系列的派生算法。这些算法追求的是功率控制的完备性和收敛性,既要不造成干扰又要使认知无线电有较好的通过率,且达到实时性的要求。事实上功率控制算法和子载波分配算法是密不可分的。这是因为在判断某子载波是否可以使用时,就要对现状(空间距离、衰落)做出判断,同时还需要计算出可分配的功率大小,对于一个用户如果速率一定,如子载波数目增加所需的功率就会下降。

篇2

一、感知无线电的概念

感知无线电技术用以实现动态频谱共享。通过检测空中信号占用频谱,通过探知无线环境中空闲频谱资源,选择可被自己利用频率进行通信。租借系统通过采用感知无线电技术,实时跟踪授权系统占用频率状况,随时使用、释放频段,在保障授权系统通信前提下,与授权系统动态共享频谱。论文百事通采用频谱检测方式获取频谱信息可使感知无线电技术能适应无线环境频谱使用状况短期变化,高效利用频谱,并且感知无线电技术不要求改造现有系统,对无线信道环境和用户需求都将具有较好适应性。

感知无线电技术动态频谱共享是自适应传输技术思想在频谱分配领域的运用。自适应传输使无线通信系统数据传输适应信道传输能力的变化,通过提高数据传输速率来改善频谱利用率。而感知无线电使无线通信系统占用的频谱适应无线环境频谱使用状况的变化,通过增加共享同一频段的系统数、用户数来提高频谱利用率。不管是自适应传输技术还是感知无线电技术,其思想的核心都是无线通信系统能自动地适应外界环境和自身需求的变化。

感知无线电思想可以推广到移动通信其它层面。从低层到高层,要求未来移动通信系统能检测系统各层参数与状态,如链路质量、网络拓扑、业务负载、甚至用户需求,并能适应这些变化。从通信端到端,在存在重叠覆盖多种无线电通信环境下,要求移动设备能够在异构网络间切换,实现包括终端、网络和业务在内的端到端重配置。这也就是所谓的认知网络(CognitiveNetwork)。

二、感知无线电关键技术分析

作为一种新的智能无线通信技术,感知无线电可以感知到周围的环境特征,采用构建方法进行学习,通过相关描述语言与通信网络智能交流,实时调整传输参数,使系统的无线规则与输入的无线电激励的变化相适应,以达到随时随地通信系统的高可靠性和频谱利用的高效性。无线规则指一系列适合无线频谱合理使用的射频带宽、空中接口、相关协议和空间时间模式的设置。感知无线电系统的重构能力很重要,该功能就是以软件无线电作为平台来实现的。重构功能是由软件无线电实现,而感知无线电的其他任务是通过信号处理和机器学习的过程实现,其感知过程开始于无线电激励的被动感应,以做出反应行为而终止,一个基本的感知周期要大致分为3个基本过程,分别是无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,它们的顺序执行使感知无线电系统的感知功能得以实现。

2.1感知无线电技术与动态频谱分配

未来移动通信系统满足用户需求的关键点是提高频谱利用率。移动通信的发展使带来了越来越严重的频率短缺问题。解决频率短缺大致有两类方法,一是扩大可利用的频率范围,二是提高频谱利用率。为增加可用频率,移动通信系统的频率已扩展至300GHZ。无线信道的路径损耗是随频率升高而迅速增加的,所以频率过高并不利于移动通信。因而,更加有效的方法是提高频谱利用率。

提高频谱利用率有三类途径,改进通信设备的传输技术,优化网络、提高组网能力。目前广泛采用这两种途径,但是这两种方法能够获得的频潜利用率增益将越来越少。第三种提高频谱利用率的途径是改进频谱分配方式。

目前国际上主要采用固定频谱分配方式,一个频段只分配给一个无线接入系统,不管分配的频段是否被频率牌照的所有者实际使用,其它无线接入系统不能占用该频段。为提高频谱利用率,可以将一些频段分配给了多个系统,允许它们同时占有同一个频段,甚至一些频段可以开放为不需牌照的频段,允许任意系统占用。尽管固定频谱分配方式能够改善系统干扰问题,但由于频谱的授权系统并不是在任何地区的任何时刻都使用频率,其频谱利用率很低。而简单地允许多个系统共享一个频段,虽然优于独占性的固定频谱分配方式,但由于它对频谱共享没有加以必要的控制,一个系统占用频率前并不知道该频率是否正在被其它系统使用,从而导致了两方面的问题。可见,如果仅仅是简单地允许多个系统共享频谱,而不避免系统间干扰,会制约频谱利用率的提高,并且不能保证通信质量。

为解决频谱短缺与频谱利用率低下的矛盾,可以考虑采用动态频谱分配方式。允许多个系统共享同一频段,各系统只在需要通信时才能占有频段,通信结束就释放频段,而且必须控制系统间干扰,后接入的系统不能影响其它已有系统的通信。为与现有通信系统兼容,分配频段上授权系统有使用频谱的最高优先级,只要不影响授权系统通信,租借系统与授权系统动态共享频谱。这种动态的频谱共享包含时间与空间两方面。在时间上,当授权系统不使用所分配的频率时,租借系统可以占用频率,但当授权系统重新占用频率时,租借系统必须及时地归还频率。

2.2信道状态估计及其容量预测

信道估计的结果可用来计算信道容量,用于控制发送端的信号能量,可使用香农法则计算信道容量C,但在感知无线电系统中并不直接在发送端传输C的信息,而是量化C,一定的量化率用于反馈发送端,量化比率是预先确定的,所以接收机接收的信息量要小于信道容量C。一般来说,无线系统的传输率是波动的,当其超出一定界限时,就会引起系统的不正常工作,这个界限决定了最大的传输比特率。

2.3功率控制和频谱管理

2.3.1功率控制

在感知无线电通信系统中功率控制的实现以分布方式进行,以扩大系统工作范围,提高接收机性能。控制发送端功率是感知无线电系统的关键技术之一。在多址接入的感知无线电信道环境中,主要采用协作机制方法,包括规则及协议和协作的Adhoc网络两方面内容。多用户的感知无线电系统彼此协作工作,基于先进的频谱管理功能,可以提高系统工作性能,支持更多用户接入。

2.3.2动态频谱管理

动态频谱管理也称为动态频谱分配,具有实现系统频谱高效利用的功能。在感知无线电系统中,频谱管理的算法可这样描述:基于频谱空穴和功率控制器的输出,选择一种调制方式以适应时变的无线传输环境,使系统工作在可靠传输的状态下。系统工作的可靠性可由信噪比差额(SNRgap)的大小确定。

2.4无线电知识描述语言

传统的软件无线电不能与网络进行智能交流,因为没有基于模式推理计划能力和没有相关描述语言。在以软件无线电为发展平台的感知无线电研究中,研究表示无线系统知识、计划和所需语言是关键技术,无线电知识描述语言(RKRL)应运而生,它表示了无线规则、系统配置、软件模块、网络传送、用户需求、应用环境等知识。

参考文献:

[1]何丽华,谢显中,董雪涛,周通.感知无线电中的频谱检测技术[J].通信技术,2007,(05)

[2]王军,李少谦.认知无线电:原理、技术与发展趋势[J].中兴通讯技术,2007,(03)

[3]谭学治,姜靖,孙洪剑.认知无线电的频谱感知技术研究[J].信息安全与通信保密,2007,(03).

