时间:2022-09-16 02:22:23
导言:作为写作爱好者,不可错过为您精心挑选的10篇隧道施工技术,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
1问题的提出
隧道工程施工条件复杂,工期、质量、安全要求严,成本控制难,竞争激烈,施工风险高。虽然有“金隧银桥”的说法,但在复杂的施工条件下,隧道施工技术管理不好,常会导致出现大亏或小盈的现象。特别是长大复杂隧道,其面临的可变因素更多,工程项目管理难度更大。施工技术管理作为工程项目施工管理的核心工作之一,对工程项目的施工安全管理、质量控制、进度控制、成本控制等方面具有非常重要的作用。19世纪是高层建筑的世纪,20世纪是桥梁工程发展的世纪,21世纪将是隧道及地下工程发展的世纪,因此,面临21世纪隧道及地下工程发展的重要机遇期,发展隧道工程施工技术,加强隧道施工技术管理势在必行。加强施工技术管理,不断提高施工技术管理的“精细化管理、人性化管理”水平。
2隧道施工技术管理在项目管理中的作用
隧道施工流水线作业,各工序依次展开,施工技术管理的好可以起促进作用,反之则起制约作用。在激烈的市场竞争条件下,只有人员、设备、材料等资源优化配置,并不断加强施工技术管理,才能实现高效、优质、低耗工程。实现这一目标也是企业的立足之本。隧道施工技术管理在项目管理中发挥着重要的作用,其主要体现在安全、质量、进度、成本等方面。
2.1加强隧道施工技术管理是确保隧道施工安全的有效途径
在施工方案制定及技术交底实施过程中,必须充分考虑每道工序潜在的危害,明确危险源,采取有效的预防措施,并制定详细的应急预案。由于设计勘察手段有限,隧道施工中面临的可变因素较多,特别是地质条件复杂的山岭隧道,隧道施工中常面临涌水、突泥、瓦斯突出、塌方等安全隐患。在施工过程中必须充分利用综合超前地质预报手段,以探测隧道前方地质条件并指导施工,合理规避灾害风险。在长期的施工技术管理中,我们积累了丰富的经验。比如整理,浏阳河隧道出口在施工人员进洞之前进行安全讲解,并在洞口树立危险源警示牌,时刻提醒进洞人员注意施工安全;此外,每月进行安全质量大检查,综合各部门专业人才,扫除安全质量死角。
2.2加强隧道施工技术管理是实现施工项目管理质量控制的根本保证“安全是天,质量是命”这是不可否认的真理,但在一定程度上来说,确保施工质量是保证施工安全的重要前提。实现施工质量控制要做到:施工工艺要可靠、现场实施要到位、试验检验要及时。隧道施工隐蔽工程较多,如果事后发现问题整改困难,并且依靠雷达检测、声波检测等先进的检测手段,即使施工完毕也能对隧道实体一览无余。因此,施工中必须加强过程控制,并进行必要的检验监测,只有上一工序合格了才能进行下一工序的施工。
2.3加强隧道施工技术管理是实施施工项目管理成本控制的重要手段施工项目成本控制是指项目在施工过程中对影响施工项目成本的各种因素加强管理,并采取各种有效措施,将施工中实际发生的各种消耗和支出严格控制在计划成本范围内,消除施工中的损失和浪费现象。施工技术方案的好坏直接影响项目管理成本控制,施工方案如果制定得合理、可行、科学,可以大大地节省劳动力和降低损耗,使选用的机械设备较为简单;在施工项目建设过程中,施工单位应该在满足用户要求和保证工程质量的前提下,联系项目的主观条件、施工单位自身的技术水平和成熟的施工工艺,对设计图纸进行认真会审,并提出积极的修改意见,在取得用户和设计单位同意后对施工图纸进行某些修改。
2.4加强隧道施工技术管理是施工项目管理进度控制的有效途径进度控制的目标是在保证施工质量、确保施工安全、不因抢工期而增加施工成本的条件下,适当缩短施工工期;影响施工进度的因素主要有:有关单位的影响、意外事件的出现、施工条件的变化、技术失误、施工组织管理不当。其中施工单位采用技术措施不当,造成施工中发生技术事故;应用新技术、新工艺、新材料、新结构缺乏经验;流水施工组织不合理;施工平面布置不合理,这些技术管理措施将影响施工进度计划的执行。实际施工过程中,由于技术管理跟不上而影响施工进度经常遇到,例如我国隧道施工常对“洋技术、洋机械”感兴趣,但是“食洋”不化,没有深入研究,拿来就用,往往对机械设备性能及适应性了解不透,慢慢摸索,既增加了成本,又影响了施工进度。因此,只有在隧道施工项目施工过程中,不断加强隧道施工技术管理,才能使施工项目管理达到高质量、短工期、低成本这一根本目的。
3隧道施工技术管理存在的问题及解决办法
3.1存在的问题当前施工技术管理存在的主要问题是:
瓦斯通常以游离的状态存在于煤层及煤层围岩内,是一种重要的地质灾害,常见的有中毒、窒息、燃烧、爆炸等情况。我们要注重瓦斯隧道施工经验的总结,科学施工,小心防范,确保安全,避免造成人员伤亡及财产上的重大损失。
1.瓦斯隧道施工的基本原则
瓦斯隧道施工的基本原则:加强管理,强化意识,清除隐患,严格检测,提前预测,随时掌握瓦斯含量,动态调整施工工艺,加强通风,降低瓦斯含量,杜绝一切火源。
2.瓦斯隧道施工工艺
瓦斯隧道总体施工工艺:机械、设备防爆改装一调整通风方案一调整供电方案―慌工前检测瓦斯浓度并排除一超前钻探一瓦斯再次排放或封堵一隧道开挖一隧道衬砌―循环作业。
2.1
瓦斯隧道内机械、设备防爆
隧道内瓦斯地段的电气设备和作业机械、电缆、照明、通信均采用防爆型。对洞内施工机械进行防爆改装,通过防爆挖掘机辅助防爆装载机挖、装,防爆自卸汽车运输;二次衬砌采用防爆模板台车衬砌,防爆砼运输车运输,泵送入模。
2.2瓦斯隧道通风、降尘
通风方案采用独头压入式通风,洞口配备两台通风机,洞内采用抗静电、阻燃风筒,根据剩余隧道长度以及洞内作业强度合理计算通风使用量,选择合适的通风机;施工掌子面至二衬之间安装自动喷淋降尘系统,喷淋用水采用施工用水,由洞外引进,在施工爆破后以及喷砼施工过程中,开启喷淋系统降尘。
2.3瓦斯隧道供电
瓦斯隧道采用双电源供电方式,供电必须做到“三专”、“两闭锁”。洞内供电敷设的照明、通信等电缆采用铠装电缆;固定照明灯具采用EXdll型防爆照明灯;供电系统设置接地保护,低压线路设置检漏继电器。
3.隧道监控系统
3.1安装瓦斯自动监控系统
在进行瓦斯隧道施工的时候,要对隧道内的甲烷、一氧化碳、风速和温度进行24小时全方位监控,通过监控采集隧道内的数据,并把数据传输到洞外,利用软件对这些数据进行智能化的处理在洞外终端显示,如果有异常,就会有声光报警。
3.2对人员进行安全检测
在隧道口设立安全检测门,每一个进入隧道的工作人员都要经过安全检测门进行检测,安全员用手持式的金属探测仪进行全身检测,防止工作人员携带打火机等可燃物品进入隧道工作。对施工人员的穿着也要进行检查,不得穿着化纤衣服进入,防止化纤衣服产生静电,引发瓦斯爆炸。
3.3对隧道工作人员定位
对隧道进出工作人员要进行严格的掌控,了解人员隧道出入情况,对隧道内施工人员总数和具体人员要进行严格的登记,根据定位系统判断人员是否到位,保证隧道施工有条不紊的进行。
3.4安装隧道内的视频监控系统
在隧道内掌子面和隧道入口多个位置安装视频监控,采用动态摄像机进行监控,以便有什么突况能够及时的通知管理和保安人员,使他们能够对事故现场作出快速有效的反应,及时采取措施。
4.瓦斯隧道施工技术保证措施
4.1瓦斯隧道施工工艺安全技术措施
(1)必须编制相应施工组织设计,制定瓦斯控制方案及安全技术措施。(2)采用台阶法开挖,拱部开挖一次成形,及时喷砼封闭围岩减少瓦斯溢出。(3)钻爆开挖要坚持多打眼、少装药、短进尺,快喷锚、强支护、勤检测,采用超前注{锚杆双液注浆,加固岩体堵塞岩体裂隙,减少或阻止瓦斯外溢。(4)钻孔装药:采用湿式钻孔打眼,孔深小于60cm时,不能装药放炮;孔深60-100cm时,封泥不小于孔深一半;孔深大于lm时,封泥不小于50em;孔深大于2.5m时,封泥不小于1m。(5)起爆:采用电力起爆,使用五段电雷管,电雷管要完全插入药卷内;起爆母线要用铜芯绝缘线,严禁用裸线和铝线芯代替,母线要采用单回路;同一串联网络的雷管必须是同一厂家、同一批号、同一牌号。(6)雷管和炸药:必须使用取得生产许可证的煤矿专用雷管和煤矿专用炸药。炸药内加盐可降低猛力,阻止产生火花。(7)爆破管理:爆破前后雷管、炸药数量要及时清点,及时回收入库,并做好爆破记录;放炮后必须通风排烟30分钟以上;进行碴堆路面洒(喷)水后,出碴机械再进行出碴作业;严禁采用明火放炮。(8)采用湿式作业:钻孔与喷射砼作业要做到先开水后开风,以密闭粉尘,避免产生火花。(9)拱架连接:所有格栅和型钢拱架连接钢筋一律采用机械连接,不得焊接连接。(10)二次衬砌砼:二衬砼加入气密剂;拆模时要用木捶敲打,防止产生火花。
