关键词:adaboost算法 高职生 心理健康 预测方法 决策树
摘要:针对高职院校学生存在的心理健康问题现状,提出一种利用集成学习算法——Adaboost进行心理健康预测的方法。该方法首先抽取心理健康测试数据特征,经过数据清洗和规范化处理后,以决策树为分类器对数据进行挖掘分析,运用Adaboost算法对决策树分类器进行多轮迭代训练以提高分类器的分类效能,建立起一种心理健康预测模型。利用该模型对某高校2015级2 780名学生的心理健康测试数据进行了分析。实验结果表明,该方法能够实现对敏感心理问题的有效识别,从而为高职院校心理健康教育提供规划和决策依据。
软件导刊杂志要求:
{1}作者简介:文尾附注第一作者简介,含姓名(出生年月)、性别、民族、籍贯、学历学位、单位、职务、职称、研究方向等,并注明准确通讯地址、邮政编码、电话号码、E-mail地址。
{2}本刊只接受word版电子文本。文稿须包括题目、提要、关键词、正文及作者简介。
{3}题目中除公知公用的缩略语外,尽量不用外文缩略语。
{4}参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。
{5}关键词应有3~5个。词与词之间用分号分隔。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社