篇3

1无线电通信技术的发展历程

1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。

1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。

1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。

1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。

随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。

随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。

信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。

无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。

2无线电通信技术的特点

近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:

不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。

具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。

可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。

无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。

3无线电通信技术之通信方法的拓新

21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:

3.1采用了数字通信技术

提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。

3.2推广通信信息技术宽带化的发展

信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。

3.3推广个人信息化技术

个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。

3.4拓新接入网络的样式

技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。3.5过渡电路交换网络

关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。

3.6使用Bluetooth技术作为信号传感器

Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。

3.7推广软件无线电

软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。

3.8提高无线通信网络可持续性

无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。

结束语

回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。

参考文献

[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.

篇4

软件无线电是随着计算机技术、高速数字处理技术的迅速发展而发展起来的,其基本思想就是将宽带A/D/A变换器尽可能地靠近天线,将电台的各种功能尽量在一个开放性、模块化的平台上由软件来确定和实现。该平台的调制方式、码速率、载波频率、指令数据格式、调制码型等系统工作参数具有完全的可编程性。

传统的卫星测控平台存在着性能不完善,调制方式、副载波、码速率组态不灵活,体积偏大等问题。研制和开发通用化、综合化、智能化的测控平台,通过注入不同的软件,实现对调制载频、调制方式、传输码速率等参数的改变,应用于各种轨道卫星平台的遥测遥控任务。数字信号处理器(DSP)是整个软件无线电方案的灵魂和核心所在。通用平台的灵活性、开妻性、通用性等特点主要是通过以数字信号处理器为中心通用硬件平台及DSP软件来实现的。经过比较,我们采用TI公司的TMS320C6000系列DSP芯片和匹配的芯片形成一套实时的DSP系统。

图1TMS320C6701结构框图

1软件无线电通用平台的DSP技术

1.1TMS320C6701DSP芯片介绍

TMS320C6701是TI公司的高性能DSP芯片,具结构框图如图1所示。

TMS320C6701的主要特点为:

*单指令字长为32位,8个指令组成一个指令包,总字长为256位,引脚与TMS320C6201系列的引脚兼容。

*体系结构采用甚长指令字(VLIW)结构;

*硬件支持IEEE标准的单精度和双精度指令集,支持字节寻址获得8位/16位/32位数据,指令集中有位操作指令(包括位域抽取、设置、清除以及位计数、归一化等);

*1Mb(位)的片内存储空间,其中程序存储空间和数据存储空间各512Kb;

*32b外部存储器接口(EMIF),有52MB的外部存储器寻址能力;

*四通道自加载DMA协处理器,可用于数据的DMA传输;

*16位宿主机接口(HPI);

*两个多通道缓冲串口(McBSPs);

*两个32位通用定时器;

*灵活的锁相环路(PLL)时钟产生器,可以对输入时钟进行不同的倍频处理;

*芯片内部有IEEE1149.1标准边界扫描仿真器(JTAG),可用于芯片的自检和开发;

*芯片共352脚采用BGA封装,以获得好的高频电气性能,并使芯片尺寸变小;

*采用0.18μm工艺,则五层金属组成,输入输出接口电压为3.3V,核心电压1.8V(167MHz时为1.9V)。

1.2DSP技术在软件平台中的应用

每套测控平台含双机备份的遥控调制器与遥控解调器,双机分别由独立电源供电。系统总体框图如图2所示。调制器与解调器分别通过不同的RS232串口与遥控处理计算机通信,完成对调制解调器的控制及其带数据的收发。

用户在每次任务前通过控制计算机设置调制方式、调制参数及通信连接方式,并调用算法参数生成程序产生调制器和解调器中算法的预置参数,并在设备初始化时以批数据方式从串口送入DSP芯片,经校验后送FlashROM中。为保证程序传送的可靠性,采用IRQ差错控制方式,DSP每接收一个数据包在存储的同时向计算机回传数据信息,计算机一旦发现数据出错即转入重传方式。参数设置成功后,调制解调器根据协议发送和接收遥控指令,并将工作状态回送遥控处理计算机,同时在遥控前端机面板上显示。

1.3调制器与解调器硬件结构与功能描述

硬件系统以DSP为核心,电路主要由下述模块组成:电源模块、系统时钟及模式设置模块、存储器模块、系统监控模块、与控制计算机通信模块、调制输出模块、B码时钟接收模块和显示控制模块。在解调系统中,除解调输入模块、解密接口模块和显示控制模块外,其余模块均与调制系统一致,如图3所示。

调制器加电时,DSP首先通过外部存储器模块完成自加载。自加载完成后,由DSP主程序对状态显示监控模块进行参数初始化设置。在有调制任务时,首先由控制计算机对DSP进行参数设置(如滤波器参数、调制制式、调制副载频、调制码速率等),然后发调制数据给DSP,由DSP的串行通信口接收数据,在DSP内完成副载频调制;调制数据经DSP串口发送给数模块转换进行数模转换,转换的信号过低通可编程滤波器滤波后输出。解调器的工作过程与上类似,在检测到有已调副载波进入A/D通道时,启动解调模块进行解调,将解调的数据送到控制计算机。

2DSP实现信号调制和解调

2.1信号调制

调制器的设计目标是在可编程的硬件平台上,通过注入不同的算法或执行软件,实现不同载波频率、调制方式、传输速率和码型的多制式的通用型调制器。它将以灵活的重构性支持各种通信发射机的不同需求,更有利于各通信设备的互连互连。考虑到数字直接合成技术具有数控灵活、频率分辨率高、频率切换快、相位可连续线性变化、覆盖带宽大、生成的正弦/余弦信号正交性好等特点,我们的设计方案是以DSPs芯片为内核,采用软件DDS技术,实现高精度、高性能的数字调制器。调制器的总体框图如图4所示。