4.2瓦斯隧道施工通风安全技术措施
瓦斯隧道施工前,要根据设计文件提供的隧道瓦斯最大涌出量、里程段落长度、投入机械设备及人员数量等因素,考虑一定富裕系数,提前做好通风设计计算,确定施工通风风量、风速(不小于lm/s),科学选配隧道施工通风所需风机、风管的规格。确保隧道空气中的瓦斯浓度稀释到允许浓度以下;瓦斯隧道施工通风机必须设两路供电系统,并装设风电问锁装置。当一路电源停止供电时,另一路电源应在lOmin启动,保证风机的运转。
4.3洞内外消防措施
中图分类号:U459.1文献标识码: A 文章编号:
1 引言
岩溶隧道在中国西南地区经常遇到,主要是碳酸岩地层在水的作用下形成的各种规模及形状的洞穴、通道等。
根据以往的施工经验,对岩溶地区隧道施工技术,主要从两个方面进行,一是对岩溶发育段的预测,采用各种方法进行预报,能够比较好地预测岩溶及赋水带的方法主要为地质雷达及红外探测技术[[[] 王华,杨军生,王春雷. 地质雷达在隧道岩溶超前预报中的试验研究. 路基工程,2007,1:101-103.]] [[[] 李兴春,王宏,李兴高.红外技术在开挖隧道岩溶探测和预报中的应用. 工矿自动化, 2008,2:70-71.]];另外就是对岩溶地区的处理。有大管棚超前处理技术[[[] 郭 群. 大管棚超前支护技术在南山隧道岩溶处理施工中的应用. 隧道建设,2008,28(3):336-338.]],管棚结合小导管、高压注浆、桩基托梁结构、钢筋混凝土板等技术措施[[[] 张朝强. 大山隧道岩溶治理浅谈. 四川建筑, 2008,28(3): 54-56.]],对岩溶洞穴采用顶部回填,侧板加固以及隧底溶腔注浆,溶腔壁稳定加固,设地下水排泄通道等措施处理[[[] 肖凯刚, 赵玉龙. 龙凤坝隧道DK213+ 423~+485段溶腔处理设计. 施工技术,2008,37增: 255-257.]]。超大地下溶洞采用碗扣支架、锚喷支护及圆柱形立柱共同支顶溶洞顶部的施工方法[[[] 宋长甫. 龙麟宫隧道大型溶洞支顶加固技术. 铁路标准设计,2007(9):77-78.]]。总结出隧道通过岩溶地段应本着“稳妥可靠、保证工期、经济合理、不留后患”的目标;坚持“ 防、排、截、堵结合、因地制宜、综合治理”的原则治理岩溶水;坚持“短进尺、弱爆破、强支护、早封闭、紧衬砌、勤量测”的原则通过岩溶地区。处理方法可概括为:引、堵、跨、绕 4种方法[[[] 陈文海. 隧道岩溶病害处理方法与实例分析. 企业技术开发,2008,27(7):49-53.]]。
2 工程概述
2.1 工程概况
大田山隧道位于云南省红河州建水县境内,为单线电气化铁路隧道,起迄桩号DK112+765~DK115+010,全长2245m。线路平面布置:DK112+765~DK114+122.76为曲线段,曲线半径R=1600m,缓和曲线L=190m,DK114+122.76~DK115+010为直线段,隧道纵坡坡度为12‰的下坡。隧道进口采用台阶式洞门,出口采用挡墙式洞门,边、仰坡采用人字型浆砌片石骨架护坡,隧道内均采用曲墙复合式衬砌。隧道纵剖面示意图如图1所示。
图1 隧道纵剖面示意图
2.2 地质、气候条件
隧址区属低中山剥蚀、溶蚀地貌。地形起伏较大,地面高程在1260~1390m之间,相对高差130m,隧道最大埋深100m。在DK113+760~+900段地表发育一溶蚀沟谷及溶蚀洼地,轴向长约180m,宽30~100m,深约10m,洼地内被垦为为旱地,另一溶蚀洼地,常年积水,水深2~15m,略呈椭圆形,轴向长约450m,宽40~160m。
隧址区上覆第四系全新统坡洪积黏土、坡残积黏土。下伏为断层角砾、上第三系泥岩、炭质泥岩夹砂岩,三叠系中统个旧组下段白云岩质灰岩。
线路位于区域性北西向断裂石屏-建水断裂带之东端,该断裂带属全新活动断裂带,其分支断层-燕子洞断层于DK114+180横穿线路,与线路交角为47°。
隧址区位于云南省的东南部,为亚热带季风气候。冬无严寒,夏无酷暑,雨热同季,干湿季节分明,夏季伴随着云量、雨量的急剧增加,温度相应降低,绝对最高气温出现在干季末(春季)。
2.3 工程重难点
由于隧址区地表溶沟、溶槽、洼地发育。地层中含白云质灰岩,且洞身段裂隙水受季节变动影响,这些都为岩溶的形成提供了必要的条件。根据地质勘察资料,曾在DK113+850处钻孔揭示一溶洞,垂直深度为0.9m,内有黏土充填。根据区域资料,白云质灰岩地层内岩溶强烈发育,地下岩溶形态极为发育。
3 超前地质预报技术
本岩溶隧道综合超前地质预报采用了TSP地震波地质超前预报法、红外探水法以及超前钻孔法;以DK113+780~+810段进行说明。
(1)TSP地震波地质超前预报法
①现场观测系统布置
在隧道DK113+650的左边墙和右边墙位置分别布置一个地震波信息接收孔,孔径均为50mm。在DK113+670~DK113+704段的右边墙位置,按约1.5m的间距布置24个激发孔分别激发地震波,激发孔孔深1.3m,孔径约40mm,孔向下倾斜约10º,每个激发孔装填的药量为66g。激发孔和接收孔基本保持在同一个高度上。
②结果分析
DK113+780~DK113+787段:围岩较破碎(Ⅲ级),溶蚀裂隙发育;
DK113+787~DK113+810段:围岩破碎(Ⅳ级),岩溶局部发育。
(2)红外探水法
①测点布设
在掌子面取9个或9个以上均匀分布测点,采用红外探水仪进行红外探测;从掌子面向已开挖段每隔5m布置一个测点(左右边墙以及拱部测点在同一断面),分别测得初期支护段左边墙、右边墙与拱部岩体的辐射场强值。
②结果分析
现场测得数据
对大田山隧道DK113+780掌子面前方30米进行超前探水测得的场强具体数值如表1所示。
表1
由掌子面岩体上9个测点的红外辐射场强数值可知其最大值为357μw/cm2,最小值为349μw/cm2,差值为8μw/cm2,小于允许的安全值10μw/cm2;可以看出:往掌子面方向,红外辐射场强值曲线相对起伏不大,整体上呈直线型。
根据上述1、2两种判别方法,结合已揭示的围岩情况,可以判定DK113+780~DK113+810段不存在含水构造。
(3)超前探孔法
①钻孔布设
在掌子面DK117+780处,应用MK-5型钻机进行超前钻孔作业作业对前方30米进行探测,钻孔总长124.1米,钻孔参数、位置及深度等见表2。
表2
②芯样分析
钻孔DZK16-1:孔深31.1m,整段为灰岩,浅灰、灰白色,微晶结构,钙质胶结,若风化,溶蚀中等发育,岩体自稳性好,终孔水量无变化,属Ⅴ级次坚石。
钻孔DZK16-2:孔深31.0m,整段为灰岩,浅灰、灰白色,微晶结构,钙质胶结,若风化,溶蚀中等发育,岩体自稳性好,终孔水量无变化,属Ⅴ级次坚石。
钻孔DZK16-3:孔深31.4m,整段为灰岩,浅灰、灰白色,微晶结构,钙质胶结,若风化,岩体自稳性好,溶蚀中等发育,在DK113+787~DK113+795段钻机钻进速度较快,既无卡钻现象,无钻芯试样,推测此处岩溶十分发育,含有溶洞。
钻孔DZK16-4:孔深30.6m,整段为灰岩,浅灰、灰白色,微晶结构,钙质胶结,若风化,岩体自稳性好,溶蚀中等发育,终孔水量无变化,属Ⅴ级次坚石。
(4)综合分析
根据上述三种探测方法综合分析:DK113+780~+810整段为灰岩,浅灰、灰白色,微晶结构,钙质胶结,若风化,岩体自稳性好,为Ⅲ级围岩,溶蚀中等发育,断面不含水,在DK113+787~DK113+795段靠近线路右侧边墙脚处含有一空溶洞,溶洞规模不大。
(5)本隧道揭示岩溶发育特征
1)1#溶洞
位于DK113+670~+704段,纵向长34m,横向最宽约29m,最高约28m,底部有厚0~15m碎石土、软塑壮的黏土充填,开挖揭示溶洞空间较大,顶壁长满石钟乳,形状各异;左低右高,中部及左侧下部大面积充填碎石土、黏土;并在DK113+680线路左侧至溶洞壁附近有积水现象,但水量较小,仅见溶洞顶壁有渗滴水现象,向DK113+680线路左侧溶洞壁处的岩溶管道处排泄,岩溶管道半径约0.6m。1#溶洞开挖揭示横断面图如图2所示。
