期刊在线咨询服务, 立即咨询
数学教学研究杂志

杂志介绍

数学教学研究杂志是由甘肃省教育厅主管,甘肃省数学会;西北师范大学主办的一本省级期刊。

数学教学研究杂志创刊于1982,发行周期为双月刊,杂志类别为教育类。

数学教学研究杂志

省级期刊

  • 主管单位:甘肃省教育厅

  • 主办单位:甘肃省数学会;西北师范大学

  • 国际刊号:1671-0452

  • 国内刊号:62-1042/O1

  • 发行周期:双月刊

  • 全年订价:¥148.00

  • 基于网络环境下学生数学素养的培养

    关键词: 数学素养  学生  教育界  信息技术与课程整合  教育工作者  现代教育技术  培养  新内涵  环境  看法  

    随着信息技术的飞速发展,以计算机多媒体和网络技术为核心的现代教育技术受到了教育界的普遍关注,信息技术与课程整合,必将改变人们对数学的内容、形式、应用、人文价值以及评价的认识与看法,教育工作者应当审视信息时代里学生的数学素养的新内涵,探索基于网络环境下提高学生数学素养的策略,这对于满足个人发展和社会进步的需要有着重要意义.

  • 论数学问题难度的静态因素

    关键词: 问题难度  数学问题  考试  试题难度  数学教学  问题解决  认知水平  因素  信息  激励功能  

    问题难度是教学中经常谈论的问题,它是影响教学效果的重要变量.如果教学中恰当地把握问题难度既有利于培养学生的思维能力,又不会脱离学生的实际认知水平;如果考试中设计合适的试题难度,就能充分发挥考试的鉴别、选拔、检查和激励功能.因此弄清影响数学问题难度的因素,数学教学才更具有针对性和时效性.问题解决的过程,首先是对问题空间的搜索,提...

  • 浅谈基于“问题解决”的数学教学准则

    关键词: 学生  答案  数学教学  中学数学  教师  过程  准则  策略  挑战  

    中学数学中的问题解决,应是指学生接受所谓"真正的"问题,并试图解决它的过程,与通常意义上对解题的理解是不同的.传统意义的解题注重的是结果、答案,甚至是答案的唯一性,而"问题解决"注重的是解决问题的过程、策略及思想方法.问题解决的教学是指教师激发学生接受问题的挑战,并在学生寻求问题解答的过程中给予必不可少的指导的教学活动.在此我们...

  • 数学知识形成过程教学探微

    关键词: 学生  数学知识  结论  传授知识  知识形成过程  数学课程标准  创设情境  发展能力  展现  发展过程  

  • 数学探究性教学中应树立几种意识

    关键词: 教师  探究性教学  数学探究  学生  解决问题  创设学习情境  教学内容  知识  特征  依据  

    "探索是数学教学的生命线".探究性教学有两个最显著的特征:一是教学内容的问题化,即以问题为中心组织教学内容;二是教学过程的探索化,即教师为学生创设学习情境,提供解决间题的依据材料,由学生独立地探究发现知识和解决问题.因此在探究性教学中教师应努力树立几种意识.

  • 在探究过程中培养学生的创新意识——一道高考试题的教学实践

    关键词: 创新意识  探究过程  培养学生  动手实践  高考试题  数学  独立思考  发展过程  知识  社会  

    创新意识是指对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,并进行探索和研究的创造性心理倾向.在探究学习过程中,教师要通过设置问题情境,鼓励和引导学生在动手实践的基础上分析、思考,探索、发现,体悟、升华,让学生理解知识的产生和发展过程,把握数学规律的内在本质,在潜移默化中培养学生的实践...

  • 高中数学探究性学习如何借题发挥

    关键词: 高中数学  学生  波利亚  师能  助学  探究性学习  教师  问题  门户  专心  

    美国著名数学家G·波利亚说:"一个专心的认真备课的教师能够拿出一个有意义的但又不太复杂的题目,去帮助学生发掘问题的各个方面,使得通过这道题,就好象通过一道门户,把学生引入一个完整的理论领域,"并指出"照此办理,一个问题就可以变成科学的整个这一章中的范例和样板."

  • 突破教法 探究延伸——记一节等差数列教学评比课

    关键词: 数学  评比课  教法  探究  动手实践  学生学习  课后反思  首届  重庆  过程描述  

    普通高中数学新课程标准强调:"动手实践、自主探索与合作交流是学生学习数学的重要方式."作为教学一线的教师,在教学中我不断地尝试着用新的课程理念指导教学,笔者有幸在2003年重庆首届重点中学中青年教师优质课大赛中获得一等奖,现将这节课的过程描述及课后反思奉献给广大读者.