帧分析在设备初始化时完成程序数据的接收、校验和转发(向FlashROM送)。在正常工作时,从帧数据中分离出调制参数及等调制数据,分别送参数寄存器与数据寄存器。

图5BPSK接收总体框图

在数据格式变换中,完成将输入的数据分别转变为调制参数控制字(如相应调制方式下的频率控制字K、相位控制字φ和副度控制字A)和相应格式的被调制数据,经滚降处理后(对于FSK方式可不用滚降处理)对正弦载波进行调制。

2.2信号解调

对于BPSK接收,我们采用相干解调方式,如图5所示。接收信号经带通采样得到原始信号序列后,首先与本地产生的正弦序列相混频,然后经低通滤波除高频分量,得到其带信号样值序列(正弦序列的频率与相位也由此样值序列获得)。再对基带信号样值序列进行最佳判决点时刻波形估计,估计值送往均衡器做均衡处理,均衡结构再做0、1判决得到最终的解调数据。解调的关键点在于本地载波的同步和符号定时误差的提取。

ASK(FSK)信号的解调方法可分为相干解调和非相干解调两类。由于相干解调的抗干扰能力较强,本方案采用相干解调方式。图6为采用相干解调时,接收端的解调总体方案流程框图。

接收信号首先经低通滤波器,滤除带外噪声(此处的低通滤波器由专用器件设计)。然后经A/D变换,得到样值序列,按照工作的不同阶段,分两路分别与本地相应的相干载波进行解调,主要包括混频和低通滤波两过程。解调后的信号经低通滤波器后,恢复出基带信号。基带信号进行位定时和码元判决,得到最终的解调数据。

篇5

引言

英特网(Internet)和移动通信技术的出现,改变了人们传统的生活、工作模式,打破了时间、地域的限制。移动电子商务(M-commerce)是通过移动通信技术与英特网有机结合所进行的电子商务活动。移动电子商务作为一种新型的电子商务方式,充分利用了移动无线网络的优点,是对传统电子商务的有益的补充,具有非常广阔的发展前景。近十年来,推动移动电子商务发展的技术不断涌现,这些技术主要包括:无线应用协议(WAP)、移动IP(MobileIP)、蓝牙技术(Bluetooth)、无线局域网(WLAN)、通用分组无线业务(GPRS)和第三代移动通信系统(3G)等。

一、移动电子商务

1.移动电子商务的定义及特点

目前,业界还没有对移动电子商务的定义形成权威的、一致的认识,人们从不同的角度提出了不同的见解,这些见解各有不同出发点和含义。从技术的角度看,移动电子商务可看做电子商务的一个新的发展分支;但从应用的角度来看,移动电子商务是对有线电子商务的整合与发展,是电子商务发展的新形态。一般而言,移动电子商务的定义应包含“商务活动”、“英特网”和“无线网络技术”三部分。文献[1]将移动电子商务定义为:“消费者在支持英特网的无线通信网络平台上,借助移动的智能终端设备,完成商品或服务的购买或消费行为的社会经济活动。”可见,移动电子商务可以定义为:通过移动的智能终端设备、无线网络和英特网结合所进行的电子商务活动。

通过移动电子商务,消费者可真正突破“时空限制”,随时随地获取所需的服务、应用、信息和娱乐。和传统基于英特网的电子商务相比,移动电子商务具有以下几个显著的特点:(1)交易不受时间和地点的限制;(2)移动终端拥有者的身份相对固定,可方便的向消费者提供个性化移动交易服务;(3)通过移动定位技术,可以提供与位置相关的交易服务。

2.推动移动电子商务发展的技术因素

移动电子商务同传统电子商务的主要区别就是无线网络的应用,而正是无线数据通信技术的快速发展,推动了移动电子商务的迅猛发展。从技术的角度看,推动移动电子商务发展的因素主要有以下三个。

(1)无线应用协议的推出。如何将英特网的丰富信息及先进的业务引入到移动电话等无线终端设备当中,是实现移动电子商务需要解决的第一个问题。无线应用协议(WAP)的出现,很好地解决了这个问题。无线应用协议(WAP)的出现使移动英特网有了一个通行的标准,使移动电话等无线终端设备接入英特网成为了可能。

(2)无线接入技术的快速发展。早期无线接入技术如GSM、TDMA和CDMA数据传输速率很低,不适于英特网接入。而近年来得到广泛使用的通用分组无线服务(GPRS)等接入技术,大大提高了无线数据传输速率。目前,世界各国大力推广的第三代移动通信技术(3G),不仅可以克服传统无线接入方式传输速率方面的缺陷,而且还可以支持宽带多媒体数据传输,这将缩小有线和无线接入的差距,必将进一步推动移动电子商务的发展。

(3)移动终端技术的日趋成熟。移动终端技术本质上是一种结合手持硬件、无线宽带网络与移动应用软件的总称。目前市面上各种个人数码助理(PDA)、智能手机(SmartPhone)已经随处可见,各种移动智能终端设备不断推陈出新,移动终端用户也不断攀升。这不仅给消费者使用移动终端进行电子商务提供可能,而且在数量上大大超过互联网用户的移动终端用户更是为移动电子商务提供了巨大的市场。

3.移动电子商务系统组成

移动电子商务系统主要由移动商务应用、移动终端设备、移动中间件和移动网络设施组成。(1)移动商务应用主要是指移动电子商务为用户提供的各种商品和服务活动;(2)移动终端设备就是指各种通过无线网络接入英特网的终端设备,包括手机、个人数码助理和笔记本等;(3)移动中间件是指连接电子商务与异构网络和操作系统的软件实现层,如ExpressQ和WAP等,它们屏蔽了分布环境中异构的操作系统和网络协议;(4)移动网络设施是指支持移动电子商务的无线网络和设备,包括GSM、GPRS、CDMA和3G等。中国-二、移动电子商务的主要实现技术

1.无线应用协议(WAP)

无线应用协议WAP是WirelessApplicationProtocol的缩写,它是由Motorola、Nokia、Ericsson和Phone.corn公司最早倡导和开发的,它的提出和发展是基于在移动中接入英特网的需要。WAP是开展移动电子商务的核心技术之一,它提供了一套开放、统一的技术平台,使用户可以通过移动设备很容易的访问和获取以统一的内容格式表示的英特网或企业内部网信息和各种服务。通过WAP,手机可以随时随地、方便快捷地接入互联网,真正实现不受时间和地域约束的移动电子商务。中国

2.移动IP(MobileIP)

移动IP(MobileIP)是由互联网工程任务小组(IETF)在1996年制定的一项开放标准。它的设计目标是能够使移动用户在移动自己位置的同时无须中断正在进行的英特网通信。移动IP现在有两个版本,分别为MobileIPv4(RFC3344)和MobileIPv6(RFC3775)。目前广泛使用的仍然是MobileIPv4。目前移动IP主要使用三种隧道技术,即IP的IP封装、IP的最小封装和通用路由封装来解决移动节点的移动性问题。