图2 开挖揭示1#溶洞横断面图
2)2#溶洞
位于DK113+787~+795段线路右侧边墙脚,纵向长8m,横向宽4~5m,深10~15m。开挖揭示时未见有地下水流出。2#溶洞开挖揭示横断面图见图3。
图3 2#溶洞开挖揭示横断面图
将现场揭示情况与超前探测分析情况进行对照,基本相符,说明超前预报分析基本准确。
4 岩溶隧道开挖支护技术
4.1 超前支护技术
本隧道岩溶地段填充体较少,但岩溶发育,为确保施工安全,采用超前小导管注浆进行预支护,小导管在洞外加工场加工。施工前先沿开挖周边轮廓线按照设计间距准确布出孔位,采用YT-28型凿岩机钻孔,小导管采用风枪或游锤打入,浆液在现场拌制,采用液压注浆泵压注。注浆材料采用纯水泥浆,水灰比为0.5:1~0.8:1,浆液先稀后浓,注浆参数根据现场试验适当调整。
岩溶地段超前小导管支护工艺流程图见图4。
4.2 开挖方法
岩溶地区开挖方法宜采用台阶法,在Ⅱ、Ⅲ级围岩条件下,当溶洞仅穿过隧道底部一小部分断面时,可采用全断面一次开挖,当隧道只有一侧遇到溶洞时,先开挖该侧,待支护完后再开挖另一侧。
(1)1#溶洞
根据超前探测情况,溶洞较大,且局部含水,对DK113+670~+710段采用上下台阶法开挖,采用微震光面爆破,严格控制装药量。开挖循环进尺控制在1~1.5米。开挖采用风钻进行打眼,在每次施作钻孔时,掌子面不同位置施作3个3.5~4m深钻孔以进一步确定前方溶洞轮廓。
(2)2#溶洞
根据超前探测情况,溶洞位于隧道线路右侧且溶洞规模不大,对DK113+670~+710段采用全断面法开挖,采用微震光面爆破,严格控制装药量。开挖循环进尺控制在0.8~1.0米。在每次施作钻孔时,掌子面不同位置施作3个3.5~4m深钻孔以进一步确定前方溶洞轮廓。
图4 超前小导管注浆工艺流程图
4.3 初期支护
岩溶地区隧道初期支护根据岩溶情况进行适当加强,采用打锚杆或施作小导管注浆及格栅钢架等进行施工。由于1#溶洞较大,采用格栅钢架进行加强支护;2#溶洞较小,且未影响支护轮廓,现场按照原设计采用初喷混凝土、锚杆支护。
(1)1#溶洞初期支护
隧道岩溶段开挖后,立即对钟乳石发育的溶洞顶部喷C20混凝土进行封闭,混凝土厚10cm。
在隧底施作50cm厚C15混凝土止浆板,然后施作Φ75钢花管桩对隧底进行注浆加固。待施作完毕,达到设计强度后,对边墙初支外侧空腔采用M7.5浆砌片石进行,回填高度至钢架B、C单元接头处。回填前对基地杂物进行清除,在设立格栅钢架断面位置处画出锚杆位置,拱部12根,每根长3m,边墙14根,每根长3m,纵、环向间距分别为1m、0.8m。回填过程中将锚杆砌入浆砌片石中,并确保回填浆砌片石与岩壁紧贴密实,外壁尽量平整,挡墙外部预留足够空间进行初期支护,防止侵限。
回填完毕后,进行格栅钢架的安装及挂钢筋网片,拱墙格栅钢架1m/榀,钢架脚架立在处理过的基底上,在格栅钢架外侧安装钢筋网片,钢筋网片采用Ф8钢筋洞外加工,网格间距25cm×25cm,由于拱部外侧喷射混凝附着物较少,钢筋网片进行加密采用安装双层钢筋网片交错安装。
钢架、钢筋网片安装完毕进行喷射混凝土作业,喷射混凝土前在拱部安装好吹砂预留管,并用塑料袋等编织物堵严,防止喷射混凝土堵住管口。
(2)2#溶洞初期支护
隧道开挖完后,对溶洞上部空间进行喷射C20混凝土封闭,厚度10cm。然后在该段线路右侧边墙空溶洞上方设I18型钢网格架,嵌入基岩1m,网格间距1m×1m,其上铺双层铁丝网,进行喷射混凝土作业,至设计厚度。
5 结束语
通过本岩溶隧道施工情况说明:采用地震波超前地质预报、红外探水、超前探孔等综合超前预报手段,成功的探测了隧道岩溶的发育情况;在此基础上采取超前注浆支护、短进尺、初期支护加强等技术进行施工,并根据溶洞大小、规模及含水情况采取不同的施工技术,确保安全、优质、高效的通过此岩溶不良地段,是岩溶隧道施工中一种有效的、安全的方法;但还要进行进一步的探讨,并在实践中不断研究,逐步完善和提高。
参考文献
[1] 王华,杨军生,王春雷. 地质雷达在隧道岩溶超前预报中的试验研究. 路基工程,2007,1:101-103.
[2] 李兴春,王宏,李兴高.红外技术在开挖隧道岩溶探测和预报中的应用. 工矿自动化, 2008,2:70-71.
[3] 郭 群. 大管棚超前支护技术在南山隧道岩溶处理施工中的应用. 隧道建设,2008,28(3):336-338.
[4] 张朝强. 大山隧道岩溶治理浅谈. 四川建筑, 2008,28(3): 54-56.
0 引言
隧道工程瓦斯灾害属于极具危害性的突发事故,具有分散性特点。近几年隧道工程中因瓦斯爆炸事故虽然不多,但其危害相当严重,因而逐渐成为社会焦点。国内曾发生过严重的隧道瓦斯爆炸事故,造成巨大人员伤亡。非煤系地层区瓦斯涌出比较分散,且都是随即发生,隧道施工过程中,若不提前做好防治瓦斯的设计规划,施工中很可能引发瓦斯灾害。鉴于此,研究非煤系地层隧道瓦斯的形成机制以及施工对策具有重要的实际意义。
1 工程简介
某高瓦斯隧道最大埋深248m。隧道开挖采用台阶法施工。全隧穿越岩性为砂岩、泥岩互层;构造位于税家槽背斜西翼,构造简单,岩层倾角4°~5°,节理、裂隙发育一般。
2 瓦斯形成机理分析
综合分析设计提供地质资料,某隧道是由于浅层天然气沿地层的岩体裂隙上逸进入隧道。天然气源自隧道下方2800m三叠系上统须家河煤系地层,它在储存过程中不断随着地质构造的衍变逐渐上移,在侏罗系上统蓬莱镇组地层局部储存封闭或孤立残留在岩石裂隙中,形成以裂隙型游离瓦斯为主的天然气。这类天然气因流量小而相对稳定,但是压力低,分布不均,多数情况下随机涌出,具有良好圈闭条件的与储气层相同且张裂隙或裂隙发育的砂岩透镜体的分布情况对瓦斯储量起着决定性的影响。施作隧道工程时,可能发生瓦斯泄漏的情况通常有三个特点,一是天然气储量大,二是砂岩层厚且孔隙率较大,三是裂隙呈网络系统发育。部分地段的封盖具有良好的圈闭条件,大裂隙发育过程中延伸到了储气层,如果直接挖开封盖,储气层内的瓦斯就会顺着裂隙发育喷涌而出,严重时造成爆炸事故。
3 施工技术
高瓦斯隧道施工管理的重点是防止瓦斯燃烧和爆炸的灾害性事故的发生。根据笔者的经验,当隧道施工现场有充足氧气、一定温度的引火源和一定浓度的甲烷时,发生瓦斯爆炸事故的可能性最大。施工对策的制定就是从这3个条件出发,高瓦斯隧道的瓦斯防治手段主要从4个方面考虑,即:隧道瓦斯的超前预测、通风设备的选定及管理、确定检测和监控系统、施工用机械和电气设备的选用和管理。施工中采取超前钻孔探测、预测隧道前方瓦斯的发育情况,通过加强通风降低瓦斯的浓度,采用有效的瓦斯检测监控系统监控瓦斯的浓度,控制隧道各个不同作业面内的瓦斯浓度在安全作业许可条件内,选用防爆的电气设备控制火源等手段,确保了隧道的安全施工。
3.1 瓦斯的超前预测
隧道施工中瓦斯涌出量与所在工区的围岩性质、地质情况有密切的联系。通过超前水平钻孔探测和预测隧道前方瓦斯的发育情况,为采用合理的施工措施提供依据,防止瓦斯突涌及爆炸事故的发生。瓦斯隧道安全控制的要点即是在隧道正洞开挖前采用超前水平钻孔对前方地质进行探测验证。
超前地质钻孔采用φ89mm多功能轻型钻机水平钻孔进行探测验证,每25m一循环,孔身长度为30m,搭接长度不小于5m,隧道正洞每个断面设置5个探测孔,分别在拱顶一孔,拱腰两孔,拱底两孔。
3.2 通风设备选定及管理
3.2.1 通风设备选定
通风设备选定是结合隧道各工区任务量划分,并根据瓦斯涌出量、爆破排烟、同时间洞内工作的最多人数、洞内施工机械排放废气量等分别计算通风所需风量,并按允许风速进行检验,采用其中的最大值,以确保风量和风速满足瓦斯防治要求。
全隧采用压入式主导通风方式。依据风量计算要求正洞单口选用的型号为: 2台SDF(c)-NO.13(2×132KW)型轴流风机(1台备用)通过2道管路同时供风,可满足隧道需求风量要求,斜井采用一台SDF-NO.11(2×110KW)轴流风机。隧道掘进超过1200m时,在正洞回风区增设SDS-Ⅱ-NO.10射流风机,并在瓦斯易聚集作业面增设局扇以降低瓦斯浓度。正洞通风管选用抗静电阻燃风管,直径为1.5m。风管利用φ1500mm钢筒通过衬砌模板台车。
3.2.2 通风管理
