计算机研究与发展杂志是由中科院出版委员会主管,中国科学院计算技术研究所主办的一本北大期刊。
计算机研究与发展杂志创刊于1958,发行周期为月刊,杂志类别为计算机类。
杂志介绍
计算机研究与发展杂志是由中科院出版委员会主管,中国科学院计算技术研究所主办的一本北大期刊。
计算机研究与发展杂志创刊于1958,发行周期为月刊,杂志类别为计算机类。
主管单位:中科院出版委员会
主办单位:中国科学院计算技术研究所
国际刊号:1000-1239
国内刊号:11-1777/TP
发行周期:月刊
全年订价:¥1156.00
关键词: 能耗 数据中心 系统模型 能效算法 最优化
近年来,云计算技术发展迅猛.作为云计算的物理平台和重要基础设施,数据中心的数量和规模都得到了前所未有的发展.与此同时,数据中心极低的资源利用率和巨大的能耗问题日益突出,数据中心能效的研究已经成为了近年来学术界与工业界关注的热点.针对数据中心能效的基本问题,研究了基于资源和任务调度的数据中心节能关键技术,从能效模型与能效算法的...
关键词: 人工智能技术 无人驾驶 人脸识别 语音识别 经济建设 社会生活 国家战略 信息技术
从AlphaGo到无人驾驶,从语音识别到人脸识别,人工智能已经成为当代最重要的技术之一,人工智能技术已广泛应用于科学发现、经济建设、社会生活等各个领域.2017年7月20日,国务院印发《新一代人工智能发展规划》,标志着人工智能研发已经提升至国家战略层面.随着大数据、云计算、物联网等信息技术的不断发展,人工智能研究在理论、方法、应用等多个层...
关键词: 程序理解 程序分析 软件工程 深度学习 数据挖掘
程序理解通过对程序进行分析、抽象、推理从而获取程序中相关信息,在软件开发、维护、迁移等过程中起重要作用,因而得到学术界和工业界的广泛关注.传统程序理解很大程度上依赖开发人员的经验,但随着软件规模及其复杂度不断增大,完全依赖开发人员的先验知识提取程序特征既耗时耗力,又很难充分挖掘出程序中隐含特征.深度学习是一种数据驱动的端到...
关键词: 互联网金融 时间序列 动态预测 深度神经网络 序列建模
近些年,互联网金融市场在国内外迅速发展;同时,针对互联网金融市场的研究也成为了学术界的热点.相比于传统金融市场,互联网金融市场具有更高的流动性和易变性.针对互联网金融市场的动态(日交易量和日交易次数)进行研究,提出了基于深度神经网络结构的融合层次时间序列学习的预测模型.首先,该模型可以实现对多序列(市场宏观动态序列和多种子序列)...
关键词: 行人重识别 深度卷积生成对抗网络 重排序 标签平滑正则化 无监督
行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存在2个挑战:1)如何从原始数据集之中获取更多的训练数据;2)如何处理这些新生成的训练数据.使用深度卷积生成对...
关键词: 非平稳多变量时间序列 循环神经网络 长短期记忆 门循环单元 最小门单元 混合门单元
非平稳多变量时间序列(non-stationary multivariate time series, NSMTS)预测目前仍是一个具有挑战性的任务.基于循环神经网络的深度学习模型,尤其是基于长短期记忆(long short-term memory, LSTM)和门循环单元(gated recurrent unit, GRU)的神经网络已获得了令人印象深刻的预测性能.尽管LSTM结构上较为复杂,却并不总是在性能上占优.最近提出的...
关键词: 卷积神经网络 双向长短期记忆网络 预测 深度学习
非编码RNA(ncRNA)在很多动植物生命活动方面起着重要的调节作用,而微小RNA(miRNA)与长非编码RNA(lncRNA)的相互作用更为重要,其互作关系的研究不仅有助于深入分析基因间生物学功能,也可为疾病的诊治和植物的遗传育种方面提供新思路.目前,miRNA-lncRNA互作关系的预测大多使用生物实验和传统机器学习方法.由于生物鉴定代价高耗时长和机器学习涉及...
关键词: 深度学习 边缘化堆叠去噪自动编码机 深度神经网络 特征提取
近年来,深度学习技术被广泛应用于推荐系统领域并获得了很大的成功,然而深度学习模型的输入质量对学习结果具有很大影响,稀疏的输入特征向量不仅会增加后续模型训练的难度,而且容易导致学习结果落入局部最优.提出一个基于两阶段深度学习的集成推荐模型:首先,利用具有封闭式参数计算能力的边缘化堆叠去噪自动编码机进行用户和项目高层抽象特征的...
关键词: 机器学习 多示例学习 深度森林 监督学习 非图像分类
多示例学习已经广泛地应用到各个领域,如图像检索、文本分类、人脸识别等.而近年来深度神经网络也成功地运用到各个任务和问题上,MI-Nets是深度神经网络在多示例学习领域一个成功的应用.虽然MI-Nets很成功,但其主要在图像相关的任务上表现突出,而在非图像任务比如文本分类任务上的性能并不令人满意.而最近2年兴起的深度森林在非图像任务上取得了...
关键词: 数据挖掘 多视图 聚类 k 样本权重
大数据时代,人类收集、存储、传输、管理数据的能力日益提高,各行各业已经积累了大量的数据资源,这些数据常呈现出多源性和异构性.如何对这些多源数据进行有效的聚类(也称为多视图聚类)已成为当今机器学习研究关注的焦点之一.现有的多视图聚类算法主要从“全局”角度关注不同视图和特征对簇结构的贡献,没有考虑不同样本间存在的“局部”信息间的...