3.蓝牙(BlueTooth)

蓝牙(BlueTooth)是由Ericsson、IBM、Intel、Nokia和Toshiba等公司于1998年5月联合推出的一项短程无线联接标准。该标准旨在取代有线连接,实现数字设备间的无线互联,以便确保大多数常见的计算机和通信设备之间可方便地进行通信。“蓝牙”作为一种低成本、低功率、小范围的无线通信技术,可以使移动电话、个人电脑、个人数字助理、便携式电脑、打印机及其他计算机设备在短距离内无须线缆即可进行通信。“蓝牙”支持64kb/s实时话音传输和数据传输,传输距离为10m~100m,其组网原则采用主从网络。

4.无线局域网(WLAN)

无线局域网络WLAN是WirelessLocalAreaNetworks的缩写,它是一种借助无线技术取代以往有线布线方式构成局域网的新手段,可提供传统有线局域网的所有功能,它支持较高的传输速率。它通常利用射频无线电或红外线,借助直接序列扩频(DSSS)或跳频扩频(FHSS)、GMSK、OFDM和UWBT等技术实现固定、半移动及移动的网络终端对英特网网络进行较远距离的高速连接访问。1997年6月,IEEE推出了802.11标准,开创了WLAN先河;目前,WLAN主要有IEEE802.11x与HiperLAN/x两种系列标准。

4.通用分组无线业务(GPRS)

GPRS的英文全称为GeneralPacketRadioService,中文含义为通用分组无线服务,是欧洲电信标准化组织(ETSI)在GSM系统的基础上制定的一套移动数据通信技术标准。它利用“包交换”(Packet-Switched)的概念所发展出的一套无线传输方式。GPRS是2.5代移动通信系统。GPRS具有“数据传输率高”、“永远在线”和“仅按数据流量计费”的特点,目前得到较广泛的使用。

5.第三代移动通信技术(3G)

3G英文全称为3rdGeneration,中文含义为第三代数字通信。它是由卫星移动通信网和地面移动通信网所组成,支持高速移动环境,提供语音、数据和多媒体等多种业务的先进移动通信网。国际电联(ITU)原本是要把世界上的所有无线移动通信标准在公元2000年左右统一为全球统一的技术格式。但是由于各种经济和政治的原因,最终形成了三个技术标准即欧洲的WCDMA,美国的CDMA2000和中国的TD-SCDMA。TD-SCDMA是由中国大唐移动通信第一次提出并在无线传输技术(RTT)的基础上与国际合作完成的。中文含义为“时分同步码分多址接入”。相对于其他两个标准TD-SCDMA具有频谱利用率高、系统容量大、建网成本低和高效支持数据业务等优势。

总结

移动通信和英特网的完美结合造就了移动电子商务。在技术更新与社会需求的交替推动下,移动电子商务已经产生了一个不可阻挡的发展趋势,它必将对全球经济和技术进步产生更加深远的影响。

参考文献:

篇6

2无线通信干扰的种类

2.1邻带干扰

邻带干扰是干扰信号的邻带能量与所要接收的正常信号的邻带能量同处一个频带上,导致接收机接收的邻带信号中夹杂有无用信号,造成了接收信号的不精确和噪声比的下降,邻带干扰产生的原因是民航飞机设备本身的质量问题,设备与国家规定的标准有偏颇使得信号接收出现问题。例如,如果通信系统如果需要在多频道进行信号的接收,1频道被用户1民航甚高频无线电通信干扰的探讨文/常琪在现在的民航飞行环境中存在着诸多的电磁干扰,本文中笔者对民航所受的各种干扰信号从原理方面进行了详细的介绍,甚高频无线电通信是民航飞机与塔台进行联络的重要媒介,涉及民航的安全保障问题。摘要占用,2频道被用户2占用,两个频道之间的频率差为20KHz,那么从理论上来讲,1、2两个用户是互相不干扰的,但假如其中一台仪器出现了故障,尤其是设备质量导致的故障,就会导致机器的发射频率的稳定性降低,发射的信号的频带会加宽,只是1、2两个频带产生交集。

2.2频带外干扰

频带外干扰是指信号接收机接收到了正常频带和邻带以外的信号,指示信号的接受力降低,主要是发射机的杂辐射和接收机的杂辐射响应两种干扰。发射机的杂辐射产生原理是:在甚高频的低频区域,一般都是通过晶体振荡器发出基本频率,然后再经过多次的频率放大,得到发射波最后经由无线通信设备的信号发射机发射出去,但是在信号放大过程中,放大器的非线性特征使得信号中产生了大量的谐波的分量,在频率放大后如果得不到充分地滤波就会使产生的谐波与信号一起被放大然后发送出去,使接受对应频率的接收机对信号的判断出错,这种由接收机辐射产生的干扰信号只能从发射收机一段进行解决,因此国家对各种信号发射机做了非常明确的规定,以将其在辐射值控制在合理的范围之内进而减少发射波的杂辐射,但往往会因为厂家的利欲熏心而是无线通信环境受到污染;收机的杂辐射响应一般是指,接收机不光会接收到有用信号还会接收到频率之外的信号,这种能力被称为杂辐射响应,当接收机所收到的信号刚好是本接收机中频信号,而且发射机对放大的杂辐射信号过滤不彻底,接收机就会对此信号发生响应,于是使得有用信号的受到了干扰。

2.3互调干扰

互调干扰是民航甚高频干扰信号中最为严重的一类信号,一般分为外部信号引起的互调干扰、接收机引起的互调干扰和发射机引起的互调干扰三种。互调的产生需要一定的条件,即干扰信号需要一定的幅度,干扰频率与扰的接收机的特定接收频率之间存在一定的间隔关系,特别的,对于接收机互调干扰而言,接收机和干扰信号需要同时处在工作状态。发射机互调干扰是指多部发射机的信号同时施加到一台发射机,由于功率放大器的非线性特征使得各路信号互调,将产生的无用信号也发射出去影响接收机的正常信号接收的信号干扰。接收机互调干扰是指多个干扰信号同时被一台接收机接收,在混频时产生了可以被接收机接受的信号,这种信号干扰能力大小主要取决于干扰信号的大小。外部引起的互调干扰是由发射机的滤波器或者外部馈线电路的稳定性降低导致的,在强射频场中发生互调而形成的干扰信号,所以这种信号干扰最容易避免。机场甚高频的频率一般在130MHz左右,商业广播在88-108MHz左右,可见两段信号的频率谱比较接近,如果两系统的距离太小形成交叉区域就会造成信号的互调,而且商业信号本身的功率就比较大,经过多个非线性的放大器放大后落在民航信号频率段内就会对民航信号产生干扰,可以通过物理间隔降低发射机的耦合、在发射极的信号发射端安装单向器或者以上两种方法相结合的办法预防民航甚高频的无线通信干扰。