①在隧道开挖阶段,集合通风系统管理的技术工人组成通风班组,建立设备巡检制度,督促技术人员每天坚持检查和记录设备运行情况,按要求进行故障检修,确保管路顺直,无死弯、无漏洞;
②建立瓦斯通风监控机制,负责风量、风速等技术参数的检测工作。指派专人指挥风机系统的启停和变速,全程跟踪记录并签认操控流程。移动模板台车时风机转为低档位连续供风;
③隧道回风风速按0.25m/s设计,在避车洞、模板台车、塌腔和加宽段加设局扇以避免瓦斯积聚。为解决风速低时回风流瓦斯的层流问题,一般地段可用射流风机卷吸升压来提高风速。
3.3 瓦斯检测、监控体系
应用互补互验型监测系统进行瓦斯监测,一方面提高监测精度,另一方面有效弥补单一检测方式的缺陷,提高隧道施工安全系数。全套瓦斯检测、监控体系由KJ90自动监控系统、CJG10型光干涉瓦斯检测仪两种仪器相结合方法检测,以保证瓦斯检测数据的准确,确保施工安全。
3.3.1 人工瓦斯检测
人工瓦斯检测采用光干涉式瓦斯检测仪和便捷式甲烷检测报警仪。CJG10型光干涉瓦斯检测仪精度高,测量瓦斯浓度误差为±0.1%。特点是携带方便,操作简单,检测地点灵活,主要为瓦检员配备。
3.3.2 瓦斯自动监控系统
瓦斯自动监控系统使用KJ90声、光连动自动监控系统,其探头悬挂位置应能反映隧道即时风流中瓦斯的最高浓度。在检测到瓦斯浓度≥0.4%时报警,瓦斯浓度≥0.5%时切断电源实施瓦电闭锁。瓦斯探测器主要设置在掌子面处(开掘处)、衬砌处、加宽带和回风口四类易引起瓦斯发生积聚、且位置相对固定、重要的地方。
3.4 施工机械和电气设备的选用与管理
《铁路瓦斯隧道技术规范》规定:隧道内高瓦斯工区和瓦斯突出工区的电气设备和作业机械必须采用防爆型。瓦斯隧道作业设备选用防爆型不仅装、运机械成本太高,而且对施工工效有较大影响。瓦斯隧道施工设备配置方案是否要全部采用防爆型,不能仅取决于是否为高瓦斯类或瓦斯突出类来定性地决定,而应取决于施工中实测的瓦斯浓度大小来做出科学的选择。
考虑到本隧道瓦斯属于深地层天然气溢出,产量低、而且突出几率小,经充分研究,在加强超前探测、瓦斯检测,加强通风,设立施工许可条件基础上,采用普通的装、运机械完全可以保证作业安全。此外,为杜绝瓦斯燃烧爆炸的条件形成,洞内其他所有电气设备、线路均采用防爆型。
4 瓦斯治理效果
该隧道施工管理采取了上述治理措施,根据KJ90自动检测系统显示,爆破后掌子面的瓦斯浓度和一氧化碳、氮氧化合物浓度在通风5min~8min就降到规范要求的限值以下。洞内环境良好,检测到的瓦斯和有害气体均在允许浓度以下,连续作业8个月,未发生因瓦斯超限造成人身伤亡和设备损坏事故。平均单口月成洞进尺达到了126m/月,说明治理措施是有效的。
5 结语
非煤系瓦斯隧道瓦斯赋存的随机性导致隧道开挖面出现瓦斯没有规律,隧道施工瓦斯的防治应对隧址区地层岩性、地质构造进行全面认识,尽可能掌握潜在的瓦斯来源及运移通道,从而采取排放、稀释、监控等综合措施进行治理。本方法可以起到同类隧道的借鉴作用。
参考文献:
[1]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
[2]铁建设[2008]105号铁路隧道超前地质预报技术指南[S].北京:中国铁道出版社,2008.
一、工程概况
本合同段隧道:K1+995~K2+540,长545米(其中明洞30米,暗洞515米)。明洞按明挖施工,暗洞按新奥法(NATM)施工。本隧道为连拱整体式单向行车双车道隧道(上下行分离),单洞全长540m,其中明洞15米,暗洞Ⅴ级围岩140米,Ⅳ级围岩120米,Ⅲ级围岩760米。设计车速为100km/h,车行道2*3.75m,净宽10.25m,净高5.0m。隧道内路面为复合式路面上面层采用沥青混凝土,下面层采用C40砼。隧道衬砌采用复合式支护结构形式。
二次衬砌结构支护设计参数:V级围岩拱圈衬砌厚度50cm、仰拱50cm;IV级围岩拱圈衬砌厚度40cm、仰拱40cm;Ⅲ级围岩拱圈衬砌厚度35cm;
二、隧道衬砌施工
本标段隧道按复合衬砌设计,二次模注衬砌时间应在围岩量测周边收敛速度0.1~0.2mm/d,拱顶下沉速度0.07~0.15mm/d;变形量已达到预计总变形量的80%以上;且变形速率有明显减缓趋势时,方可进行,即适时衬砌。配2套全液压钢模台车及砼输送泵,运输采用砼输送灌车,洞口设一拌合楼统一拌料。
1、衬砌设备配置
(1)衬砌台车
全断面液压衬砌台车示意图
(2)混凝土的拌制:采用自动计量混凝土拌合楼,集中生产混凝土。
(3)混凝土的运输:采用混凝土输送车运输,输送泵泵送混凝土,插入式振捣器与附着式振捣器配合振捣密实。
(4)衬砌台车定位:采用STZ型激光经纬仪导向,现场设工程测试试验室,配齐试验技术人员和设备,负责各种原材料及混凝土的试验工作,确保混凝土衬砌内实外美,断面尺寸准确无误,一次达标。
2、衬砌时间
二次衬砌在围岩与初期支护变形基本稳定,位移收敛速度已呈明显减缓趋势进行。所产生的各项位移量已达到预计总位移量的80-90%;周边位移速率小于0.1-0.2mm/d,拱顶下沉速率小于0.07-0.15 mm/d的时候进行。
3、衬砌测量
二次衬砌实施前夕,在初期支护的两边墙上,每10m施测一组腰线,以控制仰拱及基础浇筑。然后立模完毕后,用水准仪分别对衬砌断面的两边基面和拱顶高程检查,同时利用中线点拉线对墙进行对中检查,以控制隧道各部位的几何尺寸。
4、衬砌检测
隧道二衬结束后,委托具有相应测试资质的单位,采用地质雷达来检测二衬厚度及是否有孔隙和空洞。
5、施工方法
1、二次模筑衬砌施工工艺流程
(1)立模
(2)就位调整
前后调整:通过台车走行机构来完成。左右横向调整:3cm以内用侧向千斤顶调整,超过3cm需先调整轨道位置。模板高度调整:单调垂直油缸。
(3)灌注混凝土
检查堵头板、接缝模板是否安装牢固。检查灌注部位的作业窗是否关闭。检查输送管接头是否牢靠。灌注混凝土前,用水将基底冲洗干净,灌注时两侧同时进行,防止19641125造成偏压导致跑模,灌注部位的作业窗两侧必须都用销子插上。
(4)拆模
当衬砌混凝土达到拆模强度时,先拆除堵头板和接缝模板的伸缩杆,再拆除侧向千斤顶和侧向油缸机械锁插销以及油缸与模板的联结,下降垂直油缸和托架,放下上层脚手板。用垂直油缸同步顶升托架并与模板联结,将侧向油缸与模板联结起来。先将拱顶模板收拢铰和翻转铰处的对接螺栓,放下其余脚手板,松开基脚千斤顶。再收两侧模板。同步下降垂直油缸,使模板与衬砌混凝土全部脱离。
(5)养护
拆模后即对混凝土进行洒水养护。
2、施工工序
a、仰拱、填充(或垫层)浇筑完毕后,安装墙后纵向φ100排水管及防水板,防水板要与排水管反卷起并用细铁丝绑扎牢固。铺挂防水板时保证防水板的松弛度。
b、在上组衬砌接头施工处安装膨胀止水条;在围岩类别变化及明、暗洞交界处安设止水带。
c、模板台车准确对位,牢固支撑;通知测量监理工程师复核台车中线、拱顶高程、台车张开宽度等。
d、泵送浇筑拱墙砼。
e、混凝土脱模强度必须达到2.5Mpa以上,脱模时间必须按照规范要求和试验确定,脱模后及时养护混凝土,养护时间不少于14天。
3)、施工要求
A、防排水
a、土工布及防水卷材的铺设
采用无钉铺设工艺。
钢筋网、管道等凸出部分,先切断后用锤铆平抹砂浆素灰。锚杆有凸出的部位时,螺头顶预留5毫米切断后,用塑料帽处理。补喷混凝土使其表面平整圆顺,凹凸量不得超过±5厘米。
采用400g/m2土工布及隧道专用防水卷材复合式的防水卷材,铺设时,先用电钻在初期支护面上钻孔,钉上小木头,在木头上钉钉,将防水卷材上的绳子固定在钉子上,从而将防水卷材固定在初期支护面上。
铺设防水板时,采用手动专用熔接器热熔在衬垫上,两者粘结剥离强度不得小于防水板的抗拉强度。
防水板之间采用专用熔接器热熔粘结,结合部位不得小于100毫米,且粘结剥离强度不得小于母体拉伸强度的80%。
b、施工缝、变形缝安装
在每组衬砌接头有一条环向施工缝,间距随一次浇筑砼长度而定。因施工缝处为防水的薄弱环节,因此在二次衬砌施工时,必须加强施工缝处的防水施工,提高防水质量。
止水带安装示意图见如下图所示:
c、环向盲沟的安设
在富水区段按1.5~3米安设一道环向盲沟,其他地段按5米一道。环向盲沟采用φ50软式透水管,安设时,透水管底部要和边墙底部φ100HDPE波纹管相通。