  • 浅谈如何提高中学生的数学素质——兼与高三学生谈数学的复习

    关键词: 数学素质  高中学生  高考数学  高三学生  高三数学  指挥棒  数学意识  数学技能  数学语言  数学思维  

    高考数学命题的一个显著特点是在稳定的基础上不断创新,历年具有冲击力的试题,往往在我们的意料之外,却又在情理之中.若随着高考"指挥棒"转,将会陷入种种误区;只有提高自身数学素质,才是高考备考的不变主题.数学素质包括数学意识、数学语言、数学技能、数学思维等.现就我多年的高三数学教学谈谈高中学生应如何提高自身数学素质.

  • 新课程高考中函数题的几个新趋势

    关键词: 函数问题  高考  新课程  函数题  主干知识  高中数学  命题  导数  不等式  交叉  

    函数是高中数学中起联结和支撑作用的主干知识,函数与方程、函数与数列、函数与不等式的相互渗透和交叉一直是高考的热点,考查的比例相当大,可以说是常考常新.随着新教材课程改革的不断向前发展,高考函数命题已从理论和实践上发生了深刻的变化,尤其是导数和向量进入教材之后,给函数问题注入了生机和活力,开辟了许多新的解题途径,拓宽了高考对函...

  • 高考对解几问题考查的新视角

    关键词: 高考模拟题  考查  高中数学  中学数学  解析几何  知识点  题型  问题  拓宽  创新  

    "解析几何"是高中数学的重要内容之一,它的知识点多、涉及面广、思想丰富、综合性强,很容易与其它知识建立联系.正因为如此,每年的高考对解几问题的考查都占有相当大的比例,可谓常考常新.尤其是"导数"和"向量"进入中学数学教材之后,拓宽了高考对解几问题的命题空间,不仅题型在变化,而且解决问题的方法也在不断创新.下面笔者将结合某些高考题或高...

  • 寻找解数学题突破口的途径

    关键词: 数学解题  数学题  波利亚  学习数学  独立思考  突破口  问题解决  解数  数学教育家  数学家  

    当代著名的数学家和数学教育家G·波利亚曾说:"学习数学在于解题","不仅善于解决一些标准问题,而且善于解一些要求独立思考、思路合理、见解独特和有发明创造的习题."数学解题中,解题突破口是解题的关键,是扣开问题解决大门的钥匙,而让人感到最头疼、最困惑的是寻找解题的突破口.如何解决这一问题呢?笔者就此作些探讨.

  • 引导学生正确预测解题方向

    关键词: 数学解题  学生  导学  引导  方向  难度  综合题  重要因素  预测  全面分析  

    凡事"预则立,不预则废",数学解题亦是如此.尤其是面对具有一定难度的综合题时,解题方向是什么?解题突破口在何处?众多条件中应该优先考虑哪一个?选择何种表达式?等等问题,往往是阻碍学生成功解题的重要因素.因此,引导学生全面分析题中的信息(显现的或隐含的),理清内在联系,积极预测解的方向,则成为学生能否快速正确解题的关键之一.

  • 向量射影在几何解题中的应用

    关键词: 射影  空间向量  几何问题  解题  数量积  平面向量  几何意义  投影  高中  

  • 有心圆锥曲线的一个新性质

    关键词: 有心圆锥曲线  证明  实际  性质  切线  方法  

    本文证明了有心圆锥曲线的一个新性质,实际上也给出了经过有心圆锥曲线外一点作有心圆锥曲线切线的一种方法.

  • 对“浅谈不等式解题教学的一个怪现象”的修正

    关键词: 解题教学  不等式  期刊  现象  阅读过程  修正  发现  

  • 圆锥曲线中的一类最值问题

    关键词: 圆锥曲线方程  最值问题  高考内容  中学数学  解析几何  理解  定义  性质  

    圆锥曲线是解析几何的精华所在,是中学数学的重要内容之一,也是历届高考内容,而掌握圆锥曲线的定义是学好圆锥曲线方程和性质的根本,深刻理解定义和灵活运用定义是教学重点之一,下面几例最值问题的解决有助于加深对定义的理解.

  • 浅谈数学学习中的猜想

    关键词: 数学猜想  数学学习  波利亚  思维方法  问题解决  主导思想  数学定理  个数  定理证明  类比  

    猜想是对研究的问题进行观察、实验、分析、比较、联想、类比、归纳等,依据已有的材料和知识作出符合一定的经验与事实的推测性想象的思维方法.

  • 漫谈“特殊”的特殊作用

    关键词: 特殊作用  代数  运算  体系  概念  规定  

    1"特殊"完备了概念、理论(运算)体系 在代数中,对某些特殊数有一些特殊的规定,这些特殊的规定,完备了概念或数的某些运算体系.

  • 圆锥曲线定点弦与定直线的相关性

    关键词: 定点弦  圆锥曲线  直线  二次曲线  个性  性质  

    文[1]、文[2]非常相似,都给出了二次曲线定点弦的如下两个性质:

  • 启事

免责声明

若用户需要出版服务,请联系出版商,地址:甘肃西北师范大学,邮编:730070。