2.4同频率干扰

同频率干扰是指干扰信号和有用信号具有相同的频率,但不是接收机需要的信号。在信号的接受过程中,有用信号和无用信号都会被处理,由于信号的载波不同会导致信号失真,这种信号干扰主要是由同频波的接收机的距离太小导致的,是干扰信号中相对较容易找到干扰源的一种信号干扰。

篇7

广播电视(Radioandtelevision),它主要是利用无线的电波或导线来向广大地区进行图像节目、音响播送等传播性的媒介,统称广播。而只进行声音播送的则称之为有声音广播。既可播送声音,又播送图像的则称之为电视广播。在一定程度上,虽然自媒体时代下,对于我国广播电视业带来了巨大的发展性冲击,我国的广播电视业也深受打击急需寻求新的突破性发展路径。但是,无论自媒体如何引领新时代的发展浪潮,人们对于广播电视业的热衷也不曾削减,广播电视一直都是人们所热衷的媒介。那么,对于我国广播电视业来说,要想不被自媒体所淘汰,不负众望寻求新的发展性突破,就必须提高对无线发射性技术的重视程度,对该项技术予以深度的分析,研究出其最佳的应用路径,以通过无线发射性技术新的创新发展,来引领我国广播媒体开辟发展蹊径。

1技术概述

广播电视中无线的发射技术,其具有着便捷性的接收、较为的成本投入、较为简洁化的技术操作、较广大辐射范围等特征。目前,在我国一些较为偏远的乡村地区应用的较为普遍,是偏远地区广播电视主要的应用方式。在一定程度上,伴随着我国广播电视中无线的发射技术日新月异的发展,可谓是给广大偏远地区人们带来了众多的福利,他们能够在遥远的山区就可观看到丰富多彩的广播电视节目,为我国广播电视业服务网全覆盖性发展目标的实现奠定了重要的基础,重要性较为突出。同时,通过无线发射性技术在我国广播电视业当中有效的应用,还能够极大的减轻广大广播电视人的工作量,可实现人工智能化的广播电视相关信息数据的传输及接收,为广播电视业的全智能化操控及发展奠定了重要基础,让我国的广播电视业能够为受众提供最具现代化的服务。

2技术创新研究

2.1注重感知性无线电高新技术的研发

在广播电视中无线的发射技术,其主要强调的是期间各类频谱性资源的有效性利用。但是,从广播电视中无线的发射技术实际应用情况来看,无线的电频谱的查找存在着较大的难度性,且会对于广播电视相关信息数据的传输产生一定的阻碍性作用,不利于我国广播电视业为广大受众提供高质量的服务。那么,针对这一问题就需要我国广播电视业在进行无线发射性技术实际应用期间,注重感知性无线电高新技术的研发。在一定程度上,通过对感知性无线电高新技术的研发,就能够通过感知性无线电技术进行广播电视相关信息数据的查询,还可进行闲置性无线电相应频谱的合理连接,大大提升了无线电其频谱性资料实际的利用效率,可有针对性的处理有效性频率的连接性问题,提高广播电视中无线的发射技术智能性及灵活性,让我国的广播电视业为广大受众提供全方位的服务。

2.2注重无线电空中技术的开发

无线电空中技术,其早期主要应用军事作战当中。那么,伴随着我国无线电空中技术日新月异的发展,无线电空中技术也被各高端行业及领域当中实现了有效性应用。而对于我国广播电视业来说,也可适当向着无线电空中技术的方向进行有效性的开发及研究,以进一步提升我国广播电视中无线的发射技术创新发展,保证广播电视信号的稳定性,提供广播电视相关信息数据传输的效率及质量,为广播电视的广大受众提供更为高质量的服务。

2.3科学设置高空光缆架设的高度

在一定程度上,广播电视的信号传输其主要是依靠于高空的光缆,它是广播电视的信号传输基础,更是信号实现高速发射的根本保证。那么,我国的广播电视业要想进一步提高无线发射性技术的应用效果,就应当科学设置高空光缆架设的高度,以为无线发射性技术的有效性应用奠定重要基础,保证在利用无线发射性技术进行广播电视的信号传输时,可以高质量的完成,尽最大可能地保证广播电视的信号传输效率。

2.4注重防雷设施的合理化设置

对于广播电视业来说,防雷设施的合理化设备,也是提升无线发射性技术的应用效果的创新举措之一,也可进一步提升无线发射性技术实际应用过程中的安全性及可靠性。因而,这就需要我国的广播电视业应当尤为注重防雷设施的合理化设置。(1)进行避雷带网与避雷针等这些传统避雷设施的合理化设置。在设置期间,应当注意天线与避雷针之间间距的控制。通常情况下,通信的天性应当安装于避雷针的外线1.5个波长之外,为天线与避雷针所处位置的主置之中;(2)进行无线防雷覆盖性接地,设置好接地网。应当严格按照国家的相关要求,避雷针的接地性电阻应当小于10Ω,且不超过4Ω设备的地网性电阻;(3)将发射性信号线防护的相关工作做好。在信号线位置上进行避雷针的安装,以实现对所有信号线的屏蔽,避免其与外界发生接触情况。从而进一步提升广播电视中无线的发射技术应用的安全性及稳定性,保障广播电视中无线的发射技术实际应用效果。

3结语

综上所述,当前是我国广播电视业实现突破性发展的关键时期。为了能够进一步推动我国广播电视业的快速发展,就需要对广播电视中无线的发射技术,进行综合性的分析及研究,探索出广播电视中无线的发射技术在新时期突破创新的有效性路径。从而能够不断提升广播电视中无线的发射技术综合水准,以实现广播电视中无线发射性技术的创新优化,为我国广播电视业在新时期的蓬勃性发展提供重要的技术保障。

篇8

Abstract:ThispaperpresentsalevelofcollaborationhybridDistributedIntrusionDetectionSystemModel.Themodelwillbetheprotectionofthenetworkisdividedintoanumberofsafetymanagementarea,mainlyduetothedetectionofagents,surveillanceagents,policyenforcementagentiscomposedofthreeparts.Thewholemodelinthedistributionofsourcesofdata,analysisofthedistributionofdetection,multi-regionalcollaborationofthethreetestinglevelsreflectthecharacteristicsoftheDistributedIntrusionDetection.