d、土工布、防水卷材、BF遇水膨胀橡胶止水条、软式透水管性能要求:
B、模筑砼
①采用抗渗强度大于S8的砼进行拱墙衬砌;地下水对砼具有分解类弱~中等腐蚀和硫酸盐结晶类弱~中等腐蚀,采用二级防护,选用矿碴硅酸盐水泥,砼采用抗腐蚀性砼。
②浇筑二次衬砌砼时,严格按照配合比的要求控制砼的塌落度,不得随意更改砼配合比。
③浇筑砼时采用对称进行浇筑,左右侧高差不得大于1.5m,防止砼偏压造成台车跑模,拱部振捣采用附着式振捣器振捣。
④砼应分层振捣,每50cm振捣一次,振捣时振捣棒距离模板不得小于20cm,不得漏振。
C、二次衬砌钢筋
①隧道所用的钢筋采用双面焊接,焊缝长度不小于5d直径,5d搭接长度内钢筋弯曲0.5d,保证焊接后的钢筋在一条轴线上;(d表示钢筋直径)
②在任一有钢筋焊接接头的区段内,同一个断面钢筋接头不得大于钢筋总数的50%,区段长度不小于35d且不小于50cm;
③焊缝宽度≥0.7d,焊缝深度≥0.3d;
④钢筋加工
a、根据上述钢筋焊接要求,二次衬砌及仰拱钢筋加工成以下示意图的形状,便于施工
b 、其它要求:
b.1钢筋施工前,做好砂浆垫块,垫块强度不得低于10号,垫块厚度不得小于5cm;
b.2钢筋安装时,每2m安放一个砂浆垫块,并用细铁丝将其绑扎在主筋上,
b.3钢筋半成品存放时,必须垫高固定存放,不得污染钢筋表面。
D、模板安装
1)衬砌台车就位后,张开台车的模板至设计衬砌轮廓线的要求,固定模板;
2)端头模板,端头模板采用木材加工而成,环向拼装而成,木模板环向用角钢连接成一个整体,外侧再用钢管斜支撑角钢,用以加固端头模板,如图所示:
三、质量要求以及注意事项
①砼灌注:砼采用分层、左右交替对称浇注,每层浇注厚度不得大于0.8m;两侧高差控制在30cm以内。浇注过程要连续,避免停歇造成“冷缝”,间歇时间超过1小时则按施工缝处理。
②砼专人定位捣固:专职捣固手定人定位用插入式振动器捣固,保证砼密实;起拱线以下辅以木锤模外敲振和捣固铲捣固,以仰制砼表面的气泡产生。灌注过程中严禁用振动棒拖拉砼。
③钢筋保护层:钢筋砼衬砌采用泵送砼,由于灌注速度快,钢筋变形显著,易造成拱部钢筋保护层减少。因此要适当加大混凝土垫块厚度并放慢砼灌注速度。
④矮边墙顶面处砼接缝处理:砼开盘前先泵送同级砂浆,砂浆量以边墙上平铺2cm为宜,以保证矮边墙同拱墙砼的连接,防止模板缝隙漏浆造成砼泛砂或露骨;同时起到润湿输送泵管道的作用。
⑤砼输送泵管路布置:接头管箍应避免不当接触造成爆脱,管路宜用方木支垫高出地面,穿过台车时管箍不与台车构件相接触。砼输送管路端部设置一根软管,软管管口至浇筑面垂距控制在1.5m以内,以避免砼集料堆积和产生离析。
中图分类号:TU74文献标识码: A 文章编号:
一、工程概况
某隧道全长648m,该隧道属于典型的浅埋偏压隧道,且围岩松散,溶槽、裂隙发育,充填大量的碎石土和黄粘土,地质条件较差,对开挖带来很大的安全隐患,极易出现塌方甚至冒顶事故。为保证施工质量、安全以及运营的安全,我们在浅埋偏压地段施工时采取必要的加固措施。一是在外侧增设应力挡墙,以抵抗山体的侧压力,挡墙采用C 25片石混凝土,与围岩之间填充C25片石混凝土同步浇筑。二是增加拱部Φ108管棚长度,由设计15 m改为36 m,以便更好地控制隧道初期支护变形和下沉,可以有效的控制开挖和支护施工质量以及后期运营安全。三是对型钢拱架拱脚采用锁脚导管代替锁脚锚杆。四是由于山体土较松散破碎,对地表进行预注浆加固处理,使隧道四周形成胶结。五是加强监控量测工作,随时掌握围岩变形情况,及时指导现场施工。本文着重介绍地表预注浆、大管棚施工及锁脚导管的施工方法。
二、浅埋、偏压段施工方案
1.地表注浆加固施工工艺
根据变更后的施工方案,首先进行外侧的应力挡墙施工,然后进行浅埋段的地表注浆加固。注浆法是利用压力将能固化的浆液通过钻孔注入岩土孔隙中,使岩土的物理力学性能得以改善的方法。对该段进行地表预注浆的主要起到提高围岩强度、降低围岩的透水性能,改善隧道的成拱的作用。
1.1地表注浆施工工艺流程
清理地表测量定位、地面标高钻机就位钻孔注浆管安装施作止浆盘钢管注浆封管
1.2浆液配制
注浆材料采用水泥单浆液和水泥、水玻璃双浆液两种。对周边孔采用水泥、水玻璃双浆液,对内部孔采用水泥单浆液。当吸浆量较大或者地下水较丰富时,内外部均采用水泥、水玻璃浆液。水玻璃模数为2.9,波美度为40,施工时用水稀释成波美度为35。施工时加入3%的缓凝剂。
为了选择最佳的浆液配合比,试验人员做了几组对比试验,对其凝结时间及强度进行了对比,根据试验结果及施工设备情况,选用的单桨液水灰比为0.8∶1,双浆液水灰比为0.8∶1,水玻璃占水泥质量的17%。注浆压力是给予浆液在岩土层中渗透、扩散、压实的能量,其大小决定着注浆效果的好坏。根据围岩情况,注浆初压取0.5MPa~1MPa,终压取2.0MPa~2.5MPa,在补注时压力调高的3.0MPa~3.5MPa。
1.3钻孔
⑴首先进行地表土及腐殖土的清理,并初喷一层混凝土。
⑵安设钻机,钻机就位后进行桩位复测,确保在设计位置进行钻孔。
⑶加工和安装注浆管。注浆管采用Φ45×3.5 mm的无缝钢管,并在无缝钢管上布置压浆孔。现场拼装时应防止断管,安装时要保证压浆管顺直。
⑷施工止浆盘。将钢筋网片进行现场连接,并于注浆管焊接在一起,保证钢筋网片的整体性,从而保证喷射混凝土的整体性。然后施工15cm的C25喷射混凝土,封闭山体表层,为保证地表的排水通畅,喷射混凝土应保持与原始地形一致。
⑸注浆。注浆时应从外向内,从低处向高处注浆。首先对外部进行注浆起到围、堵、截的作用,然后对内部进行注浆,起到填、压、挤的作用。注浆量确定采用现场试验的方法,对具代表性的钻孔进行注水试验,分析岩土层的孔隙率和渗透系数,从而确定注浆量的大小。
⑹质量检测。第一轮注浆结束后,进行现场取芯抽检。对注浆效果不理想处进行高压补注。
2.大管棚施工工艺
2.1施工工艺流程
测量放线导向墙施工钻机就位钻孔清孔安装花钢管注浆封口
2.2施工工序及控制要点
⑴导向墙施工
为确保大管棚施工的精度,使钻头、钻杆钻进时始终保持同一钻进角度、方向,在隧道洞门口浇筑管棚施工混凝土导向墙,导向墙在洞身外廓线以外施作,采用现浇C30模注混凝土,厚度为100cm。导向墙内埋设2榀I18工字型钢支撑,钢支撑与管棚导向管焊成整体。
⑵导向钢管制作
采用Φ140壁厚5mm的钢管作为管棚的导向管,导向管应根据管棚坐标,焊接定位在导向墙内的型钢拱架上,焊接前对每一根导向管的位置进行测量定位,考虑钻机沉落或其他因素产生的误差,取调整误差10,导向管调整3.5 cm,防止管棚下垂而侵入隧道来挖轮廓线内。
⑶钢花管制作
为了使浆液充分渗入地层,使得隧道拱部围岩形成加固层,管棚由无缝钢管上钻注浆孔制成,孔径10mm~16mm,孔间距188mm,呈梅花形布置,尾部留不钻孔的止浆段150cm。
⑷钻机就位
①钻机平台,钻机平台可用枕木或钢管脚手架搭设,搭设平台应一次性搭好,钻孔由两台钻机由高孔位向低孔位对称进行,可缩短移动钻机与搭设平台时间,便于钻机定位。
平台支撑要落在坚固的基础上,连接要牢固、稳定。防止在施钻时钻机产生不均匀下沉、摆动、位移等影响钻孔质量。
②钻机定位,钻机选用地质钻机,钻机要求与已设定好的导向管方向平行,必须精确核定钻机位置。用经纬仪、挂线、钻杆导向相结合的方法,反复调整,确保钻机钻杆轴线与导向管轴线相吻合。
⑸钻孔
①为便于安装钢管,钻头直径采用Φ127mm。②钻孔应采取各一钻一的方式,岩质较好的可以一次成孔;钻进时产生坍孔、卡钻,需补注浆后再钻进。③钻机开钻时,可低速低压,保持钻杆顺直,钻进过程中一般保持低压慢进,中等转速,防止转速过快造成钻孔倾斜。④钻进过程中经常用测斜仪测定其位置,并根据钻机钻进的情况及时判断成孔质量,并及时处理钻进过程中出现的事故。⑤钻进过程中确保动力器,扶正器、合金钻头按同心圆钻进。⑥认真作好钻进过程的原始记录,及时对孔口岩屑进行地质判断、描述。⑦若遇孔内涌水涌泥,应立即停钻,注浆封孔。
⑹清孔验孔
①用地质岩芯钻杆配合钻头(Φ127mm)进行来回扫孔,清除浮渣至孔底,确保孔径、孔深符合要求,防止堵孔。②用高压气从孔底向孔口清理钻渣。③用经纬仪、测斜仪等检测孔深,倾角,外插角,各项的允许偏差如表1。
表1允许偏差
⑺安装管棚钢管