关键词: 一阶梯度方法 动量方法 个体收敛速率 稀疏性
动量方法作为一种加速技巧被广泛用于提高一阶梯度优化算法的收敛速率.目前,大多数文献所讨论的动量方法仅限于Nesterov提出的加速方法,而对Polyak提出的Heavy-ball型动量方法的研究却较少.特别,在目标函数非光滑的情形下,Nesterov加速方法具有最优的个体收敛性,并在稀疏优化问题的求解中具有很好的效果.但对于Heavy-ball型动量方法,目前仅仅获...
关键词: 特征选择 回归 异常点 稳健 自适应正则项
数据集中含有不相关特征和冗余特征会使学习任务难度提高,特征选择可以有效解决该问题,从而提高学习效率和学习器性能.现有的特征选择方法大多针对分类问题,面向回归问题的较少,特别是当数据集含异常点时,现有方法对异常点敏感.虽然某些方法可以通过给样本损失函数加权来提高其稳健性,但是其权值一般都已预先设定好,且在特征选择和学习器训练过...
关键词: 强化学习 深度强化学习 确定性行动者评论家 经验指导 专家指导 多行动者
连续控制问题一直是强化学习研究的一个重要方向.近些年深度学习的发展以及确定性策略梯度(deterministic policy gradients, DPG)算法的提出,为解决连续控制问题提供了很多好的思路.这类方法大多在动作空间中加入外部噪声源进行探索,但是它们在一些连续控制任务中的表现并不是很好.为更好地解决探索问题,提出了一种基于经验指导的深度确定性多...
关键词: 场景图 视觉关系 上下文 残差双向lstm 目标检测
场景图在视觉理解中有着很重要的作用.现有的场景图生成方法对于主语、宾语以及主宾语间的视觉关系进行研究.但是,人类通过空间关系上下文、语义上下文和目标之间的互动信息来进行关系的理解和推理.为了获得更好的全局上下文表示,同时减少数据集偏差的影响,提出了一个新的场景图生成框架RSSQ(residual shuffle sequence model).该框架由目标解码...
关键词: 深度学习 属性情感分类 注意力 依存树 自然语言处理
目前基于注意力机制的句子属性情感分类方法由于忽略句子中属性的上下文信息以及单词与属性间的距离特征,从而导致注意力机制难以学习到合适的注意力权重.针对该问题,提出一种基于依存树及距离注意力的句子属性情感分类模型(dependency tree and distance attention, DTDA).首先根据句子的依存树得到包含属性的依存子树,并利用双向GRU学习句子及...
关键词: 复杂实值优化问题 探索与利用 并行爬山算法 负相关搜索 搜索行为
现实世界中的许多应用与实值优化问题紧密相关.为了求解复杂的实值优化问题,一些研究工作提出不同的元启发式假设并设计相应的搜索策略.在搜索解空间过程中,如何平衡探索解空间新区域(多样化)与实现优质解利用(集约化)之间的关系,是提高元启发式搜索算法性能的关键因素之一.特别地,负相关搜索(negatively correlated search, NCS)通过在搜索进程...
关键词: 知识图谱 元数据建模 范围查询 模式化存储
随着越来越多的数据以知识图谱的形式进行组织和,知识图谱的管理引起了大量的关注.现有知识图谱管理方法存在2个明显的缺陷:1)逻辑存储建模产生了大量的数据冗余,无法有效地支持连续属性的范围查询;2)语义存储建模代价昂贵,不能有效地适应查询的动态演化.提出了聚簇对象模型(cluster object deputy model, CODM)进行知识和元知识的建模管理.该模...
关键词: 闪存 非易失性存储器 存储系统 能耗模型 节能
近年来闪存芯片(NANDFLASH)的生产技术获得了长足进步,单位芯片的存储容量及数据吞吐率不断提高.闪存芯片已经在移动终端领域成为主流的存储部件,例如在手机、数码相机、单片机等方面已经有了很广泛的应用.随着闪存成本的降低,其应用范围也逐渐扩展至大规模的数据存储系统中.针对在存储系统中闪存能耗预估准确性不高的问题,提出了一种基于能耗梯...
关键词: 动态二进制翻译 库函数处理 查询开销优化 静态预处理 散列函数
在无源跨平台移植的研究中,效率是制约动态二进制翻译技术发展的主要瓶颈.使用本地函数封装替换的翻译处理方式可以有效提高二进制翻译的性能.然而在实际应用中,随着源程序中库函数调用次数或者翻译器支持库函数数量的增长,库函数处理过程的无用查询开销随之增长,减弱了该方法的优化效果.针对此类问题,结合动态二进制库函数处理过程内在动静结合...
关键词: lsm树 键值存储 文件系统 预写日志 写性能
目前,键值(key-value, KV)存储系统在众多数据密集型的应用系统中发挥着关键作用,例如页面索引、电子商务以及云存储系统等.在各种键值存储系统中,基于日志结构合并(log-structured merge, LSM)树的KV存储系统获得了广泛的应用.主要原因是基于LSM树的KV存储系统能够将随机写操作转化为顺序写操作,从而提升数据写性能.然而,这些存储系统也存在一...
若用户需要出版服务,请联系出版商,地址:北京市科学院南路6号中科院计算所,邮编:100190。