Keywords:DistributedIntrusionDetection;agent;collaboration

前言

在宽带网建设中,除了增加骨干网传输通路的带宽、网上服务器的处理能力及路由器速度以外,主要是缓解用户接入网瓶颈。目前,宽带用户接入技术主要有高速数字环路(xDSL)、光纤接入方式、双向混合光纤/同轴电缆(HFC)和宽带无线接入网(如MMDS和LMDS)等手段。其中,宽带无线接入是近年来新兴的一种接入手段。本文将重点探讨宽带无线接入技术及其应用前景。

1.无线接入技术发展的特点

1.1首先,话音通信和宽带数据通信逐渐无线化。随着固定无线接入系统和移动通信系统在技术和市场方面的发展,通过无线方式进行通信的用户数量急剧增长,在几年后,无线话音通信和窄带数据通信的用户数量将可能超过有线用户。目前在中国的部分地区,移动电话用户的增长数量已超过有线电话用户的增长。

1.2无线通信须适应IP业务的发展。随着计算机的普及和电子商务等新业务的发展,数据通信业务量正以指数规律增长,其中使用IP协议进行数据通信的业务量更是急剧增加。固定无线接入系统和移动通信系统须适应IP通信业务发展的需求,并逐渐向高速、宽带通信网推进。

1.3无线通信与有线通信始终在互补支持发展。与无线通信相比,有线通信具有容量大、速率高、宽频带和传输质量稳定的特点,能满足高速数据通信和宽带多媒体业务的通信需求。在无线通信方面,第三代移动通信拟达到的目标是静止状态下为2Mbit/s,10GHz频段下的固定无线接入通信已可实现20Mbit/s左右或更高速率。更高频段的无线接入亦在向更高速率迈进,无线通信正利用其实现个人通信的优势始终与有线通信在互补支持发展着。

2.无线接入系统在通信网中的定位

无线接入技术的主要作用是,在一定条件下,用于提供本地交换局至用户终端之间的通信传输,但不提供局间漫游服务。在建筑物内或局部区域,可通过移动终端提供服务。在地形复杂的山区、海岛或用户稀少、分散的农村地区,铺设有线电缆比较困难、投资大,用户经济实力较低,只有选用无线接入技术,才能解决电话普及与运营企业的经济效益的矛盾。在遇到洪水、地震、台风等自然灾害时,无线接入系统可作为有线通信网的临时应急系统快速提供基本业务服务。

在通信网中,无线接3.无线接入技术

3.1MMDS接入技术

MMDS多路微波分配系统已成为有线电视系统的重要组成部分,MMDS是以传送电视节目为目的,模拟MMDS只能传8套节目,随着数字图像/声音技术和对高速数据的社会需求的出现,模拟MMDS正在向数字MMDS过渡。MMDS的频率是2.5~2.7MHz。它的优点是:雨衰可以忽略不计;器件成熟;设备成本低。它的不足是带宽有限,仅200MHz。许多通信公司看中用LMDS技术来作为数据、话音和视频的双向无线高速接入网。但由于MMDS的成本远低于LMDS,技术也更成熟,因而通信公司愿意从MMDS入手。它们正在通过数字MMDS开展无线双向高速数据业务,主要是双向无线高速英特网业务。

近年,我国有的大城市已经成功地建成了数字MMDS系统,并且已经投入使用。不仅传送多套电视节目,同时还将传送高速数据,成为我国数字MMDS应用的先驱。数字MMDS不应该单纯为了多传电视节目,而应该充分发挥数字系统的功能,同时传送高速数据,开展增值业务。高速数据业务能促进地区经济的发展,同时也为MMDS经营者带来更大的经济效益。因为数据业务的收入远高于电视业务的收入。

3.2LMDS接入技术

本地多点分配业务LMDS工作于24GHz~38GHz频段,带宽在1.3GHz左右,传输容量大和应用灵活等特点使其成为目前倍受瞩目的天线宽带接入技术。

一个完整的LMDS系统由四部分组成,分别是本地光纤骨干网、网络运营中心(NOC)、基站系统、用户端设备(CPE)。

宽带无线接入技术主要有多通道多点分配业务(MMDS)和本地多点分配业务(LMDS)两种。它们是在成熟的微波传输技术上发展起来的,所采用的调制方式与微波传输相似,主要为相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM(包括4-QAM、16-QAM、64-QAM等)。不同之处是MMDS和LMDS均采用一点多址方式,微波传输则采用点对点方式。

LMDS的特点是:

(1)LMDS的带宽可与光纤相比拟,实现无线“光纤”到楼,可用频带至少1GHz。与其他接入技术相比,LMDS是最后一公里光纤的灵活替代技术。

(2)光纤传输速率高达Gb/s,而LMDS传输速率可达155Mb/s,稳居第二。

(3)LMDS可支持所有主要的话音和数据传输标准,如ATM、TCP/IP、MPEG-2等。

(4)LMDS工作在毫米波波段、20~40GHz频率上,被许可的频率是24GHz、28GHz、31GHz、38GHz,其中以28GHz获得的许可较多,该频段具有较宽松的频谱范围,最有潜力提供多种业务。

LMDS的缺点是:

(1)传输距离很短,仅5~6Km,因而不得不采用多个小蜂窝结构来覆盖一个城市。

(2)多蜂窝系统复杂。

(3)设备成本高。

(4)雨衰太大,降雨时很难工作。

3.3WCDMA接入技术

WCDMA技术能为用户带来最高2Mbit/s的数据传输速率,在这样的条件下,现在计算机中应用的任何媒体都能通过无线网络轻松地传递。WCDMA的优势在于,码片速率高,有效地利用了频率选择性分集和空间的接收和发射分集,可以解决多径问题和衰落问题,采用Turbo信道编解码,提供较高的数据传输速率,FDD制式能够提供广域的全覆盖。下行基站区分采用独有的小区搜索方法,无需基站间严格同步;采用连续导频技术,能够支持高速移动终端。相比第二代的移动通信技术,WCDMA具有:更大的系统容量

、更优的话音质量、更高的频谱效率、更快的数据速率、更强的抗衰落能力、更好的抗多径性、能够应用于高达500Km/h的移动终端的技术优势,而且能够从GSM系统进行平滑过渡,保证运营商的投资,为3G运营提供了良好的技术基础。WCDMA通过有效地利用宽频带,不仅能顺畅地处理声音、图像数据、与互联网快速连接,而且WCDMA和MPEG-4技术结合起来还可以处理真实的动态图像。