清孔后应及时下管,防止塌孔。
①钢管在专用的管床上加工好丝扣,钢管四周钻Φ10mm~Φ16mm注浆孔;管头焊成圆锥形,便于入孔。②管棚顶进采用大孔引导和管棚机钻进相结合的工艺,即先钻大于管棚直径的引导孔(Φ127mm),然后可用10 t以上卷扬机配合滑轮组反压顶进;也可利用钻机的冲击力和推力低速顶进钢管。③接长钢管满足受力要求,相邻钢管的接头前后错开。同一横断面内的接头数不大于50%,相邻钢管接头至少错开1m。可采用5m及6m钢管交替盯紧。钢管的连接可采用焊管连接法或丝扣套管连接法。
⑻清孔
改革开放以来,我国经济发展迅速,城市规模不断扩大,城市人口剧增,许多城市不同程度地出现了建筑用地紧张,生存空间拥挤,交通堵塞等问题。这些问题给人类居住条件带来很大影响,阻碍了现代城市的可持续发展。为了缓解以上问题,我国及世界上其他各国都开始向地下空间发展,隧道工程便是对地下空间利用的一种体现。与西方发达国家相比,我国隧道建设起步较晚,存在施工经验不够丰富、设计理念不够先进等问题。不过,改革开放以后,我国隧道工程发展迅速,各种隧道工程的建设为我国隧道理论的发展、完善提供了宝贵的经验。
一、隧道工程理论
隧道设计理论主要有两种,一种是二十世纪20年代提出的传统的“松弛荷载理论”,其核心内容是:稳定的岩体有自稳能力,不产生荷载;不稳定的岩体则可能产生坍塌,需要用支护结构予以支撑。这样,作用在支护结构上的荷载就是围岩在一定范围内由于松弛并可能塌落的岩体重力。
另一种理论是二十世纪50年代提出的现代支护理论,即“围岩承载理论”(简称“岩承理论”),其核心内容是:围岩稳定显然是其自身有承载自稳能力;不稳定围岩丧失稳定确实有一个过程的,如果在这个过程中提供必要的帮助或限制,则围岩仍然能进入稳定状态。这是一种比较现代的理论,它已经脱离了地面工程考虑问题的思路,而更接近于地下工程实际,半个世纪以来已被工程界广泛接受和推广应用,并且表现出了广阔的发展前景。
二、隧道超前地质预报
隧道建设是一项十分复杂的工作,为了防止发生重大工程事故,确保施工过程中的稳定和安全,必须认真做好超前地质预报工作,尽可能详细地调查隧道位置的区域工程地质、水文地质情况,施工过程中应做到勤监测,密切注意围岩状况,及时发现异常情况,以保证后续工作的顺利开展。
隧道超前地质预报不仅可以进一步查清隧道开挖工作面前方的工程地质和水文地质条件,指导工程施工的顺利进行,而且还可以降低地质灾害发生的几率和危害程度,并为优化工程设计提供地质依据。由此可见,隧道超前地质预报对于安全科学施工、提高施工效率、缩短施工周期、避免事故损失、节约投资等具有重大的社会效益和经济效益。因此,对隧道超前地质预报工作应给予足够的重视。
三、隧道施工方法以及选择原则
目前,常用的隧道施工方法有矿山法(又称钻爆法)、新奥法(我国称为“锚喷构筑法”)、明挖法、盖挖法、盾构法、掘进机法、沉埋法(又称沉管法)。
矿山法指的是用开挖地下坑道的作业方式修建隧道的施工方法。 矿山法是一种传统的施工方法。它的基本原理是,隧道开挖后受爆破影响,造成岩体破裂形成松弛状态,随时都有可能坍落。矿山法施工的基本原则是“少扰动、早支撑、慎撤换、快衬砌”。
“新奥法”是奥地利隧道学家腊布希维兹教授在总结锚喷支护技术的基础上首先提出的,简称为NATM(New Austrian Tunnelling Method)。它是采用锚杆和喷射混凝土作为初期支护,达成围岩的基本稳定,带隧道开挖完成后,在逐步地作内层衬砌作为安全储备,以保持隧道长期稳定的施工方法。至今,可以说在所有重点难点的地下工程中都离不开NATM.新奥法几乎成为在软弱破碎围岩地段修筑隧道的一种基本方法。
明挖法指的是先将隧道部位的岩(土)体全部挖除,然后修建洞身、洞门,再进行回填的施工方法。具有施工简单、快捷、经济、安全的优点,城市地下隧道式工程发展初期都把它作为首选的开挖技术。其缺点是对周围环境的影响较大。
盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。主体结构可以顺作,也可以逆作。在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。
盾构法是暗挖法施工中的一种全机械化施工方法,它是将盾构机械在地中推进,通过盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌,同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。盾构法开挖隧道通常适用于软土而不适用于岩石中。
掘进机法是挖掘隧道、巷道及其它地下空间的一种方法。简称TBM法,是用特制的大型切削设备,将岩石剪切挤压破碎,然后,通过配套的运输设备将碎石运出。分为:全断面掘进机的开挖施工,独臂钻的开挖施工,天井钻的开挖施工,带盾构的TBM掘进法。
沉埋法指的是将箱形或管形水泥混凝土预制构件,分段沉埋至河底或海底而构成隧道的施工方法。
目前常用的隧道施工方法主要有上述几种,不同的施工方法有各自的适用范围,在具体工程中选择何种方法应遵循以下原则:在选择隧道施工方法时,应综合考虑围岩工程地质、水文地质条件、隧道工程结构条件和工程施工条件,使所选方法与围岩自稳能力、工程地质条件以及隧道断面大小、形状相适应,并应满足施工技术水平、施工安全、作业空间、施工速度、施工成本控制、工程质量、环境保护、施工组织和管理方面的要求。
四、隧道支护
隧道支护结构的基本作用是保持隧道断面的使用净空,防止岩体质量的进一步恶化,同围岩一起组成一个有足够安全度的隧道结构体系,承受可能出现的各种荷载。此外,支护结构必须能够提供一个能满足使用要求的工作环境,保持隧道内部的干燥和清洁。
隧道的支护主要有初期支护和后期支护。初期支护的主要作用是承受“早期围岩压力”,帮助围岩达到“基本稳定”,以便安全、顺利地挖除坑道内岩体,保证隧道在施工期间的稳定和安全。初期支护的常用方法有锚喷支护和超前支护。后期支护的作用主要是承受后期围岩压力,并提供“安全储备”,以及满足构造、美观、降阻和耐久等方面的要求,保证隧道在服务期的长期稳定和安全。
五、隧道工程施工质量检测
隧道工程试验检测工作是隧道工程施工技术管理中的一个重要组成部分,同时也是隧道工程施工质量控制和竣工验收评定工作中不可缺少的一个主要环节。工程实践经验证明,不重视施工控制和施工现场质量的控制管理工作,而仅靠经验评估是造成工程出现早期破坏的重要原因。因此,要想切实提高隧道工程施工质量,缩短施工工期,降低工程投资,在建立健全工程质量监测制度的同时,必须配备一定数量的试验检测设备和相应的专职检测技术人员。
六、我国隧道发展方向
改革开放以来,我国隧道建设事业蓬勃发展,目前我国隧道数量已经跃居世界第一位。但我国仅仅是一个隧道大国,而非隧道强国,与西方发达国家相比,我国隧道建设还存在着机械化施工程度不高,施工工艺不够先进,质量控制不够严格,工程事故频发等缺陷。隧道技术的发展表明,今后我国隧道技术的研究方向为:非爆破的机械化施工、合理规划与环境保护、设计可靠合理、使用安全等方面。
参考文献:
[1]隧道安全施工技术手册 傅鹤林等编著 北京:人民交通出版社 2010.6
[2]隧道施工技术 陈小雄主编 北京:人民交通出版社 2011.6
[3]隧道工程 王成主编 北京:人民交通出版社 2009.8
[4]地下建筑结构设计(第二版) 王树理主编 北京:清华大学出版社 2009.11
作者简介:
中图分类号:U45文献标识码: A 文章编号:
前言
公路是国民经济的重要命脉,由于其特有的灵活性和优越性,发挥着其他运输方式不可替代的作用。公路隧道是公路工程结构的重要组成部分之一,随着我国社会主义市场经济的发展,西部大开发战略的实施,高等级公路已从沿海地区向西南、西北山岭区延伸,公路隧道建筑规模也越来越大。对公路隧道施工技术也要求越来越高。
一、施工准备及施工技术方案的确定
1、施工作业线安排
根据隧道设计结构和工程地质情况,施工作业采用中导洞先行,中导洞掘进40~50m 浇注中墙。在中墙混凝土强度达到70%以上再进左洞,右洞掌子面落后左洞按10m 控制。经监控量测,围岩变形基本稳定后同时施作左右洞二次模筑衬砌。当围岩变形过大,初期支护力不足时,除应及时增强初期支护外,亦可修改二次衬砌设计参数后提前施作模筑混凝土。左右洞二次衬砌与掌子面间距控制在25~35m 之间。这就在进、出口各自建立了中导洞、中墙、左、右洞开挖、二次模筑衬砌五道并行的作业流水线,拓展了隧道施工作业面,为加快隧道施工进度奠定了坚实的基础。