3.43G通信技术

在上述通信技术的基础之上,无线通信技术将迈向3G通信技术时代。3G强大的带宽和传输速率给多媒体通信提供了高速传输的可能性。从通信容量上,3G较第二代移动通信系统有大幅提升。另外,3G有效地利用了频率选择性分集和空间的接收和发射分集,可以解决多径问题和衰落问题,使传输速率有了大幅提高,该技术又称为国际移动电话2000,该技术规定,移动终端以车速移动时,其传转数据速率为144Kbps,室外静止或步行时速率为384Kbps,而室内为2Mbps。但这些要求并不意味着用户可用速率就可以达到2Mbps,因为室内速率还将依赖于建筑物内详细的频率规划以及组织与运营商协作的紧密程度。然而,无线LAN一类的高速业务的速率已可达54Mbps。

篇9

2无线通信技术在电力系统监控中的具体应用

在电力系统中设置监控系统,利用监控系统进行数据的收集处理,实现对远程设备的操作,能大大提高电力系统的工作效率,满足人们的生活需要。因此,在电力系统监控中应用无线通线技术已成为社会发展的需要。

2.1在电力用户和线路设备等方面的应用

利用无线通信技术可以把电力用户、设备、线路等监控系统联结起来,建立一定范围的局域网,通过远程集抄终端,定时抄传电力用户的电表信息并进行存储,避免了因系统异常导致的数据缺失;无线集抄终端还可以智能判断电路设备是否出现故障,并把发现的问题传送到服务器,及时发出警告。通过无线通信技术可以实现远程操作,如抄表、查询、统计、浏览、分析、打印等,避免了人为因素导致的数据不准确等弊端,提高了电力系统的工作效率和电力系统的自动化水平。

2.2在电力服务方面的应用

通过无线通信技术实现对电力系统的监控,把用电系统和移动终端实现网络连接,既满足了电力部门向电力用户及时发放用电信息的需要,也满足了电力用户根据个人需要自行定制信息查询的需要。利用无线通信技术,通过移动终端,采用SMS、WAP、PUSH等形式,实现办公自动化和监控职能,电力部门可以根据通知的重要程度采用自动语音通知的形式,并通过设定系统得到回复结果。同时,通过对电力系统的网络监控实现电力部门和电力用户的信息沟通,及时解决出现的问题,提高电力部门的服务效率,满足电力用户的需要。电力用户可以通过无线网络利用EMAIL、SMS、WAP_PUSH等形式,让手机等终端进行信息查询和信息定制,提高了电力用户的满意度,完善了电力部门的服务职能。

2.3在电力系统内部的应用

随着电子技术的发展,使无线通信技术在电力系统监控中的应用得到了进一步的发展,通过无线通信技术的定位功能可以对电力系统工作人员的工作情况进行监控。随着智能机的出现,利用手机终端还可以实现信息共享,提高工作效率。如,工作人员在野外工作时,可以通过手机终端进行信息查阅,及时处理和解决遇到的新问题,提高其工作效率。

篇10

电力信息采集业务是对用户的用电信息进行采集、监测和处理,实现用户用电信息计量异常监测以及用户用电信息采集、分析和管理,同时也让电能质量被实时监控等,在用户服务、市场管理、电费实时结算等多方面提供实时、可靠的数据。电力用电信息采集系统分主站层、通信信道层和采集设备层三层。[1]主站与其他应用系统和公网信道是由防火墙分离开来,单独组网。在主站层里有前置采集平台、营销采集业务应用以及数据库管理三部分组织。前置采集平台管理和调查各种与终端的远程通信;营销采集业务应用让系统的各部分应用功能得到充分得到充分发挥;数据库管理实现用电终端的用电信息有效管理,并担负起协议解析职责。实现这三种功能,需要由前置采集服务器、营销系统服务器以及相关的网络设备组成主站网络的物理结构。采集设备层的主要任务是收集和提供整个系统的原始用电信息,是整个系统的底层,又分为计量设备层、终端子层两个子层,分别负责实现电能计量和数据输出和收集用户计量设备的信息、处理和冻结相关数据,并实现与上层主站的交互等。而主站层和采集设备层之间的最重要使是通信信道,为主站和终端信息交互提供平台。目前有230MHz电力无线专网、GPRS/CDMA无线公网以及光纤专网等通信信道,而无线技术的应用更能满足系统需要,其可靠性和稳定性成了当前的研究重点。用电信息釆集系统主要有五大功能,分别是系统数据采集、系统接口、运行维护管理、数据管理及控制和综合应用。数据采集主要是根据业务要求编制自动采集任务,例如任务类型和名称、采集周期和群组、正常补采次数以及执行优先级等信息,对任务执行情况进行管理;系统接口主要是与其他应用系统进行连接;运行维护管理功能是对密码、权限、档案、通信与路由、终端、运行状况、故障记录、报表等方面的内容进行有效管理;数据管理及控制功能包括对数据的计算、检查、分析、存储等内容进行管理以及对电量、功率、费率、电缆催收等内容进行控制;综合应用功能主要是提供异常用电分析、有序用电管理、自动抄表管理、用电分析、电能质量数据统计等服务。用电信息采集首先由主站对集体终端进行对时,统一时间后终端进行采集工作状态,按设定的时间间隔进行定时抄表、存储并通过无线信道传数据到后台,如无线信道不稳定时,后台会自动再次生成相应的补救命令追补数据,最后后台对数据进行处理。整个采集过程,业务通信具有整点时刻定时抄表,重传补数的特点,保证在业务通信失败的情况下还可以再次重新传采集数据,实现信息采集可靠性。

二、无线通信信道技术特点与数据丢失规律分析

1.无线通信信道技术的特点利用信道的统计特征进行分析是无线通信信道技术的重要特征之一。无线通信信道分为小尺度衰落和大尺度衰落两种衰落大体。小尺度传播是指信号在短时间内瞬间产生的变化,而大尺度传播指的是在相关长的一段时间内信号平均功率的变化。信道的相位、振幅会受到多径传播和多普勒频移两者的影响,产生信号频散和时间选择性衰落。衰落也根据大小将小尺度衰落分为选择性频率衰落和平坦衰落。在电力系统无线通信应用中通常有如高斯噪声、白噪声、窄带高斯噪声等多种噪声陪随着信号的传输,短时衰减是他们其中最大的特点,最大可以达到60~70dB。无线通信信道技术噪声有突发性的脉冲噪声、自然噪声、同步周期性脉冲的噪声、异步周期性脉冲的噪声。突发性的脉冲噪声顾名思义是指网络上开关的操作或者发生闪电时产生一系列脉冲噪声影响到非常宽的频带,以致脉冲噪声密度比背景噪声的功率谱密度高出50dB;自然噪声即是指如闪电、雷击、电焊等自然界各种各校的电磁波造成的自然噪声;同步周期性脉冲的噪声是电力设备按照50Hz或者100Hz来工作的频率产生的脉冲,功率随频率增加而减少;异步周期性脉冲的噪声是由于大功率电器的开关发生周期星的开闭动作导致噪声产生,重复率主要集中50~200范围之内。2.电力无线通信数据丢失规律不同地区电力负荷的特性不同,影响电力负荷的因素也不完全相同。[2]电力用电信息采集业务的主要任务是对居民用电信息进行采集与监控,无线通信往往会受到电磁干扰的影响。对用电信息采集无线通信网络进行数据分析,指在根据电磁干扰造成数据丢失规律,结合信息采集业务的应用环境特点,调整选用合适的控制策略,以保证用信息采集业务的可靠性。分析数据丢失规律,首先要统计出24小时内居民用电负荷与时间的关系特性,并结合用电负荷量得出阶梯奖业务量模型,再根据模式作出规律性变化分析。在统计电力用户用电负荷状况时,节选广州某居民区生活和工作用电负荷24小时规律变化为例,通过采样、统计、整理得出一天内的用电负荷曲线,如图1所示:其中,负荷比值=瞬时负荷量/24小时平均负荷量。由图1可以看出,01:00~05:00时间段为居民的休息时间,全天进行用电量低谷;05:00~08:00时间段,居民起床、做饭、上班等,用电量略有所回升;08:00~12:00时间段为居民上班时间,使用各种电器设备,用电量明显上升,而12:00~13:00为午餐午休时间,用电量随着部分活动的停止而呈小幅下降;13:00~18:00又进入工作期间,用电量也相应上升;18:00~20:00时间段是居民回家做饭时间,用电量逐渐增加;20:00~23:00时间是大多数人在家休息,如电视、空调等大功率电器大幅启动,多数娱乐场所也进行一天的高峰,此时处于用电高峰期,在21:00附近进入一天用电最高峰,随后便有所下降,至24时多数居民已休息,用电量又逐渐步入一天的低谷。电力无线通信数据丢失率与电磁干扰因素呈正相关关系,一般而已,电磁干扰因素越大,电力无线通信信道数据据丢失率就越大。结合居民用电负荷曲线,将一天分成五个时间段,依次为K23:00-6:00;K6:00-12:00;K12:00-18:00;K18:00-20:00;K20:00-23:00。五个时间段的居民用电量呈递增趋势,设20:00的用电负荷比值为K20:00,那么K20:00-23:00段的平均负荷比值为:K20:00-23:00=(K20:00+K21:00+K22:00)/3同理可求得其他四个时间段的平均负荷比值,可以得到五个级别的通信数据丢失率阶梯模型,可以总结电力无线通信数据丢失规律是随着用电量的变化而变化。在接入过程中应当充分根据此规律的特点而设计不同的控制方式,从而最大限制提高无线资源的利用率。

三、无线通信技术在系统中的应用

用电信息采集系统通信分为有线通信和无线通信。无线通信又分为无线专网和无线公网。一般而言,变电站采集终端采用有线的光纤通信方式,保证采集实时性强;高压客户采用230MHz专网或无线公网方式;而低压客户几乎都是采用无线公网通信方式。由于居民用电信息采集中,一个公用配变电下有大量的电力用户,而且具有用电容量小、计量点分散等特点,本地信道方式将大量的电力用户信息集中再往系统主站传输是一个低成本的无线通信技术应用方式。因此,用电信息采集系统无线技术的应用主要介绍微功率无线通信、低压窄带电力线载波、低压宽带电力线载波三种本地信道通信方式的应用。[3]微功率无线通信是指采用WSN(WirelessSensorNetworks)技术的无线通信方式。WSN是一系列微功率通信的总称,综合了嵌入式系统技术、传感器技术、网络无线通信技术、分布式信息处理技术等,通信微型传感器节点对用户进行实时的感知和监控,利用每个传感器具有无线通信功能组建成一个无线网络,将数据传输到监控中心,非常适用于低成本、测量点多、范围分散的低压场合。应用WSN技术克服了传统数据对点无线传输模式的局限性,自组织性、拓扑结构动态性、网络分布式特性等较为明显,而且通信能力、抗干扰能力都比较强,无需要安装,功耗低,具有很强的成本优势。无线数据支持双向传输,既可以上传电能表的数据,又可以接收集中器下发的命令,还可以中继来自其他节点数据。通信流程如图2所示:电能表通过无线采集节点传输到中继节点,并由集中器进行处理。集中器下发命令数据,目标无线采集节点就会通过多个中继节点收到命令,甚至可以直接收到,然后转发给电能表。还也可以利用无线网络实时性强的优点,将突发事件通过无线节点主动上传到后台,有效地实现故障报警、实时监控、防窃电。对于测量点相对分散、集中装表、用户负载变化大、载波不稳定等场合非常适用。低压窄带电力线载波通信指的是载波信息范围限制在500kHz以内的低压电力线载波通信。配电线主要用于传输50Hz大功率电力,配电线连接各种设备将会影响到传输的通信信号,特别是近年来变频家用电器大量使用,对信道的稳定性造成巨大的干扰,主要表现为阻抗不稳定、噪声显著、信号衰减严重,并且这两个因素随着时间和频率变化而变化。窄带载波通信技术可以双向传输,不再需要另外通信线路,具有较强的适应性,而且具有容易安装的特点,对于低压用户数据采集是个很好的应用。但其数据传输速率较低,容易受到噪声大、信号衰减的影响,在通信可靠性方面还存在着一定的技术障碍。因此,在应用时应当利用软硬件技术结合,完成组网优化窄带载波通信,对于一些用电负载特性变化较小、电能表分散布置困难的区域具有一定的应用价值。宽带电力线载波系统工作在1~40MHz频率范围,成功避开了kHz频段带来的干扰,并通过扩频调制或者正交方式来获得兆级以上的传输速率。这种电力线宽带通信调制技术把信道带宽分成N个正交的子信道,每个子信道呈现相对性和平坦特性,将这些子信道看成理想信息。由于低压台区电力线上的高频传输信号往往会衰减得比较快,需要通过时分中继、自动中继、频分中继和智能路由计算等多项技术手段实现整个低压电力通信网络重构并通信。这种通信技术具有较高的抗干扰能力,适应性强,可以同时承载多个业务并对各个任务进行并发处理。同时有单跳通信距离受限、信号衰减大等局限性。在应用时还需要采用路由、中继等行之有效的优化措施。根据宽带载波的短距离和少分支特性,应当重点应用于城乡公变区供电区域、电表集中安装居民区等,电能表数据采集效果和经济性均优于其他的抄表方式。