2、风、水、电作业,通风、防尘和施工排水
(1)施工供风:在隧道进、出口各设一座空气压缩机站,各安装2 台20m3/min 和1 台10m3/min 的空气压缩机以保障隧道施工用风。
(2)施工用水进、出口分别:在距隧道拱顶30m 以上的山顶各修建一座100m3的高山水池,水源一是在隧道出口右侧山脚挖一集水池,收集山泉水抽上山顶水池,再用管道输水至出口供施工生活用水。一是从电站水渠中抽水至山顶蓄水池再用管道输水至进口,供施工、生活用水。所有水源都要经过水质检验,PH 值小于4 或者硫酸盐、氯化物含量超过有关规范的允许值以及含有对水泥凝结硬化有害的杂质的水石不得用于搅拌砼。
(3)施工供电:在隧道进、出口各安装一台315kVA 变压器,利用附近的地方电网供电,同时各准备一台功率为220KW 的发电机组备用。动力设备采用三相380V,照明用电采用220V,为确保安全,所有线路都安装漏电保护开关。线路的架设及各种电器的安装必须符合《公路隧道施工技术规范》JTJ042-94 的有关要求。
(4)施工通风、防尘:洞内如需爆破掘进,必须坚持湿式凿岩,爆破后洒水以降低粉尘浓度。施工通风采取压入式,用3 台轴流风机分别向中导洞、左、右洞送风,送风口距开挖面的距离不大于15m。
(5)施工排水:主要是排除可能涌入隧道的地下水和施工废水。隧道从出口至进口为1.54%的上坡。出口施工为顺坡施工,施工排水采取自然坡利用塑料管将水引出洞外。进口施工为反坡施工,施工排水采取在开挖地段挖集水坑,用抽水机抽出洞外。
二、隧洞开凿过程
1、施工支护
首先要对不同类别的围岩,应采用不同结构型式的施工支护。
(1)Ⅵ 类围岩可不支护,Ⅴ 类围岩支护时,宜采用局部喷混凝土或局部锚杆。为防止岩爆和局部落石,可局部加栓钢筋网。
(2)Ⅳ~Ⅲ类围岩可采用锚杆、锚杆挂网、喷混凝土或锚喷联合支护。Ⅲ类围岩必要时可加设钢架。
(3)Ⅱ~Ⅰ类围岩宜采用锚喷挂网的联合支护形式,并可结合辅助施工方法进行施工支护。
(4)当地质条件差,围岩不稳定时,可采用构件支撑。
2、隧道洞口位置选择
洞口位置选择好坏,将直接影响隧道施工、造价、工期和运营安全。选择时要结合洞口的地形、地质条件、施工、运营条件以及洞口的相关工程(桥涵,通风设施等)综合考虑。
(1)洞口部分在地质上通常是不稳定的。一般应设在山体稳定,地质条件好,排水有利的地方。隧道宜长不宜短,应“早进洞,晚出洞”,尽量避免大挖大刷,破坏山体稳定。
(2)洞口不宜设在沟谷低洼处和汇水沟处,一般宜将洞口移到沟谷地质条件较好的一侧有足够宽度的山嘴处。
(3)当洞口处为悬崖陡壁时,根据地质情况采用贴壁或采用接长明洞的办法,将洞口堆到坍方范围以外3m~5m处,
(4)洞口地形平缓时,一般也应早进洞晚出洞。这时洞口位置选择余地较大,应结合洞外路堑、填方、弃渣场地、工期等具体确定,需要时可接长明洞,以确保施工和运营安全。
3、左、右洞开挖
在中墙砼达到设计强度的70%以后进行,采取两台阶分步平行开挖,上台阶从拱脚至拱顶,含整个拱部。为站人施工方便,上台阶分两步开挖:先挖环形导坑,后挖中核,中核至拱顶高度1.6m~ 2.0m。台阶长5m~ 10m,上台阶开挖的土方用人工翻至下台阶再用装载机配合汽车运弃。下台阶开挖先挖中槽,外侧边墙留上宽2m,下宽4m的平台。中槽掘进5m~8m,跳槽开挖边墙,马口槽宽2m,净距3m。仰拱随同边墙马口一起开挖,符合设计尺寸后立即初喷5cm厚砼,施工边墙部分锚杆,接长钢支撑至中隔墙,喷射砼至设计厚度,形成封闭的环形支护。仰拱开挖连成一衬砌节段长度应及时浇筑仰拱,加强对围岩的支撑。左、右洞一次开挖不宜大于1m,左洞先进,右洞开挖面按落后左洞10m控制。
三、公路隧道的通风
公路隧道的通分可分为自然通风和机械通风,其中机械式通风又可分为纵向通风、半横向通风和横向通风。纵向通风有全射流通风、带有竖井的送排式通风和静电除尘装置。采用全射流的方法通风,效果比较好,当隧道的长度在6000m以内时,相对于单纯的全纵向通风和分段通风,降低了隧道通风工程的费用,对与长度在6000m以上的隧道,应采用分段通风。全射流通分的优点是管理简单、安装方便、实施容易、通风效果好、风速平稳、维修方便、投资小、费用低。但也存在着风机集中处噪音大、设计复杂、在发生火灾时不能及时排除烟灰的缺点。半横向通风系统比纵向通风系统具有更好的防灾、减灾、救灾的作用,在火灾发生时,能够在最短的时间内将浓烟排除隧洞外,能防止浓烟毒气对人员造成的伤害,还能迅速将着火点附近的浓烟排出,利于消防人员的扑救,排烟系统可靠,能使灾情得到有效的控制。这种通风方式适用于隧道结构比较复杂,环境相对密闭,通道狭窄,隧道长度大的公路隧道。这种通风方式在发生火灾时能迅速排除浓烟,保证人员的安全。全横向通风系统通风效果好,在上部有排烟孔,使隧道内的空气保持新鲜,利于受灾人员的呼吸,但是安装费用高,通风时耗电高。如图1,图2所示。
四、公路隧道的防排水工程
公路隧道的防排水工程至关重要,在土方开挖后会涌现大量的水,要及时做好防排水工作,防灾隧洞的失稳倒塌,在隧道修建成功后,如果排防水没做好,会导致路面积水,给交通带来不便,所以一定要完善隧道的排防水系统。公路隧道的防排水遵循以防为主,防排结合的原则。在施工缝和变形缝处采用橡胶止水带来防水,在初期支付和二次衬砌之间延隧道全长铺设高分子复合防水卷材,这是一种柔性的防水方法。衬砌时采用防水混凝土也能起到防水的作用。在进洞前须在洞顶设置截水沟,将洞顶的水排到地面的排水沟里。在洞口和洞身两侧都要设置排水沟,对于含水量比较高的区段,还应在洞身周围的围岩钻孔,将岩内的水排到排水沟,再排至洞外。要及时疏通排水沟,避免排水沟堵塞造成洞内积水。公路隧道的排防水工程是从开挖洞身时开始,直至隧道的修建完成,要注意各个工序间的衔接,在各个工序中都做好相应的排防水工作。综合防、排、截、堵。引的方针,具体落实防水和排水的相关施工。
结论
高速公路的隧道工程施工是一个繁杂的过程,施工技术中有很多规定和需要注意之处。希望进行更多的探讨,研究出更为先进和科学的隧道工程施工技术,期待我国高速公路隧道工程施工技术朝国际领先水平更进一步。
前言
断层及破碎带隧道施工有其自身的特点,此类地区一般含水量非常大,并且施工的安全度无法保证,具有一定的施工风险,在施工的过程中,其利用的技术是否科学合理决定了施工的质量和施工人员的安全,因此,做好施工现场的调查工作,运用科学的技术进行施工尤各重要。下面进行具体的分析。
1 断层及破碎带隧道施工技术的选择
1.1 断层及破碎带宽度较小时的隧道施工技术
在进行断层及破碎带隧道施工的过程中,当断层面以及破碎带宽度较小的时候一般说明该地区的岩石块比较大,并且岩石较为完整和坚硬,对于这样地区的隧道施工,一般选择一种施工方法施工即可,并且要避免多次更换施工技术。比如可以缩短每循环的开挖进尺,加快进行挂设钢筋网、设立钢拱架并立即喷射混凝土,利用常规的初期支护技术做好支护施工,然后开始执行后续工序相应的操作。对断层段还可以采用加厚混凝土的方式进行加固等等[1]。总之,在针对于断层及破碎带宽度较小的隧道施工的过程中,通过确定一种施工技术,然后有计划有步骤的实施,就能够最大程度的确保施工的质量和安全,能够有效的避免施工人员的安全。
1.2 断层及破碎带为一般宽度时的隧道施工技术
当断层及破碎带为一般宽度的时候,相比于宽度较小的断层及破碎带来说,其施工的难度相对增大,并且应用的施工技术也相对来说要复杂的多,主要是由于这类断层及破碎带的岩石也相对来说较为破碎,施工的时候应该对这种情况进行充分的调查和了解,并且制定相应的施工方案,选择施工技术,然后再进行施工,这样才能够确保施工的效果[2]。针对于一般宽度的断层及破碎带进行施工的时候,需要做好初期的防护工作,运用科学的防护技术做好施工的安全工作,并且可以采用加密径向锚杆、加密超前锚杆、喷射加厚混凝土、钢筋网和栅格架的方式进行加固,可以通过超前小导管向隧道顶端拱部注入混凝土浆,做到对岩体的加固和超前支护。
1.3 断层及破碎带地表时的隧道施工技术
断层及破碎带地表的时候,其主要的施工原则为防好地表水,做好隧道外预加固。通过相应的浅埋暗挖技术实现对水害的防治。由于断层及破碎带地表,当遇见多雨的季节,容易遭受到淹没,甚至是塌毁,造成隧道无法正常通行,甚至是出现人员的伤亡[3]。因此,在实际的施工中,需要运用相应的浅埋施工技术,做好浅埋的施工工作,该技术的主要施工包括地表锚杆、地表注浆加固、地表排水槽等,通过控制地面砂浆锚杆的直径、分布形态和杆间距离,要确保锚杆对周围地面的加固,这样才能够真正的做好水害的防治施工,确保隧道的施工质量,有助于实现隧道竣工后的良好使用。
1.4 断层及破碎带宽度较大时的隧道施工技术
断层及破碎带宽度较大的隧道施工难度最大,应用的施工技术也最为复杂,在实际的使用中,施工人员选择的施工技术不能单一,应该运用多种施工技术共同施工,但是前提条件是需要与施工的情况相结合。由于当断层及破隧道宽度较大的时候,这样的岩体非常的破碎和松散,在施工的过程中,应该搭设管棚,采用注浆管棚和钢架超前支护半断面的方向进行开挖。在宽度较大的区域应该在管棚支护下先挖掘上半断面,当径向锚杆、钢筋网、钢拱架及喷射混凝土等初期支护结构初具支护功能后,再进行管棚支护下部的挖掘。
在针对于断层及破碎带宽度较大情况下的隧道施工的过程中,相关的施工人员还需要在施工的过程了解实际的施工情况,并及时及项目技术人员反馈。如果在施工中出现如选择的施工技术不合理,施工质量不达标,无法到达施工技术要求等问题时,需要及时联系设计单位商量施工措施,及时的解决施工中的问题,避免由于盲目的施工造成施工安全隐患的存在,严重的影响到隧道的施工质量和隧道日后的良好应用[4]。
2 断层及破碎带隧道施工的工艺流程及施工技术要点
在进行断层及破碎带隧道施工的过程中,相关的施工人员需要全面了解隧道施工的工艺及其施工技术要点,实现对断层及破碎带隧道的施工控制,下面针对于具体的施工工艺及施工技术要点进行分析。
2.1 断层及破碎带隧道施工的工艺流程
断层及破碎带隧道的施工流程与一般性隧道施工流程要复杂,并且对其技术要求也更为的严格,在实际的施工过程中,施工人员需要严格的按照施工工艺流程进行施工,其施工流程大致为如下:
通过以上施工流程进行施工,能够实现良好的施工效果。
2.2断层及破碎带隧道施工技术要点
在应用断层及破碎带隧道施工技术的过程中,还需要充分的了解其施工技术的要点。本文主要探讨了3种施工技术的要点[5]。一,超前锚杆技术要点。超前锚杆技术是断层及破碎带隧道施工中的一项非常关键的技术,在应用该技术进行施工的过程中,施工人员需要注意控制好锚杆的位置以及方向,只有确保锚杆的位置和方向正确,才能够确保施工质量。另外,还需要注意的一点就是在进行早强药包的应用过程中,如果出现着结块的现象,坚决不能应用,以免影响到施工质量[6]。二,超前小导管注浆技术。在应用该技术的时候,需要注意在钻孔之后,要将钻孔吹洗干净,并且小导管应对中插入。另外,在进行浆液配合的过程中,其配合比要严格按照相关的要求执行,确保隧道施工的顺利进行。三,大管棚超前支护技术。控制好管棚的角度,接口及注浆,能较大的减少断层段隧道施工过程中的安全隐患。
结束语
断层及破碎带隧道施工技术包含的种类非常大,在实际的应用过程中,隧道施工人员不能盲目的根据自身的经验选择施工技术,应该对施现场的自然环境、社会环境以及人文环境等进行充分的调查,根据调查的结果选择施工技术,这样才能够保证选择的施工技术与施工现场的实际情况相符合,进而实现良好的施工效果,提高断层及破碎带隧道施工的质量。
参考文献:
[1] 杨金虎, 张凯,施春晖,陈礼兵.慈母山隧道穿越断层破碎带开挖支护技术分析[J]. 地下空间与工程学报. 2011(02).
[2] 刘天亮,陈汝先,刘建达, 许海标,尹俊涛,张晓炜,王场.隧道在断层破碎带现场量测设计与分析方案[J]. 山西交通科技. 2012(02).
[3] 赵存明,沈斐敏,张燕青,吴存兴.公路施工隧道含水断层破碎带的探测[J]. 西部探矿工程. 2011(03).
1问题的提出
隧道工程施工条件复杂,工期、质量、安全要求严,成本控制难,竞争激烈,施工风险高。虽然有“金隧银桥”的说法,但在复杂的施工条件下,隧道施工技术管理不好,常会导致出现大亏或小盈的现象。特别是长大复杂隧道,其面临的可变因素更多,工程项目管理难度更大。施工技术管理作为工程项目施工管理的核心工作之一,对工程项目的施工安全管理、质量控制、进度控制、成本控制等方面具有非常重要的作用。19世纪是高层建筑的世纪,20世纪是桥梁工程发展的世纪,21世纪将是隧道及地下工程发展的世纪,因此,面临21世纪隧道及地下工程发展的重要机遇期,发展隧道工程施工技术,加强隧道施工技术管理势在必行。加强施工技术管理,不断提高施工技术管理的“精细化管理、人性化管理”水平。
2隧道施工技术管理在项目管理中的作用
隧道施工流水线作业,各工序依次展开,施工技术管理的好可以起促进作用,反之则起制约作用。在激烈的市场竞争条件下,只有人员、设备、材料等资源优化配置,并不断加强施工技术管理,才能实现高效、优质、低耗工程。实现这一目标也是企业的立足之本。隧道施工技术管理在项目管理中发挥着重要的作用,其主要体现在安全、质量、进度、成本等方面。
2.1加强隧道施工技术管理是确保隧道施工安全的有效途径
在施工方案制定及技术交底实施过程中,必须充分考虑每道工序潜在的危害,明确危险源,采取有效的预防措施,并制定详细的应急预案。由于设计勘察手段有限,隧道施工中面临的可变因素较多,特别是地质条件复杂的山岭隧道,隧道施工中常面临涌水、突泥、瓦斯突出、塌方等安全隐患。在施工过程中必须充分利用综合超前地质预报手段,以探测隧道前方地质条件并指导施工,合理规避灾害风险。在长期的施工技术管理中,我们积累了丰富的经验。比如,浏阳河隧道出口在施工人员进洞之前进行安全讲解,并在洞口树立危险源警示牌,时刻提醒进洞人员注意施工安全;此外,每月进行安全质量大检查,综合各部门专业人才,扫除安全质量死角。
2.2加强隧道施工技术管理是实现施工项目管理质量控制的根本保证“安全是天,质量是命”这是不可否认的真理,但在一定程度上来说,确保施工质量是保证施工安全的重要前提。实现施工质量控制要做到:施工工艺要可靠、现场实施要到位、试验检验要及时。隧道施工隐蔽工程较多,如果事后发现问题整改困难,并且依靠雷达检测、声波检测等先进的检测手段,即使施工完毕也能对隧道实体一览无余。因此,施工中必须加强过程控制,并进行必要的检验监测,只有上一工序合格了才能进行下一工序的施工。
2.3加强隧道施工技术管理是实施施工项目管理成本控制的重要手段施工项目成本控制是指项目在施工过程中对影响施工项目成本的各种因素加强管理,并采取各种有效措施,将施工中实际发生的各种消耗和支出严格控制在计划成本范围内,消除施工中的损失和浪费现象。施工技术方案的好坏直接影响项目管理成本控制,施工方案如果制定得合理、可行、科学,可以大大地节省劳动力和降低损耗,使选用的机械设备较为简单;在施工项目建设过程中,施工单位应该在满足用户要求和保证工程质量的前提下,联系项目的主观条件、施工单位自身的技术水平和成熟的施工工艺,对设计图纸进行认真会审,并提出积极的修改意见,在取得用户和设计单位同意后对施工图纸进行某些修改。
2.4加强隧道施工技术管理是施工项目管理进度控制的有效途径进度控制的目标是在保证施工质量、确保施工安全、不因抢工期而增加施工成本的条件下,适当缩短施工工期;影响施工进度的因素主要有:有关单位的影响、意外事件的出现、施工条件的变化、技术失误、施工组织管理不当。其中施工单位采用技术措施不当,造成施工中发生技术事故;应用新技术、新工艺、新材料、新结构缺乏经验;流水施工组织不合理;施工平面布置不合理,这些技术管理措施将影响施工进度计划的执行。实际施工过程中,由于技术管理跟不上而影响施工进度经常遇到,例如我国隧道施工常对“洋技术、洋机械”感兴趣,但是“食洋”不化,没有深入研究,拿来就用,往往对机械设备性能及适应性了解不透,慢慢摸索,既增加了成本,又影响了施工进度。因此,只有在隧道施工项目施工过程中,不断加强隧道施工技术管理,才能使施工项目管理达到高质量、短工期、低成本这一根本目的。
3隧道施工技术管理存在的问题及解决办法
3.1存在的问题当前施工技术管理存在的主要问题是: